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a b s t r a c t

The start-up of continuous biohydrogen fermentations is a complex procedure and a key to acceptable
hydrogen production performance and successful long-term operation. In this review article, the
experiences gained and lessons learned from relevant literature studies dealing with various aspects
of H2 producing bioreactor start-up are comprehensively surveyed. Firstly, the importance of H2-forming
biosystem start-up including its main steps is outlined. Afterwards, the role of main influencing factors
and methods (e.g. strain selection, seed pretreatment and inocula stimulation, switch-over time,
bioreactor design, operating conditions) in avoiding the deterioration of starting a reactor is analyzed
and presented in detail. Finally, the so far suggested applicable start-up strategies and the corresponding
findings are critically discussed pointing out the advantages and disadvantages of each strategy.

& 2014 Published by Elsevier Ltd.
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1. Introduction

Hydrogen is an emerging candidate among the various alter-
native energy carriers. H2 is believed to help the transition of
current fossil-based economy to a renewable-based one [1],
however, only if it is derived by sustainable processes. Though
H2 can be prepared by many conventional and mature methods (e.
g. steam reformation of hydrocarbons), environmental-friendly
methods such as with biological routes are required and still
subjects to extensive research [2].

Nowadays, microbiologically produced hydrogen is recognized as
an emerging way ahead, especially when formed via dark fermenta-
tion because of its inherent advantages such as relatively low energy
demand (attributed to the gentle reaction conditions), the usability of
wide range of feedstocks e.g. derivates of biomass, waste streams and
agricultural residues [3–5], and the possibility to integrate with other
e.g. membrane-based processes in order to accomplish the sufficient
reuse of hydrogen producing cells [6] or to upgrade bioH2 [7–9] so that
it could be a viable feedstock in energy efficient fuel cells.

Nevertheless, additional efforts are still essential to make
biohydrogen generation more attractive. From practical aspect,
the two major criteria to be considered are H2 production yields
and rates. As a result of the investigations in the past decades,
several factors were identified that significantly affect the main
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technological indicators mentioned above. Among them, bioreac-
tor configuration and operation are apparent ones [10]. Regardless
the type of the fermenter, it can be concluded that feasible
biohydrogen fermentation should be conducted in continuous
rather than batch systems [11], e.g. due to higher expectable
process efficiencies.

The establishment of continuous flow bioreactors usually starts
in batch mode, and it is to note that successful transition and
reliable, long-term operation is highly influenced by the start-up
strategy applied [12–14]. However, up to the authors' best knowl-
edge, there is no recent review paper comprehensively surveying
start-up experiences in continuous hydrogen producing bioreac-
tors. Hence, in this work, the experiences gained and lessons
learned from batch to continuous shifts are reviewed and sugges-
tions are given to achieve proper continuous operation.

2. The role of start-up in the efficacy of continuous hydrogen
production

Process instability is a frequently observed drawback in
fermentative H2 production [15] that could be attributed to
multiple reasons as specified later in this paper. In fact, beyond
steady-state operational parameters and medium composition,
stable and continuous bioreactor operation to obtain acceptable
hydrogen production performance is strongly dependent on the
start-up phase [16]. It could involve the following steps:

� Selection of the hydrogen producing biocatalysts.
� Enhancement and acclimatization of H2-forming strains to

fermentation circumstances.
� System transition until steady-state is reached.

These steps in a line require great attention and comprehensive
control in terms of environmental and operational circumstances
to develop robustful H2 fermenting culture [17]. Otherwise, start-
ing a reactor may easily be deteriorated e.g. due to the insufficient
growth and H2 production capacity of microorganisms. Such
bottlenecks can be avoided or at least mitigated by properly
designed start-up strategy.

In the next sections of the paper, the aforementioned parts of
the continuous dark fermentative bioreactor establishment are
outlined and discussed in details.

