On the directions determined by a Cartesian product in an affine Galois plane

Daniel Di Benedetto* József Solymosi ${ }^{\dagger}$ Ethan P. White ${ }^{\ddagger}$
Department of Mathematics
The University of British Columbia
Vancouver, BC
Canada V6T $1 Z 2$

June 25, 2020

Abstract

We prove that the number of directions contained in a set of the form $A \times B \subset$ $A G(2, p)$, where p is prime, is at least $|A||B|-\min \{|A|,|B|\}+2$. Here A and B are subsets of $G F(p)$ each with at least two elements and $|A||B|<p$. This bound is tight for an infinite class of examples. Our main tool is the use of the Rédei polynomial with Szőnyi's extension. As an application of our main result, we obtain an upper bound on the clique number of a Paley graph, matching the current best bound obtained recently by Hanson and Petridis.

1 Introduction

Let U be a subset of the Desargusian affine plane $A G(2, p)$, where p is a prime number. A direction is determined by U if two points of U lie on a line in that direction. We can coordinatize $A G(2, p)$ so that $U=\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq|U|\right\}$, where $a_{i}, b_{i} \in G F(p)$ for all $1 \leq i \leq|U|$, and then the set of directions determined by U is given by

$$
D=\left\{\frac{b_{i}-b_{j}}{a_{i}-a_{j}}: 1 \leq i<j \leq n\right\}
$$

Note that D is a subset of $G F(p) \cup\{\infty\}$.
The possible values of $|D|$ have been studied by various authors. For a survey of results on this topic see [10] and [1]. A key tool in this area are the properties of

[^0]lacunary polynomials, which are polynomials with several consecutive coefficients equal to zero. Rédei's monograph [8], as well as Ball and Blokhuis's chapter [1] contain many results on lacunary polynomials and their applications, one of which is a sharp lower bound of $(p+3) / 2$ on the size of D for sets of size exactly p, excepting lines. The size of $|D|$ has also been considered in the setting $A G(2, q), q$ a prime power, see for example [2].

Rédei's method was later extended by Szőnyi [9] to sets of size smaller than p. Our result uses Szőnyi's extension of Rédei's method and relies on the fact that in the case when the set is a Cartesian product, the relevant polynomials have a very special structure that can be exploited. We prove the following theorem, improving Szőnyi's bound by a factor of two (up to lower order terms) for Cartesian product sets.

Theorem 1. Let $A, B \subset G F(p)$ be sets each of size at least two such that $|A||B|<p$. Then the set of points $A \times B \subset A G(2, p)$ determines at least $|A||B|-\min \{|A|,|B|\}+2$ directions.

Let $d>1$ be a divisor of $p-1$ and let Z_{d} be a multiplicative subgroup of size d inside $G F(p)$. If a set A satisfies $A-A \subset Z_{d} \cup\{0\}$, then all of its directions are elements of $Z_{d} \cup\{0, \infty\}$. Thus, as a corollary of Theorem 1 , we obtain the following result, which was recently proved by Hanson and Petridis [5] using Stepanov's method.

Corollary 2. Let $A \subset G F(p)$ be a set such that $A-A \subset Z_{d} \cup\{0\}$. Then

$$
|A|(|A|-1) \leq d
$$

In particular, if p is congruent to 1 modulo 4 and $d=(p-1) / 2$ this gives an upper bound of $(\sqrt{2 p-1}+1) / 2$ on the clique number of the Paley graph G_{p}. Recall that the vertices of G_{p} are the elements of $G F(p)$ with an edge between elements whose difference is a square in $G F(p)$.

Estimating the size of sets of the form $(A-A) /(A-A)$ played a crucial role in early sum-product estimates over finite fields, [4, 6, and it is still an important tool in proving sum-product type bounds (see e.g. in [7]). For $A \subset G F(p)$ with $|A|^{2}<p$, Theorem 1 gives that

$$
\#\left\{\frac{a-b}{c-d}:(a, b, c, d) \in A^{4}, a \neq b, c \neq d\right\} \geq|A|^{2}-|A| .
$$

Hence there is a nonzero $x \in(A-A) /(A-A)$ such that the number of representations $x=(a-b) /(c-d)$ with $(a, b, c, d) \in A^{4}$ is at most $|A|^{2}-|A|$. Consider the set $A-x A=$ $\left\{\alpha-x \beta:(\alpha, \beta) \in A^{2}\right\}$. The number of representations of a $y \in \alpha-x \beta$ cannot be too high on average, otherwise x would have many representations in $(A-A) /(A-A)$. This idea can be made rigorous using the Cauchy-Schwarz inequality. The corresponding result is recorded in the following corollary.

