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Abstract

We prove an extension of the Thue-Vinogradov Lemma. This paper is another example for the

application of the polynomial method; Rényi polynomials and Stepanov’s technique.

1 Introduction

In the introduction we state two classical results from elementary number theory, two lemmas from Thue
and Vinogradov. In the second part of the paper we extend their results and illustrate the use of the new
method by an application.

The lemmas of Thue and Vinogradov are clever applications of Dirichlet’s box principle (also called
as the pigeonhole principle). Our first result will go beyond that, it works with smaller sets. The technique
we are using here is a variant of the so called polynomial method in additive combinatorics. We are going
to use Rédei polynomials [8], and the last step in the proof of Theorem 4 (and in its later variants) is
based on Stepanov’s method [11]; if a degree d polynomial is vanishing on a set of size n with multiplicity
at least m then n ≤ d/m. The same method will be used in the last section, where we prove an inequality
in additive combinatorics.

1.1 The lemmas of Thue and Vinogradov

Thue’s Lemma is a useful tool in elementary number theory. The most famous application of the lemma
is to prove Fermat’s theorem on sums of two squares. There is a nice description of Thue’s argument
in the book ”Proof from THE BOOK” [1]. The lemma is used in finding solutions of Diophantine equa-
tions involving quadratic forms. There are various examples for such theorems and exercises in Nagell’s
Introduction to Number Theory [6], and in Vinogradov’s Elements of Number Theory [15].

Lemma 1 (Thue’s Lemma) [12] Let p be a prime. For any a ∈ N, p ∤ a, there are x, y

x, y ∈ {1, 2, . . . , ⌈√p⌉}

such that

ax ≡ ±y (mod p).
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Thue’s Lemma was extended by Vinogradov to an asymmetric form. He used it in the paper ”On
a general theorem concerning the distribution of the residues and non-residues of powers” [14, Lemma
1], where he gave an elementary proof of the Pólya-Vinogradov inequality. His extension, the following
lemma, can be also used to find solutions for some quadratic forms, more efficiently than Thue’s Lemma.

Lemma 2 (Vinogradov’s Lemma) Let p be a prime. For any a ∈ N, p ∤ a, and α ∈ F∗
p, there are x, y

x ∈ {1, 2, . . . , α} , y ∈
{

1, 2, . . . ,
⌊ p

α

⌋}

such that

ax ≡ ±y (mod p),

or equivalently

a ≡ ± y

x
(mod p).

Vinogradov’s result was generalized to multiple congruences by Brauer and Reynolds in [3] where
they provide a complete historic review of re-discoveries and generalizations of the Thue-Vinogradov
lemma, up to 1951. In the same paper they proved the following result [3, Theorem 4].

Theorem 3 Let g and k be positive integers where k is even, p an odd prime with p ≡ 1 (mod k) such
that g ≤ p. We set h = ⌈p/g⌉. If D is a k-th power residue, then at least one of the numbers 1k, 2k, . . . , hk

is congruent to one of the numbers D, 2kD, . . . , (g − 1)kD.

Theorem 3 was also proved, independently, by Porcelly and Pall using Farey sequences in [7]. We
are going to prove an improvement on this theorem in Section 3.

2 The Extension

The Thue-Vinogradov lemma is about initial segments providing solutions to ax ≡ ±y (mod p) for all
a. What can we say about shorter segments? We are going to use the polynomial method – in this case
the Rédei polynomial – to prove that initial segments of Fp give many solutions to the above congruence.
Rédei polynomials were used in number theory, group theory, and in the geometry of finite fields. There
is a nice survey on basic theorems and examples to such applications of the Rédei polynomial (and other
algebraic methods in combinatorics) in [2].