3. Factors affecting the initiation of continuous H2 fermenters

3.1. H2 producing strains

Fermentative biohydrogen generation can be realized either by
pure cultures [18] such as Escherichia coli [19,20] or mixed
bacterial consortia [21,22] and both have their own benefits. For
example, cultures of pure isolates may be easier to control but
need constantly sterile environment to prevent contamination
that is difficult and costly to maintain out of laboratories. Con-
sidering their application in a non-sterile environment, pure
cultures may be used in the bioaugmentation of diverse H2

producing population to attain better gas turnouts [23]. The
restrictions of sterility criteria are the main reasons why mixed
bacterial communities are preferred to their pure counterparts in
real-case, scaled-up applications.

3.2. Pretreatment and stimulation

Conceptually, anaerobic, mixed H2-producing consortia (e.g. in
sewage sludge, biogas plants, etc.) are built up by co-existing and

synergic species [24]. However, in most cases, they naturally occur
together with H2-consumer microorganism such as methanogenic
archaea, homoacetogenic (producing acetate from CO2 and H2)-,
lactic- and propionic acid bacteria which must certainly be
suppressed or more preferentially totally eliminated [25]. As a
consequence, regardless the source of mixed inocula, it should
undergo initial pretreatment in order to select the desired whole
cell biocatalysts. For such purposes, a lot of tools have been
developed based on heat shock, addition of chemicals, swinging
the oxidation–reduction potential (ORP) e.g. by aeration, high
energy irradiation, alteration of pH, freezing and thawing [26–
28]. These pretreatment techniques exploit the distinct sensitivity
of strains present in the mixture and in general could provide a
satisfactory starter culture to be used as seed inocula for subse-
quent biohydrogen fermentation. In other words, these procedures
aim to eliminate hydrogen-consuming vegetative cells and on the
other hand, are devoted to enhance acidogenic- and often spor-
ulative H2-forming cells [29].

Although culture pretreatments can effectively suppress unde-
sired microbiological activity, they may also reduce the number of
indigenous H2-former bacteria, especially the ones with low stress
tolerance. For these reasons, as a next step after culture pretreat-
ment, treated inocula should be submitted to stimulative environ-
ment (e.g. to a batch reactor) to let the microbes proliferate so that
a reasonable amount of active cellmass can be accumulated,
harvested and further applied. Also, batch cultivation can play a
role to help biofilm development on carrier materials (e.g. pow-
dered- and granulated activated carbon) if an immobilized, con-
tinuous H2 production system is to be implemented [30,31].

According to literature reports, pretreated inocula are more
often than not dominated by spore-forming and robust H2-
producer species such as Clostridium sp. [13]; however some
organisms of no utility (e.g. propionic acid and homoacetogenic
bacteria) may also survive and reclaim their niche over time
[21,25]. Changes in the microbial background can be revealed by
the modern technical apparatus of molecular biology [32,33].

Furthermore, it is presumable that the age of the seed source –

most commonly sewage or biogas (anerobic fermenter) sludge as
suggested by Tables 1 and 2 – may also be a factor to take into
account. It is assumable that the microbial community structure of
anaerobic mixed cultures varies constantly during storage due to
changes (e.g. concentration differences) within micro-
environments. Consequently, aging of an anaerobic seed culture
over time can result in the variation of the obtainable bacterial
populations and their activity. Thus, it might lead to alterations in
the attainable biohydrogen performances even though standar-
dized, identical pretreatment conditions are ensured time after
time to prepare H2 producing inocula.

Moreover, beyond the goal of activating H2-producer organisms
[16,34,35], preliminary cultivation – mostly in batch – may also
serve as a tool to acclimatize the microflora to certain substrates
and their loadings e.g. to overcome inhibitory effect [36], which
will induce a dynamic competition between the various groups of
bacteria. Although batch-continuous start-up strategy was pro-
posed by various authors to follow (for examples, please refer to
Tables 1 and 2), some researchers reported adequate start-up
directly in continuous operation [37–41].