Corollary 3. Let A be a subset of $G F(p)$ such that $|A|^{2}<p$. There exist $a, b, c, d \in A$ such that $|(a-b) A+(c-d) A| \geq|A|^{3} /(2|A|-1)$.

Our arguments for Cartesian products can be extended to a set in $G F(p)$ consisting of a union of two Cartesian products. A corollary of this is as follows.

Corollary 4. Let $A, B \subset G F(p)$ be disjoint sets each of size at least two such that each of the difference sets $A-A, A-B, B-B$ contain either only squares, or only non-squares, in addition to 0 . Then

$$
\min \left\{|A|^{2}-2|A|,|B|^{2}-2|B|\right\}+|A||B|+2 \leq \frac{p+3}{2}
$$

For a subset $A \subseteq G F(p)$, the directions determined by $A \times\{0,1\}$ is the set $(A-A) \cup$ $\{\infty\}$. Hence by Theorem 1 we recover an instance of the well known Cauchy-Davenport Theorem [3].

Corollary 5. Let $A \subseteq G F(p)$ be nonempty, then $|A-A| \geq \min \{p, 2|A|-1\}$.

2 Rédei polynomials

Let $U=\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq|U|\right\}$ be a subset of the affine plane $A G(2, p)$, and D be the set of directions determined by U. Suppose that $A G(2, p)$ is coordinatized so that $\infty \in D$. Put $n=|U|$. The Rédei polynomial of U is

$$
H(x, y)=\prod_{i=1}^{n}\left(x+a_{i} y-b_{i}\right)
$$

Consider $H_{y}(x)=H(x, y)$ as a polynomial with indeterminate x and coefficients in $G F(p)[y]$. Define the set $A_{y}=\left\{-a_{i} y+b_{i}\right\}_{i=1}^{n}$. Observe that $H_{y}(x)$ divides $x^{p}-x$ if and only if the elements of A_{y} are all distinct, and this is equivalent to $y \notin D$. In the case $y \notin D$, we see that $\left(x^{p}-x\right) / H_{y}(x)$ has a root at every element of $G F(p) \backslash A_{y}$, i.e. the coefficients of $\left(x^{p}-x\right) / H_{y}(x)$ are symmetric polynomials of the form $\sigma_{k}\left(G F(p) \backslash A_{y}\right)$, $k=1,2, \ldots, p-n$. We can determine the symmetric polynomials $\sigma_{k}\left(G F(p) \backslash A_{y}\right)$ in terms of the symmetric polynomials $\left\{\sigma_{i}\left(A_{y}\right)\right\}_{i=1}^{k}$ recursively as follows.

For $1 \leq k<p-1$ we have $\sigma_{k}(G F(p))=0$ and so

$$
\sum_{i=0}^{k} \sigma_{i}\left(A_{y}\right) \sigma_{k-i}\left(G F(p) \backslash A_{y}\right)=0
$$

This gives, for example

$$
\sigma_{1}\left(G F(p) \backslash A_{y}\right)=-\sigma_{1}\left(A_{y}\right), \quad \text { and } \quad \sigma_{2}\left(G F(p) \backslash A_{y}\right)=\sigma_{1}^{2}\left(A_{y}\right)-\sigma_{2}\left(A_{y}\right)
$$

Continuing recursively we see that $\sigma_{k}\left(G F(p) \backslash A_{y}\right)$ is a polynomial in $G F(p)[y]$ of degree at most k and can be defined even when the elements of A_{y} are not all distinct. Put $m=p-n$ and define
$f(x, y)=x^{m}-\sigma_{1}\left(G F(p) \backslash A_{y}\right) x^{m-1}+\sigma_{2}\left(G F(p) \backslash A_{y}\right) x^{m-2}+\cdots+(-1)^{m} \sigma_{m}\left(G F(p) \backslash A_{y}\right)$.
Note that f is a degree m polynomial in $G F(p)[x, y]$ and crucially we have

$$
H(x, y) f(x, y)=x^{p}-x
$$

for all $y \notin D$.
For more on the construction and properties of H and f see [9, 10. Let

$$
H(x, y) f(x, y)=x^{p}+h_{1}(y) x^{p-1}+h_{2}(y) x^{p-2}+\cdots+h_{p}(y)
$$

and note that $\operatorname{deg}\left(h_{i}\right) \leq i$. Since $H(x, y) f(x, y)=x^{p}-x$, for every $y \notin D$ we see that if $i \neq p-1$ then $h_{i}(y)=0$ for all $y \notin D$. Recall that there are $p+1$ directions in $A G(2, p)$. Since $\infty \in D$, there are $p+1-|D|$ directions not in D, and all such directions are in $G F(p)$. This implies that $h_{i} \equiv 0$ if $i<p+1-|D|$. Equivalently, if $h_{i} \not \equiv 0$, then $|D| \geq p+1-i$. Therefore showing that there is a high degree term in this polynomial with a nonzero coefficient results in a lower bound on $|D|$. This is how we will proceed.