Theorem 4 Let p be a prime. For any α, β ∈ N, α(β + 1) ≤ p − 1, there are at least α(β + 1) distinct
a ∈ F∗

p for which there are x, y

x ∈ Iα = {1, 2, . . . , α} , y ∈ Iβ = {1, 2, . . . , β}

such that

ax ≡ ±y (mod p). (1)

In Vinogradov’s Lemma if α(β + 1) > p, then the conclusion of the theorem holds for every a ∈ F∗
p, even

with y ∈ {1, 2, . . . , β − 1} , so there are infinitely many cases when Vinogradov’s Lemma gives a better
bound (by one) if one needs to capture every a ∈ F∗

p. The importance of Theorem 4 is that it covers the
range when αβ < p, when simple pigeonhole arguments won’t work.
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P r o o f. Denote D ⊂ F∗
p the set of elements a which are not expressible as in (1). The key of the argument

is the construction of a polynomial following Rédei [8] and Szőnyi [9]. Their method was specialized to
Cartesian products in [4], in a way that we are going to follow here. The polynomial is defined as

H(x, y) =

β
∏

i=0

(x− i)
∏

1≤k≤α
0≤j≤β

(x+ ky − j) =
∏

0≤k≤α
0≤j≤β

(x+ ky − j)

The important feature of the polynomial above is that whenever b ∈ D, all roots of H(x, b) are
distinct elements of Fp, i.e. H(x, b) divides xp − x. To see that, let us consider the two possible cases of
repeated roots below

1. If the second product term (with y-s) had two equal roots then we had

−kb+ j ≡ −k′b+ j′ (mod p),

for some 1 ≤ k, k′ ≤ α and 0 ≤ j, j′ ≤ β. If k = k′ then j = j′, but then the two linear terms are
the same which is not possible. Note that b 6= 0 so

|k − k′|b ≡ ±(j′ − j) (mod p),

contradicting to the assumption b ∈ D.

2. The remaining case is when
−kb+ j ≡ j′ (mod p),

for some 1 ≤ k ≤ α and 0 ≤ j, j′ ≤ β, leading to

kb ≡ ±(j′ − j) (mod p),

contradicting to the assumption b ∈ D.

The degree of H is δ = αβ+α+β+1. In particular, when α = β then the degree is (α+1)2. It was
Szőnyi’s observation in [9] (see also in [10]) that there is an auxiliary polynomial of degree p− δ, denoted
by f(x, y), such that

F (x, b) = f(x, b)H(x, b) = xp − x if b ∈ D. (2)

For the details on how to find f, we refer to [9] and [4]. Let us consider F (x, y) as a polynomial of
x with coefficients hi(y) ∈ Fp[y].

F (x, y) = f(x, y)H(x, y) = Fy(x) = xp + h1(y)x
p−1 + h2(y)x

p−2 + . . .+ hp(y)

where the degree of hi is at most i. From (2) one can see that hi(y)-s are zero for many y values,
whenever y ∈ D. If hi(y) = 0 for more than i distinct y values then hi(y) ≡ 0. This is the crucial point of
the application of Rédei’s method. If one can show that hi 6≡ 0 for some i, then |D| ≤ i. When |D| is small,
one could use Rédei’s theorem, which describes the structure of fully reducible lacunary polynomials (like
in [9]), however we follow a simpler calculation which gives a better bound in this case. Let us check the
polynomial F (x, y) when y = 0.

F (x, 0) = f(x, 0)

(

β
∏

i=0

(x− i)

)α+1

= xp + c1x
p−1 + c2x

p−2 + . . .+ cp.

(3)
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We need to show that a polynomial with form like in (3) has a nonzero ci coefficient for some, not
too large i. Let ci denote the nonzero coefficient with the smallest index i. Checking the derivatives based
on the first and second rows, we see that F ′(x, 0) will vanish with multiplicity at least α on at least β+1
places and it has degree p− i−1. This implies that p− i−1 ≥ α(β+1) and then |D| ≤ i ≤ p−1−α(β+1)
as needed. �

Remark 5 Theorem 4 was stated for initial segments, but the same proof works if one requires

x ∈ µIα = {µ, 2µ, . . . , αµ} , y ∈ νIβ = {ν, 2ν, . . . , βν}

for some ν, µ ∈ N values, where p ∤ νµ.

Remark 6 It was noted by the anonymous referee and other readers of an earlier version of this paper
that Theorem 4 can be improved for shorter initial segments. For example if

x, y ∈ Iα = {1, 2, . . . , α} ,

and 2α2 < p, then the number of distinct a ∈ F∗
p, such that a ≡ ±x/y (mod p) is twice the number of

(ordered) pairs (u, v) ∈ N2, where (u, v) = 1, and u, v ≤ α, which is asymptotically 12
π2α

2 ∼ 1.21α2 (See
e.g. Exercise 21 b, Chapter II in [15]).