The advantage of this strategy lacking initial discontinuous cell
growth might be that in batch operation the nutrient concentra-
tions as the time passes, especially at the end hours of the cycle,
are insufficiently low and consequently a shift in the dominant
strains could occur, depressing H2 production [12]. During careful
continuous adaptation, broth is constantly supplemented and such
disadvantageous phenomenon may be avoided. Moreover, contin-
uous (hydraulic detention time influenced) acclimatization strat-
egy encompasses the so-called biokinetic control which causes the
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wash out of existing microbes possessing inadequately low growth
rates or adaption capabilities [42]. In other words, feeding regime
affects the culture diversity and the relative abundance of the
bacterial species.

Additionally, pH, temperature and ORP adjustment are also of
crucial importance, since their values change the generation time,
growth rate and metabolic pathways of microorganisms present in
a mixed culture [12,43–45]. It was also demonstrated that sus-
tained continuous hydrogen formation could be achieved with a
start-up strategy completely lacking preliminary inocula pretreat-
ment and batch propagation. For example, bioreactor inoculated
with untreated consortia achieved the suppression of H2 consum-
ing microorganisms through the simultaneous enrichment of
biohydrogen producers, taking place because of the insistent
acidophilic microenvironment maintained from the beginning of
operation [46]. For more studies skipping inocula pretreatment,
the reader is referred to Tables 1 and 2.

Besides the adequate substrate composition and loading, tem-
perature, pH and OPR there are other parameters such as hydrogen
partial pressure in the bioreactor that may need a control since it
is a potential threat that hydrogenotrophic consortial activity may
be provoked under high H2 concentrations [25]. From another
point of view, reduced H2 partial pressure was proven to increase
hydrogenase activity and making H2 formation thermodynami-
cally favorable [47].

3.3. Switch-over time

Since the establishment of continuous hydrogen fermentation
implicates an initiative batch cycle for most cases, another issue to
be discussed is its duration.

The literature is not consistent about this question, or in other
words, it is not fully obvious when to convert to continuous
hydrogen fermentation. However, as listed in Tables 1 and 2, the
following strategies could be identified as the most popular ones:

� switch-over when significant biohydrogen production
commences,

� switch-over when reaching the exponential H2 production
phase, and

� switch-over after a few days of batch cultivation.

Regardless the hydrogen fermentation system employed, dilution
rate, substrate loading intensity, pH and temperature applied during
transition-state (caused by the switch between batch and continuous
operation) reactor runwill result in the enrichment of certain bacterial
populations and moreover, these factors inherently direct their meta-
bolic pathways. After a period of time when the functional consortia
got used to the environmental conditions and consequently stabilized,
steady-state can take place which is mostly considered to reach when
variations in H2 gas production, pH and effluent (spent media) quality
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Table 1
Start-up experiences during H2 fermentation in CSTR.

Reactor
type

Inoculum Inoculum
Pretreatment

Substrate pH T
(1C)

Start-up experiences Reference

CSTR 5 Different
thermophilic
sludge

– Starch N.C. 55 Continuous feeding was started after obtaining exponential growth
phase in batch operation. Stable hydrogen production was attained in
less than 30 days of start-up

[70]

CSTR Indigenous
microflora of
substrate

– Sweet sorghum
extract

3.5–6.5 35C 24 h in batch mode to activate the indigenous microflora contained in
substrate

[74]

CSTR Anaerobic digester
sludge

Heat shock (85 1C,
45 min)

Cheese whey
wastewater

5.5 55 2 days in batch mode, conversion to continuous operation when
hydrogen production reached its peak value

[75]

CSTR E. coli – Na-formate 6.5 37 Batch operation until exponential growth phase took place [20]
CSTR Anaerobic granular

sludge
Heat shock (boiling
for 40 min)

Cheese whey 7.5 37 Batch operation for 12 h [49]

CSTR Digester sludge N.M. Cellulose N.C. 70 90 days until steady-state [72]
CSTR Waste activated

sludge
Heat shock (70 1C,
30 min)

Glucose 5.5–6.5 37 15 h in batch mode, 10 days to reach steady-state [39]

CSTR Anaerobic digester
sludge

N.M. Sugarbeet water
extract

5.2 32 Continuous operation was commenced once significant hydrogen
production occurred