3 Directions in Cartesian products

Let U be a Cartesian product set in $A G(2, p)$, i.e. there exists a coordinatization such that $U=A \times B$, where $A, B \subset G F(p)$. Assume that the elements of A and B are all distinct, and put $|A|=m,|B|=n$. Let $A=\left\{a_{i}: 1 \leq i \leq m\right\}$ and $B=\left\{b_{j}: 1 \leq j \leq n\right\}$.

If $m=1$ or $n=1$ then U is contained in a line and spans only one direction. Notice also that any subset of $A G(2, p)$ with at least $p+1$ elements determines all directions. This is because there are only p parallel lines in each direction, and so for each direction there must be a line in that direction containing at least two points from the set. Consequently, we will assume that $m, n \geq 2$ and $m n<p$. Translating preserves the number of directions, and so we will assume $0 \in B$.

The Rédei polynomial of $A \times B$ is

$$
H(x, y)=\prod_{i, j}\left(x+a_{i} y-b_{j}\right) .
$$

Let $A_{y}=\left\{-a_{i} y+b_{j}: 1 \leq i \leq m ; 1 \leq j \leq n\right\}$. Put $k=p-m n$ and define
$f(x, y)=x^{k}-\sigma_{1}\left(G F(p) \backslash A_{y}\right) x^{k-1}+\sigma_{2}\left(G F(p) \backslash A_{y}\right) x^{k-2}+\cdots+(-1)^{k} \sigma_{k}\left(G F(p) \backslash A_{y}\right)$.
We will consider the Rédei polynomial in the horizontal direction, $y=0$. Let

$$
\begin{equation*}
H(x, 0) f(x, 0)=f(x, 0) \prod_{j}\left(x-b_{j}\right)^{m}=x^{p}+c_{1} x^{p-1}+c_{2} x^{p-2}+\cdots+c_{p} \tag{2}
\end{equation*}
$$

for some coefficients $c_{1}, \ldots, c_{p} \in G F(p)$. We will exploit the product structure of the polynomial above to obtain our result. We begin with a lemma.

Lemma 6. Let $R, S \in G F(p)[x]$ be polynomials each with constant term equal to 1 and $\operatorname{deg} R \geq 1$. Suppose that R and R^{\prime} are relatively prime and that R does not divide S. Then $x^{\operatorname{deg}(R)+\operatorname{deg}(S)+1}$ does not divide $R^{m}(x) S(x)-1$ for any positive integer m such that p does not divide m.

Proof. Suppose for a contradiction that there exist R, S, and m satisfying the conditions of the Lemma. Then there exists a polynomial $P(x) \in G F(p)[x]$ such that

$$
\begin{equation*}
R^{m}(x) S(x)=1+x^{\operatorname{deg}(R)+\operatorname{deg}(S)+1} P(x) . \tag{3}
\end{equation*}
$$

Let $k=\operatorname{deg}(R)$ and $n=\operatorname{deg}(S)$. By differentiating (3) we obtain

$$
R^{m-1}(x)\left(m R^{\prime}(x) S(x)+R(x) S^{\prime}(x)\right)=x^{k+n}\left((k+n+1) P(x)+x P^{\prime}(x)\right) .
$$

Since the constant term in $R^{m-1}(x)$ is 1 , we see that x^{k+n} divides $m R^{\prime}(x) g(x)+$ $R(x) S^{\prime}(x)$. But the degree of $m R^{\prime}(x) S(x)+R(x) S^{\prime}(x)$ is at most $k+n-1$ and so $m R^{\prime}(x) S(x)+R(x) S^{\prime}(x)=0$. Since R and R^{\prime} are relatively prime, it must be the case that R divides $m S$. Since $m \neq 0$ in $G F(p)$ we see R divides S, a contradiction.