Let us denote the difference set of A ⊂ Fp by Ā,

Ā = A−A = {a− b|a, b ∈ A}.
Using the above notation we can state a more general theorem with slightly weaker bounds. It is

practically the same as Theorem 1 in [4], we include it here for completeness.

Theorem 7 Let p be a prime. For any A,B ⊂ Fp, where |A| = α, |B| = β, there are at least

min(p, (α− 1)β + 1)

a ∈ Fp for which there are x ∈ Ā \ {0}, y ∈ B̄ such that ax ≡ y (mod p).

Note that since Ā and B̄ are symmetric about 0, we don’t need the ± sign in the modular equation.
The proof, which we are going to sketch below follows the proof of Theorem 4.

P r o o f. For a = 0 the trivial solution, ax ≡ b − b (mod p), works with any x ∈ Ā, b ∈ B. Let us denote
D ⊂ F∗

p the set of elements a which are not expressible as ax ≡ y (mod p). The Rédei polynomial is now
defined as

H(x, y) =
∏

1≤k≤α
1≤j≤β

(x+ aky − bj). (4)

Whenever d ∈ D, all roots of H(x, d) are distinct elements of Fp, i.e. H(x, d) divides xp − x. If we
had (x+ akd− bj) = (x+ aℓd− bs) then (ak − aℓ)d ≡ bj − bs (mod p), contradicting the selection d ∈ D.
The degree of H is δ = αβ. There is an auxiliary polynomial of degree p − δ, denoted by f(x, y), such
that

F (x, d) = f(x, d)H(x, d) = xp − x if d ∈ D. (5)

Let us consider F (x, y) as a polynomial of x with coefficients hi(y) ∈ Fp[y].

F (x, y) = f(x, y)H(x, y) = Fy(x) = xp + h1(y)x
p−1 + h2(y)x

p−2 + . . .+ hp(y)
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where the degree of hi is at most i. If we show that hi 6≡ 0 for some i, then |B| ≤ i. The polynomial
when y = 0 is

F (x, 0) = f(x, 0)

(

β
∏

i=1

(x− bi)

)α

= xp + c1x
p−1 + c2x

p−2 + . . .+ cp.

(6)

Let ci denote the nonzero coefficient with the smallest index i. Checking the derivatives based on
the first and second rows, we see that F ′(x, 0) will vanish with multiplicity at least α − 1 on at least β
places and it has degree p− i−1. This implies that p− i−1 ≥ (α−1)β and then |D| ≤ i ≤ p−1−(α−1)β
as needed. �

Let d > 1 be a divisor of p − 1 and let Zd be a multiplicative subgroup of size d inside GF (p). If
there is an A ⊂ Fp such that Ā ⊂ {Zd ∪ 0} then by applying Theorem 7 with A = B we obtain the
following result, which was recently proved by Hanson and Petridis [5]. (See also Theorem 1. in [4])

Corollary 8 Let A ⊂ Fp be a set such that A−A ⊂ Zd ∪ {0}. Then

|A|(|A| − 1) ≤ d.

A slightly stronger statement in Theorem 7 holds when 0 6∈ A.

Theorem 9 Let A ⊂ F∗
p, B ⊂ Fp, where |A| = α, |B| = β. There are at least

min(p, αβ + 1)

a ∈ Fp for which there are x ∈
{

{A ∪ Ā} \ {0}
}

, and y ∈ B̄ such that ax ≡ y (mod p).

Indeed, in this case instead of polynomial (4) we can use

H(x, y) =

β
∏

ℓ=1

(x − bj)
∏

1≤k≤α
1≤j≤β

(x+ aky − bj),

increasing the degree of H(x, y) by β. The roots are still distinct for any d ∈ D, since −bℓ = aid− bj
would lead to the ad ≡ y (mod p) equation where x ∈ A and y ∈ B̄. The polynomial when y = 0 now is

F (x, 0) = f(x, 0)

(

β
∏

i=1

(x − bi)

)α+1

with the α+ 1 exponent instead of α, leading to the improvement.