[76]

CSTR Anaerobic digester
sludge

Heat shock (90 1C,
20 min)

L. japonica 5.5–8 35 When the yield reached 60 mL H2/g dcw, the operation was shifted to
continuous mode

[78]

CSTR Anaerobic digester
sludge

Heat shock (90 1C,
10 min)

Food waste 5.3 35 When cumulative H2 production was equivalent to 0.5 mol H2/mol
hexose, the reactors were put into continuous mode

[15]

CSTR Anaerobic digester
sludge

Heat shock (90 1C,
15 min)

Sucrose 5.3 35 20 days long start-up [47]

CSTR Wastewater
treating sludge

Heat shock (100 1C,
45 min)

Starch 5.5 35 Continuous feeding started after 24 h of batch operation. During start-
up, decreased initial organic loading rate could enhance hydrogen
production efficiency

[48]

CSTR Wastewater sludge Heat shock (100 1C,
45 min)

Sucrose 6 35 The fermenter was first operated in a batch mode for two days and
then switched to a continuous operation

[63]

CSTR Indigenous
microflora of
substrate

– Cheese whey 5.2 35 For start-up, the reactor was operated in batch mode for 24 h to
activate the indigenous microflora contained in the seed before
initiation of continuous operation

[34]

CSTR Anaerobic digester
sludge

N.M. Whey permeate 4–5 35–
38

Continuous bioreactors were operated as a batch for the first 40 h [79]

CSTR Anaerobic digester
sludge

Heat and acid
treatment (98 1C,
2 h; pH¼2, 24 h)

Glucose 5.5 37 1 day in batch mode before continuous operation, Steady gas
production was observed after 19 days

[66]

CSTR Sewage sludge – Terephthalic
acid processing
wastewater

6 35 Stabilized gas production was achieved after 25 days [46]

N.M.: not mentioned; N.C.: not controlled.
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e.g. in terms of soluble metabolic product (SMP) distribution and
related concentrations are below 10% on a daily average base [48].

Therefore, appropriate threshold levels of the parameters
mentioned can develop an attractive hydrogen-generating bio-
community and govern the whole bioreactor towards better
performances e.g. volumetric production rates and yields [49].

3.4. Bioreactor configuration

The configuration of the bioreactor set-up is also a concern to
keep in mind since different kinds of reactors can be characterized by
distinct start-up stage features, for example in terms of its duration
[6,14]. Nowadays, the suspended-cell, completely stirred tank reactor
(CSTR) is the most routinely applied one, however, up-flow anaerobic
sludge blanket (UASBR) reactors, anaerobic membrane bioreactors
and immobilized (e.g. fluidized bed) bioreactors [16,29] became
popular due to their improved H2 producing potentials.

Generally, the CSTR is featured by a relatively short induction
phase [50] as compared to other applications (e.g. UASBR) due to
better mass transfer, but it needs rigorous supervision due to the
disposition of cells to wash out at inadequate operating bioreactor
regimen. Troubleshooting the risk of wash out can be performed
by biomass-rejective systems such as the membrane bioreactors
[6] or immobilized e.g. fixed bed systems [51,70]. These

alternatives may demonstrate more robust operation and
enhanced hydrogen production efficiency even in smaller reactor
volumes that is of economical importance.

Another option is the usage of UASBR. Basically, this construction
is described by extended start-up phase [52,53] since the flocculation
of bacterial communities in the sludge-bed demands longer time.
However, start-up period of granular systems for biohydrogen
generation could be considerably shortened through the transforma-
tion of methanogenic granules (obtained e.g. from already existing
and well-established anaerobic, methane forming UASB reactors)
into hydrogen producing ones, as recently reported [54].