Proof of Theorem 1. Recall that if $c_{i} \neq 0$, then there are at least $p-i+1$ directions in $A \times B$. Suppose for a contradiction that $c_{1}=c_{2}=\ldots=c_{k+n-1}=0$. Put $R(y)=\prod_{j=1}^{n}\left(1-b_{j} y\right)$, and $S(y)=y^{k} f\left(y^{-1}, 0\right)$. We see that $R(y), S(y) \in G F(p)[y]$, $\operatorname{deg}(R)=n-1$ and $\operatorname{deg}(S) \leq k$. Substitute $x=y^{-1}$ in (2) and multiply by y^{p} to obtain

$$
R^{m}(y) S(y)=1+c_{1} y+c_{2} y^{2}+\cdots+c_{p} y^{p}=1+y^{k+n} Q(y)
$$

for some polynomial $Q(y) \in G F(p)[y]$. Since the elements of B are distinct, all roots of R have multiplicity 1 , and so R is relatively prime to R^{\prime}. Let q be the highest power of R dividing S. From the above we have

$$
R^{m+q}\left(\frac{S}{R^{q}}\right)=1+y^{k-q(n-1)+n}\left[y^{q(n-1)} Q(y)\right] .
$$

We have the following relations on the above variables.

$$
m n+k=p, \quad \text { and } \quad k-q(n-1) \geq 0 .
$$

It is easy to obtain the relation $m+q \leq p-m /(n-1)<p$ from the above. Therefore by Lemma 6 we conclude that $\operatorname{deg} R=0$, i.e. $R(y)=1$. This gives $B=\{0\}$, which is a contradiction since we assumed $|B| \geq 2$. It follows that at least one of c_{1}, \ldots, c_{k+n-1} is nonzero, and so there are at least $p-k-n+2=m n-n+2$ directions in $A \times B$. By rotating the affine plane 90° and repeating the argument we obtain the result

$$
\#\{\text { Directions in } A \times B\} \geq|A||B|-\min \{|A|,|B|\}+2 .
$$

We remark that in the proof of Theorem [1 Lemma 6 could be substituted by a similar and simple different argument. We conclude with a proof of Corollary 4 ,

Proof of Corollary 园 Let $A, B \subset G F(p)$ be as in the statement of the corollary. Let $|A|=m,|B|=n$, and put $A=\left\{a_{i}\right\}_{i=1}^{m}, B=\left\{b_{j}\right\}_{j=1}^{n}$, and $U=A \times A \cup B \times B$. Our strategy will be to bound the number of directions in U. Consequently, we can assume
$0 \in A$ by translating U. Without loss of generality, we'll assume $m \geq n$. The Rédei polynomial $H(x, y)$ of U evaluated at $y=0$ is

$$
H(x, 0)=\prod_{i=1}^{m}\left(x-a_{i}\right)^{m} \prod_{j=1}^{n}\left(x-b_{j}\right)^{n} .
$$

Let $f(x, y)$ be the polynomial defined in (11) corresponding to U. Define $k=\operatorname{deg}(f)=$ $p-m^{2}-n^{2}$. Put $H(x, 0) f(x, 0)=x^{p}+G(x)$ for some $G[x] \in G F(p)[x]$. Define $R(y)=\prod_{i=1}^{m}\left(1-a_{i} y\right) \prod_{j=1}^{n}\left(1-b_{j} y\right)$, and $S(y)=y^{k} f\left(y^{-1}, 0\right)\left(\prod_{i=1}^{m}\left(1-a_{i} y\right)\right)^{m-n}$. Note that $R(y), S(y) \in G F(p)[y], \operatorname{deg}(R)=m+n-1$, and $\operatorname{deg} S \leq k+(m-1)(m-n)$. We make a similar substitution to that in the proof above as follows.

$$
y^{p} H\left(y^{-1}, 0\right) f\left(y^{-1}, 0\right)=R^{n}(y) S(y)=1+y^{p} G\left(y^{-1}\right) .
$$

Let q be the highest power of R dividing S. The above gives

$$
\begin{equation*}
R^{m+q}\left(\frac{S}{R^{q}}\right)=1+y^{p} G\left(y^{-1}\right) \tag{4}
\end{equation*}
$$

The following relations hold.

$$
m^{2}+n^{2}+k=p, \quad \text { and } \quad k+(m-1)(m-n)-q(m+n-1) \geq 0 .
$$

It is easy to check that the above implies $m+q<p$. The lowest degree term in $y^{p} G\left(y^{-1}\right)$ is $p-\operatorname{deg}(G)$. Applying Lemma (6) to (4) gives

$$
p-\operatorname{deg} G \leq k+(m-1)(m-n)+m+n-1 .
$$

Recall that the number of directions in U is at least $\operatorname{deg}(G)+1$. Therefore U determines at least $n^{2}+m n-2 n+2$ directions. Every direction in U is a quotient of two squares, or two non-squares in $G F(p)$. Hence all directions are squares, or zero, or infinity. This amounts to no more than $\frac{p+3}{2}$ directions, thereby giving the required result.

