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Equality and homogeneity of generalized integral means
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Abstract

Given two continuous functions f, g : I → R such that g is positive and f/g is strictly monotone, a

measurable space (T,A), a measurable family of d-variable means m : Id × T → I , and a probability

measure µ on the measurable sets A, the d-variable mean Mf,g,m;µ : Id → I is defined by

Mf,g,m;µ(xxx) :=

(

f

g

)

−1
(

∫

T
f
(

m(x1, . . . , xd, t)
)

dµ(t)
∫

T
g
(

m(x1, . . . , xd, t)
)

dµ(t)

)

(xxx = (x1, . . . , xd) ∈ Id).

The aim of this paper is to solve the equality and homogeneity problems of these means, i.e., to find

conditions for the generating functions (f, g) and (h, k), for the family of means m, and for the measure

µ such that the equality

Mf,g,m;µ(xxx) =Mh,k,m;µ(xxx) (xxx ∈ Id)

and the homogeneity property

Mf,g,m;µ(λxxx) = λMf,g,m;µ(xxx) (λ > 0, xxx, λxxx ∈ Id),

respectively, be satisfied.

Keywords. Quasi-arithmetic mean; Bajraktarević mean; Gini mean; Chebyshev system; equality prob-

lem; homogeneity problem

1 Introduction

Throughout this paper, the symbols N, R, and R+ will stand for the sets of natural, real, and positive real

numbers, respectively, and I will always denote a nonempty open real interval.

In the sequel, a function M : Id → I is called a d-variable mean on I if the following so-called mean

value property

min(x1, . . . , xd) ≤M(xxx) ≤ max(x1, . . . , xd) (xxx = (x1, . . . , xd) ∈ Id) (1.1)
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holds. Also, if both of the inequalities in (1.1) are strict for all x1, . . . , xd ∈ I with xi 6= xj for some i 6= j,

then we say that M is a strict mean on I .

For various classes of means, the comparison, equality and homogeneity problems are of great impor-

tance. In this paper we aim to focus on the last two problems. In more details, the equality problem in a class

of d-variable means Md(I) (defined on an interval I) of means is to find necessary and sufficient conditions

in order that, for some means M,N ∈ Md(I), the equality

M(xxx) = N(xxx) (xxx ∈ Id)

be valid. For the formulation of the homogeneity problem, we have to assume that I ⊆ R+. Then this problem

is to determine all means M ∈ Md(I) satisfying the functional equation

M(λxxx) = λM(xxx) (λ > 0, xxx, λxxx ∈ Id). (1.2)

In what follows, we describe many important classes of means and the solutions of the equality and

homogeneity problems related to them.

If p is a real number, then the d-variable Hölder mean Hp : R
d
+ → R is defined as

Hp(xxx) :=











(

xp1 + · · ·+ xpd
d

)

1

p

if p 6= 0

d
√
x1 · · · xd if p = 0

(

xxx = (x1, . . . , xd) ∈ R
d
+

)

.

Obviously, H1 and H0 equal the arithmetic and geometric mean, respectively. It is easy to see that Hölder

means are strict and homogeneous means.

In the sequel, the classes of continuous strictly monotone and continuous positive real-valued functions

defined on I will be denoted by CM(I) and CP(I), respectively. A classical generalization of Hölder means

is the notion of d-variable quasi-arithmetic mean (cf. [9]), which is introduced as follows: For f ∈ CM(I)

define

Af (xxx) := f−1

(

f(x1) + · · ·+ f(xd)

d

)

(

xxx = (x1, . . . , xd) ∈ Id
)

. (1.3)

More generally, if Sd denotes the (d− 1)-dimensional simplex given by

Sd := {(t1, . . . , td) | t1, . . . , td ≥ 0, t1 + · · ·+ td = 1}, (1.4)

then we can also define

Af (xxx, ttt) := f−1
(

t1f(x1) + · · ·+ tdf(xd)
) (

xxx = (x1, . . . , xd) ∈ Id, ttt = (t1, . . . , td) ∈ Sd
)

, (1.5)

which is called the weighted d-variable quasi-arithmetic mean on I . It is a classical result that, given two

functions f, g ∈ CM(I), the equality of the generated quasi-arithmetic means Af and Ag is equivalent to

the existence of real constants a, b such that g = af + b. Concerning the homogeneity problem related to

quasi-arithmetic means, it is well-known that a quasi-arithmetic mean is homogeneous if and only if it is a

Hölder mean.
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In this paper, we consider a much more general class of means. For their definition, we recall the notion of

Chebyshev system. We say that a pair (f, g) of continuous functions defined on I forms a (two-dimensional)

Chebyshev system on I if, for any distinct elements x, y of I , the determinant

Df,g(x, y) :=

∣

∣

∣

∣

f(x) f(y)
g(x) g(y)

∣

∣

∣

∣

(x, y ∈ I)

is different from zero. If, for x < y, this determinant is positive, then (f, g) is called a positive system,

otherwise we call (f, g) a negative system. Due to the connectedness of the triangle {(x, y) | x < y, x, y ∈
I}, it follows that every Chebyshev system is either positive or negative. Obviously, if (f, g) is a positive

Chebyshev system, then (g, f) is a negative one.