3 Congruent pairs

In this section we illustrate how to use Theorem 4 when we need many, almost p solutions in (1). The
proof is similar to classical applications of the Thue-Vinogradov inequality. We are going to show a variant
of Theorem 3 stated in the introduction.
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Theorem 10 Let g and k be positive integers where k is even, p an odd prime with p ≡ 1 (mod k) such
that g ≤ p. Let h ∈ N be a number given by

h =

⌈

p− k − g

g − 1

⌉

.

If D is a k-th power residue, then at least one of the numbers 1, 2k, . . . , hk is congruent to one of the
numbers D, 2kD, . . . , (g − 1)kD.

If g ≥ h then the above h is at most as as large as in Theorem 3 and h is smaller here by at least
one whenever g(k + g) ≥ p.

P r o o f. The equation xk ≡ D (mod p) has k solutions (see e.g. in [15], page 113). By Theorem 4 if

(g − 1)(h+ 1) + 1 ≥ p− k,

which is provided by the condition

h =

⌈

p− k − g

g − 1

⌉

,

then there is an a ∈ Fp such that ak ≡ D (mod p) and

ax ≡ ±y (mod p). (7)

where x, y are
x ∈ {1, 2, . . . , g − 1} , y ∈ {1, 2, . . . , h} .

The following equations

ax ≡ ±y (mod p)

akxk ≡ yk (mod p)

Dxk ≡ yk (mod p)

show that there is at least one congruent pair between

{

D, 2kD, . . . , (g − 1)kD
}

and
{

1, 2k, . . . , hk
}

,

as required. �

4 Sumsets vs. Directions

In this section we are going to leave the Cartesian product structure and prove a result which generalizes
Theorem 7 and other results. One of the most striking applications of Rédei’s method is the bound on
the number of directions determined by a set of points in the affine plane over the finite field GF (q) of q
elements. Given a set M of n points what is the minimum number of directions determined by M? We
say that the direction m is determined by M if there is a line mx + b− y = 0 spanned by two points of
M, i.e. there are points (ai, bi), (aj , bj) ∈ M such that m = (ai − aj)/(bi − bj) if bi 6= bj. If bi = bj and
ai 6= aj then the two points determine the m = ∞ direction.

In Theorem 7 we proved a lower bound on the number of directions determined by a Cartesian
product. It was better than Szőnyi’s bound in [9, 10], due to the special structure of the pointset. In the
next result we generalize Theorem 7.
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Given an n-element subset S ⊂ F2
p, and an α ∈ F∗

p. Let us suppose that n < p. We define the
weighted sumset

∆α = {αai + bi | (ai, bi) ∈ S},
and the ratio set

Q =

{

ai − aj
bi − bj

| (ai, bi), (aj , bj) ∈ S, bi 6= bj

}

.

The ratio set contains all directions determined by S with the possible exception of the (∞) direction.

Theorem 11 With the above notation, if S is not collinear, i.e. there are no elements m,β ∈ Fp such
that mai + β − bi ≡ 0 (mod p) for all (ai, bi) ∈ S, then |Q| ≥ |S| − |∆α|+ 1.

P r o o f. We are going to use the Rédei polynomial as before. Set

H(x, y) =
∏

(ai,bi)∈S

(x+ aiy − bi), (8)

and find f(x, y) such that f(x, y0)H(x, y0) = xp − x whenever y0 6∈ Q. Let us check the polynomial when
we set y = −α.

F (x, α) = f(x, α)
∏

(ai,bi)∈S

(x− αai − bi)

= xp + c1x
p−1 + c2x

p−2 + . . .+ cp.

(9)

Like in the proof of Theorem 4, we check the derivatives to show that there is a small index i where
ci 6= 0, so Q is large. A root αai + bi is a multiple root if there is an (aj , bj) ∈ S, i 6= j, such that
αai + bi ≡ αaj + bj (mod p). The derivative of the polynomial in (9) has at least d = |S| − |∆α| roots,
so i− 1 ≤ p− d, unless F (x, α) = (x+ c)p, when S is collinear. �

Note that setting α = 0 for a Cartesian product, S, gives back Theorem 7.
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