An important trait of UASBR is the fact that it does not apply
mechanical mixing and therefore pH gradients can occur which is not
easy to control. For pH regulation purposes, the buffer capacity of the
fermentation media may be adjusted to withstand progressive pH
depression caused by the formation of acidic by-products that is
always expectable in parallel to H2 bioproduction. However, in return
to laborious start-up, granulated reactors reflect remarkably improved
operational stability [55]. This is because granulation reactors enhance
the active biomass concentration and thereby able to sustain under
increased substrate dosage and greater dilution rates so that higher H2

production intensity can be accomplished [56].
Last but not least, the anaerobic sequencing batch reactor is also

among the available design options for continuous H2 fermentation
[56–58].
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Table 2
Start-up experiences during H2 fermentation in reactors other than CSTR.

Reactor
type

Inoculum Inoculum
Pretreatment

Substrate pH T Start-up experiences Reference

UASBR Mixture of
precultured and
granulated sludge

Heat shock (100 1C,
2 h)

Starch 5 55 After confirming the exponential production of the biogas, the
operation was turned into continuous mode

[73]

UASBR Sewage sludge Heat shock (100 1C,
45 min)

Sucrose 6.7 35 Time-consuming start-up, almost 40 days were taken to reach steady-
state

[52]

AFBR Wastewater
treating sludge

Heat shock (90 1C,
15 min)

Glucose, cheese
whey

N.M. 30 Initially, the reactors were operated as batch for 76 h prior to switching
to continuous mode

[29]

UASBR,
CSTR

Anaerobic digester
sludge

Heat shock (90 1C,
20 min)

Coffee drink
manufacturing
wastewater

5.5 35 Continuous operation was delayed until a yield of 0.5 mol H2/mol
hexose achieved in the batch, start-up took 10 days in continuous mode

[77]

UASBR Anaerobic digester
sludge

Heat shock (90 1C,
20 min)

Coffee drink
manufacturing
wastewater

5.5 35 When the yield of produced H2 reached 0.5 mol H2/mol hexose,
continuous operation started

[59]

ASBR Anaerobic digester
sludge

Heat shock (90 1C,
10 min)

Food waste 5.3 35 When cumulative H2 production of 0.5 mol H2/mol hexose was
observed, the reactors were put into continuous operation. Steady-state
was reached in 10–30 days depending on the HRT and inoculation
conditions

[57]

AFBR Wastewater
treating sludge

Heat shock (90 1C,
10 min)

Glucose N.C. 30 The bioreactor was initially run as a batch for 2 days to stimulate the
hydrogen-producing biomass

[16]

ABR Anaerobic digester
sludge

Heat shock (105 1C,
2 h)

Tapioca
wastewater

6.5a;
9b

32 Multistep batch operation and gradual acclimatization of mixed
consortia to substrate. First 3 days in batch operation. 37 days were
required to reach steady-state H2 production

[64]

ASBR Anaerobic digester
sludge

Heat shock (100 1C,
30 min)

Liquid swine
manure mixed
with glucose

5 37 Firstly, the bioreactor was operated in a batch mode for 24 h until the
established biogas production took place

[56]

ASBR Anaerobic digester
sludge

Heat shock (boiled,
30 min)

Liquid swine
manure mixed
with glucose

5a;
4.4–
5.6b

37 Firstly, the bioreactor was operated in a batch mode for 24 h until
established biogas production took place

[58]

UASBR Enriched
facultative
anaerobic culture

Enriched culture
with Clostridium
pasteurianum

Citric acid
wastewater

7 35–
38

More than a month long acclimatization before starting continuous
mode. UASB start-up took 20 days, excellent system stabilization

[55]

UASBR Wastewater
treating sludge

N.M. Sucrose 6.1–
9.5

39 The start-up of the UASB reactor lasted for 300 days to enrich H2-
producing microbes and establish a stable gas generation. Afterwards,
a successful operation was achieved with the formation of the H2-
producing granules

[53]

ABR: anaerobic baffled reactor; AFBR: anaerobic fluidized bed reactor; N.M.: not mentioned; N.C.: not controlled.
a During start-up.
b After start-up.
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4. Experiences and lessons of continuous H2 producing
bioreactor start-up

Alternatively to the strategy described in [54], it has been
reported that the start-up time of UASBR could also be signifi-
cantly decreased by thriving H2-producing cells in CSTR arrange-
ment prior to transferring them to the up-flow anaerobic sludge
blanket reactor as seeding source [59]. As it was found, despite the
high shearing forces in CSTR, self-flocculation of hydrogen-
generating bacteria was notably faster than in UASBR and
explained by the more intense mass transfer capacity of the
former reactor type.