The most standard positive Chebyshev system on R is given by f(x) = 1 and g(x) = x. More generally,

if f, g : I → R are continuous functions with g ∈ CP(I), f/g ∈ CM(I), then (f, g) is a Chebyshev system.

Indeed, we have

Df,g(x, y) :=

∣

∣

∣

∣

f(x) f(y)
g(x) g(y)

∣

∣

∣

∣

= g(x)g(y)

(

f(x)

g(x)
− f(y)

g(y)

)

(x, y ∈ I). (1.6)

From, here it is obvious that Df,g(x, y) vanishes if and only if x = y. Moreover, if f/g is decreasing (resp.

increasing), then, for x < y, we have that Df,g(x, y) > 0 (resp. Df,g(x, y) < 0), i.e., (f, g) is a positive

(resp. negative) Chebyshev system. By symmetry, analogous properties can be established if f is positive

and g/f strictly monotone.

For the sake of convenience and brevity, now we make the following hypotheses. We say that m : Id ×
T → I is a measurable family of d-variable means on I if

(H1) I is a nonvoid open real interval,

(H2) (T,A) is a measurable space, where A is the σ-algebra of measurable sets of T ,

(H3) for all t ∈ T , m(·, t) is a d-variable mean on I ,

(H4) for all xxx ∈ Id, the function m(xxx, ·) is measurable over T .

If, instead of (H2) and H(4), we have that

(H2+) T is a topological space and A equals the σ-algebra B(T ) of the Borel sets of T ,

(H4+) for all xxx ∈ Id, the function m(xxx, ·) is continuous over T ,

then m : Id × T → I will be called a continuous family of d-variable means on I .

The following lemma is the key to construct a mean in terms of a Chebyshev system, a measurable family

of means, and a probability measure (cf. [24]).

Lemma 1.1. Let m : Id × T → I be a measurable family of d-variable means, let µ be a probability

measure on (T,A) and let (f, g) be a Chebyshev system on I . Then, for all xxx ∈ Id, there exists a unique

element y ∈ I such that
∫

T

Df,g(m(xxx, t), y) dµ(t) = 0. (1.7)
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In addition, if g is positive and f/g is strictly monotone, then

y =

(

f

g

)−1
(

∫

T
f
(

m(xxx, t)
)

dµ(t)
∫

T
g
(

m(xxx, t)
)

dµ(t)

)

.

The above lemma allows us to define a d-variable mean Mf,g,m;µ : Id → I . Given xxx ∈ Id, let

Mf,g,m;µ(xxx) denote the unique solution y of equation (1.7). In the particular case when g is positive and

f/g is strictly monotone, we have that

Mf,g,m;µ(xxx) :=

(

f

g

)−1
(

∫

T
f
(

m(xxx, t)
)

dµ(t)
∫

T
g
(

m(xxx, t)
)

dµ(t)

)

(xxx ∈ Id). (1.8)

This mean will be called a d-variable generalized Bajraktarević mean in the sequel. In the case when m is a

two-variable family of weighted arithmetic means, this class of means was introduced and their comparison

problem was also solved in the paper [19]. When g = 1, then

Mf,1,m;µ(xxx) = (f)−1

(
∫

T

f
(

m(xxx, t)
)

dµ(t)

)

(xxx ∈ Id)

which will be termed a d-variable generalized quasi-arithmetic mean. If T = {1, . . . , d}, µ = δ1+···+δd
d

(where δt denotes the Dirac measure concentrated at t) and m(xxx, t) = xt, then

Mf,g,m;µ(xxx) =Mf,g(xxx) :=

(

f

g

)−1(f(x1) + · · · + f(xd)

g(x1) + · · · + g(xd)

)

(

xxx = (x1 . . . , xd) ∈ Id
)

,

which was introduced and studied by Bajraktarević [2], [3]. In these two papers the equality problem of

(standard) Bajraktarević means was solved under two times differentiability assumptions. The homogeneity

of these means (assuming it for all d ≥ 2) was characterized in terms of Gini means (see their definition

below) by Aczél and Daróczy in [1]. When g = 1, then Mf,1,m;µ(xxx) = Af (xxx), which is the d-variable

quasi-arithmetic mean introduced in (1.3).

To define the d-variable generalized Gini means, let p, q ∈ C such that either p, q ∈ R or p = q̄ (this

holds if and only if p+ q and pq are real numbers or, equivalently, if p and q are the roots of a second degree

polynomial with real coefficients). For x ∈ R+ define

f(x) := xp, g(x) := xq if p, q ∈ R, p 6= q,

f(x) := xp log(x), g(x) := xp if p = q ∈ R,

f(x) := xa sin(b log(x)), g(x) := xa cos(b log(x)) if p = q̄ = a+ bi, a, b ∈ R, b 6= 0.