4 Concluding remarks

The bound of Theorem $\mathbb{1}$ is sometimes tight. For example if $p=41$ and $A=$ $\{0,1,5,9,10\}$, i.e. a maximal Paley clique, then the directions determined by $A \times A$ are the quadratic residues and 0 and ∞. This totals 22 directions, matching the lower bound $5^{2}-5+2=22$ given by Theorem 1 . Interestingly, this is the largest square grid we have found in which Theorem 1 is tight. An infinite class of examples achieving exactly the lower bound are the long rectangles $A=\{0,1\}, B=\{0,1, \ldots, n-1\}$, and $p>2 n$ or $A=\{0,1,2\}, B=\{0,1, \ldots, n-1\}, n$ odd, and $p>3 n$.

It is worth noting that in the proof of Theorem 1, to show that the number of directions determined by $A \times B$ is at least $m n-n+2$, we used that the Rédei polynomial at $y=0$ was of the form $H(x, 0)=\prod_{j}\left(x-b_{j}\right)^{m}$. A set of points in $A G(2, p)$ has a Rédei polynomial of this form if n horizontal lines each contain exactly m points, and
so does not necessarily need to be a Cartesian product. For example, let $A=\left\{a_{i}\right\}_{i=1}^{n}$, $B=\left\{b_{i}\right\}_{i=1}^{n}$, be subsets of $G F(p)$ such that $n^{2}<p$ and $0 \notin B$. Consider the following sets in $A G(2, p)$
i. $\left\{\left(a_{i}+a_{j}^{2}, a_{j}\right): 1 \leq i, j \leq n\right\}$,
ii. $\left\{\left(b_{i}+b_{j}^{-1}, b_{j}\right): 1 \leq i, j \leq n\right\}$.

Note that the vertical direction is not necessarily determined by either of the above sets, and so the number of directions determined is only at least $n^{2}-n+1$. The below sets describe the reciprocal directions of the sets above, but exclude ∞ (formerly the direction 0$)$. Therefore the sets below each have size at least $n^{2}-n$.
I. $\left\{(x-y)(z-w)^{-1}+(z+w): w, x, y, z \in A, z \neq w\right\}$,
II. $\left\{(x-y)(z-w)^{-1}-(z w)^{-1}: w, x, y, z \in B, z \neq w\right\}$.

5 Acknowledgements

The research of the first author was supported in part by a Four Year Doctoral Fellowship from the University of British Columbia. The research of the second author was supported in part by an NSERC Discovery grant and OTKA K 119528 grant. The work of the second author was also supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 741420, 617747, 648017). The research of the third author was supported in part by Killam and NSERC doctoral scholarships. We also thank Sammy Luo for helpful comments.

References

[1] S. Ball, A. Blokhuis, Lacunary polynomials over finite fields, in G. Mullen, D. Panario (Eds.), Handbook of Finite Fields, (2013), pp. 556-562. CRC Press.
[2] A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme, T. Szőnyi, On the slopes of the graph of a function defined on a finite field, J. Combin. Theory, Ser. A 86 (1999), no. 1, 187-196.
[3] H. Davenport, On the addition of residue classes, J. London Math. Soc., 10 (1935), 30-32, 1935.
[4] M. Z. Garaev, An explicit sum-product estimate in \mathbb{F}_{p}, Int. Math. Res. Not. IMRN 2007 (2007), Art. rnm035, 11.
[5] B. Hanson, G. Petridis, Refined estimates concerning sumsets contained in the roots of unity, Proc. Lond. Math. Soc., (2020), Advance online publication. https://doi.org/10.1112/plms.12322.
[6] N. H. Katz, C. Shen, A slight improvement to Garaev's sum product estimate, Proc. Amer. Math. Soc., 136 (2008), no. 7, 2499-2504.
[7] B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev, I. Shkredov, New results on sum-product type growth over fields, Mathematika, 65 (2019), 588-642.
[8] L. Rédei, "Lückenhafte Polynome über endlichen Körperrn," Birkhäuser, Basel, 1970 (Engl. trans. Lacunary Polynomials over Finite Fields, North Holland, Amsterdam, 1973).
[9] T. Szőnyi, On the Number of Directions Determined by a Set of Points in an Affine Galois Place, J. Combin. Theory, Ser. A 74 (1996), no. 1, 141-146.
[10] T. Szőnyi, Around Rédei's theorem, Discrete Math., 208/209 (1999), 557-575.

[^0]: *dibenedetto@math.ubc.ca
 ${ }^{\dagger}$ solymosi@math.ubc.ca
 ${ }^{\ddagger}$ epwhite@math.ubc.ca