Besides, organic loading rate fluctuation was reported to accel-
erate the start-up process both in suspended- and immobilized
cell applications [31]. This strategy was shown as an efficient way
to rapidly and effectively establish a good biohydrogen evolver
culture and less than 3 weeks were required to obtain stabilized
operation, which is considerably shorter in comparison with other
similar systems [60].

In relation to start-up duration, anaerobic sequencing batch
reactor (ASBR) was demonstrated as a feasible concept to provide
quick steady-state. Studies indicated that start-up time require-
ments in the range of 12–14 days were far below the values
revealed for UASBR and CSTR [56,61].

As communicated [62], operational conditions employed in
UASBR start-up could have significant impact on the microbial
fingerprint of mixed H2 producing sludge, depending on the seed
inocula structure.

Likewise, pH adjustment was noticed to express marked
influence during H2-formation bioreactor start-up [46,58]. It has
appeared that pH values out of optimal range may induce
population- and metabolic shifts (i.e. solventgenesis). Moreover,
the hydrogenase enzyme activity and growth rate of microorgan-
ism responsible for H2 fermentation can also be hindered under
inappropriate pH conditions. Hence, non-optimal pH probably
causes an unambiguous delay in attaining steady-state conditions
with the desired H2 production rate and yield.

Moreover, pre-culturing seed inocula and initial batch strategy
were observed to be efficient start-up concept that supported
biomass growth and consistent H2 production well in sub-
sequent continuous operation [63]. The adaption of H2 producing
microflora to a given substrate can be conducted in complex
and multistep batch operation, where bacterial consortia are
periodically supplied with gradually increasing feed concentra-
tions before putting into continuous mode [64]. Nevertheless, as
mentioned above, there are studies that skipped preliminary
batch operation and adapted the H2 generating cultures during
continuous operation. Regarding these start-up strategies, it is to
conclude that the hydraulic retention time (HRT) is usually
stepwise refined from long to short time intervals to allow the
acclimatization of microorganisms to new environments and
prevent washing out the bacteria of interest [65]. As a result
of shifting HRT, the microbial population dynamically changes
leading to the disappearance of certain species while others show
up [66].

Additionally to HRT, altering organic loading rate (OLR) is also a
stress source to the strains that are forced to get accustomed to
new surroundings [52]. Varying OLR might cause sporulation in
hydrogen producing cultures and contribute to the observable
fluctuations in the H2 production efficacy during start-up stage
[48,67].

It is an ongoing progress in biohydrogen research that various
waste substances are utilized to improve process viability. How-
ever, depending on the nature of these problematic raw materials
(e.g. cheese whey), it is presumptive that they contain indigenous
microflora which of course, from the beginning, might affect

bioreactor performance in a negative manner [75]. In this regard,
it was evaluated [15] that attention should be paid to the
pretreatment (e.g. by means of alkali) and sufficient storage
circumstances (preferentially at cold temperature) of such
streams. This is attributed to the fact that indigenous strains, for
example non-H2-producing acidogens such as lactic- and propio-
nic bacteria present in non-aseptic substrate could cause strong
contamination and even outcompete the H2-producing microbes
[68,69].

Even though the biosystems may resist the perturbations
caused by contamination and might be able to express the
performance required, dominance of disadvantageous non-
hydrogen producing bacteria potentially leads to problematic
start-up, unsuccessful continuous operation in long terms and
consequently may force to reinoculate and restart the H2 ferment-
ing bioreactor.

Recently, it was experimentally demonstrated that non-
hydrogen producing cells, as a result of long batch cultivation,
were promoted alongside their useful H2 evolver counterparts and
could take over, causing tough start-up failure. In order to avoid
such undesired microbiological activity, an early switch-over time
was recommended that highly increased the chance of successful
and long-term continuous H2 fermentation [69]. It is also extrac-
table from the literature that inocula source can be a determining
factor of the time necessary for starting-up a continuous H2

producing fermenter [70].
In addition to contamination related issues, operational failures

caused by unforeseen technical difficulties (e.g. broken pumps,
leaking tubes) may also challenge the adequate start-up since they
can cause insufficient or shocking organic loading rates, altered
hydraulic detention times and thus, disturb the developing micro-
bial consortia and affect its survivability.

To aid bioreactor start-up, monitoring the soluble metabolites
such as volatile fatty acids is apparently beneficial. The ratios of
acetic-, butyric-, and propionic acids produced by the various
groups of microorganisms can be useful feedbacks about the state
of the hydrogen producing consortia. When propionic acid con-
centration gradually increases in fermentation broth, it assumes
the occurrence of microbes with no utility for H2 production and
gives the sign that troubleshooting of the reactor is required to
avoid strong deterioration of its performance.

In cases when an unusual decline in hydrogen production
efficiency occurs (e.g. as a consequence of population shift or
appearance of methanogenic activity) during start-up that threats
achieving steady-state, a temperature shift strategy may be carried
out which includes heating the bioreactor to higher temperature
ranges (e.g. to 70–80 1C) for a short time (e.g. 1 h) to reclaim
hydrogen producing bacteria and reactor performance [71]. How-
ever, it may be ineffective for granulated systems, since it was
proven that granules serve as protective structure. In such cases,
disintegration of granules prior to temperature shift or combined
methods (e.g. temperature- and pH shift together) might work
[62]. On the contrary, it was demonstrated that simple washing
and subsequent boiling of granular sludge could be a feasible
approach to inactivate hydrogen consuming microorganisms [49].

It is to mention that process temperature – even in the same
bioreactor design – could influence the reactor behavior during
start-up. As a matter of fact, comparison of meso- and (hyper)
thermophilic H2 production in CSTRs indicates that start-up of the
latter group could last as long as 90 days to achieve stabilized H2

fermentation [72], while mesophilic H2 production in similar
system configurations was reported to reach steady-state circum-
stances in shorter times [39,47,67].

As a summary, the flow chart depicted in Fig. 1 presents the
connection network of the various steps involved in continuous
hydrogen producing bioreactor start-up.
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5. Conclusions

In this review, the experiences of continuous hydrogen
fermentation start-up were scoped and analyzed. The lessons of
relevant literature papers about the routes leading to continuous
and efficient, steady-state hydrogen production imply that start-
up is of high concern to avoid significant performance losses. As a
general guideline, the establishment of reliable, continuous hydro-
gen producing bioreactors should start with proper inocula
selection and its pretreatment (if necessary), followed by an
acclimatization period – conducted mainly as a batch – to adopt
the living biocatalysts to the intended substrate which may also
require preliminary treatment to eliminate native and undesirable
microflora present in it. Subsequently, switch-over strategy –

assigned to ensure viable and smooth batch to continuous shift
– must be designed e.g. timed properly in order to preserve and
ensure microorganism with as high hydrogen producing capacity
as possible. Besides timing, transition from batch to continuous
mode hydrogen fermentation should take also into account the
suitable adjustment of major environmental (physiological) factors
– such as pH, temperature, etc. – and the operating conditions (e.g.
hydraulic retention time, organic loading rate, etc.) applied with
respect to bioreactor configuration (CSTR, UASB, AnMBR, etc.).
Currently, CSTRs are the most widely used reactors for continuous
hydrogen production due to their relatively rapid start-up phase.
Nevertheless, as a result of the efforts made to cut start-up time
demand of other devices, more wide-spread employment of
granular- and immobilized systems and that of reactors integrated
with downstream (membrane bioreactors) is presumable in the
future, which is also attributed to their potential benefits (e.g.
higher long-term performance and enhanced stress tolerance)
over the conventional set-ups.
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