(1.9)

After a simple computation, we have that

Df,g(x, y) = xp+q
((

y
x

)q −
(

y
x

)p)
if p, q ∈ R, p 6= q,

Df,g(x, y) = xpyp log
(

y
x

)

if p = q ∈ R,

Df,g(x, y) = xaya sin
(

b log
(

x
y

))

if p = q̄ = a+ bi, a, b ∈ R, b 6= 0.

In the first two cases, Df,g(x, y) is different from zero for all x, y ∈ R+ with x 6= y, therefore f and g form a

Chebyshev system on R+ if p, q ∈ R. In the third case, that is if p = q̄ 6∈ R, the functions f and g may form
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a Chebyshev system only in a subinterval I of R+ only. One can easily see that then Df,g(x, y) is different

from zero for all x, y ∈ I with x 6= y if and only if the interval I/I := {u/v | u, v ∈ I} is contained in the

open interval
(

exp
(

− π
|b|

)

, exp
(

π
|b|

))

. Obviously this cannot happen if either inf I = 0 or sup I = +∞. The

d-variable generalized Gini mean Gp,q,m;µ is defined now to be the d-variable Bajraktarević mean Mf,g,m;µ,

where f and g are given by (1.9).

Let I be an open subinterval of R+ such that I is contained in
(

exp
(

− π
2|b|

)

, exp
(

π
2|b|

))

if p = q̄ 6∈ R.

Then g is positive over I in each of the three possibilities and for xxx ∈ Id, and, as a particular case of equation

(1.8), we can obtain the following explicit formula for the d-variable Gini mean Gp,q,m;µ:

Gp,q,m;µ(xxx) :=



















































(

∫

T

(

m(xxx, t)
)p

dµ(t)
∫

T

(

m(xxx, t)
)q

dµ(t)

)
1

p−q

if p, q ∈ R, p 6= q,

exp

(

∫

T

(

m(xxx, t)
)p

log
(

m(xxx, t)
)

dµ(t)
∫

T

(

m(xxx, t)
)p

dµ(t)

)

if p = q ∈ R,

exp

(

1

b
arctan

(

∫

T

(

m(xxx, t)
)a

sin
(

b log
(

m(xxx, t)
))

dµ(t)
∫

T

(

m(xxx, t)
)a

cos
(

b log
(

m(xxx, t)
))

dµ(t)

))

if p = q̄ = a+ bi 6∈ R.

(1.10)

If q = 0 in the above formula, we get the definition of d-variable generalized Hölder means as follows:

Gp,0,m;µ(xxx) := Hp,m;µ(xxx) :=



























(

∫

T

(

m(xxx, t)
)p

dµ(t)
∫

T
dµ(t)

)
1

p

if p ∈ R \ {0},

exp

(

∫

T
log
(

m(xxx, t)
)

dµ(t)
∫

T
dµ(t)

)

if p = 0,

(xxx ∈ R
d
+). (1.11)

In the particular case when T = {1, . . . , d}, µ = δ1+···+δd
d

and m(xxx, t) = xt, formula (1.10) reduces to

the so-called d-variable Gini mean Gp,q (cf. [8]): for xxx = (x1 . . . , xd) ∈ Id,

Gp,q(xxx) :=











































(

xp1 + · · · + xpd
xq1 + · · ·+ xqd

)
1

p−q

if p, q ∈ R, p 6= q,

exp

(

xp1 log(x1) + · · ·+ xpd log(xd)

xp1 + · · ·+ xpd

)

if p = q ∈ R,

exp

(

1

b
arctan

(

xa1 sin(log(x
b
1)) + · · ·+ xad sin(log(x

b
d))

xa1 cos(log(x
b
1)) + · · ·+ xad cos(log(x

b
d))

))

if p = q̄ = a+ bi 6∈ R.

Gini means in this generality (i.e., including the case of non-real parameters p, q were dealt with in the paper

[22] where the comparison problem of these means was solved. Obviously, Gp,0 = Hp, i.e., Hölder means

are particular Gini means. For further particular cases of formula (1.8), we refer to the paper [24].

The aim of this paper is to study the equality and the homogeneity problems of these means, i.e., to find

conditions for the generating functions (f, g) and (h, k), for the family of means m, and for the measure µ

such that the functional equation

Mf,g,m;µ(xxx) =Mh,k,m;µ(xxx) (xxx ∈ Id) (1.12)
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and the homogeneity property

Mf,g,m;µ(λxxx) = λMf,g,m;µ(xxx) (λ > 0, xxx, λxxx ∈ Id),

respectively, be satisfied. Our main results generalize that of the paper by Losonczi and Páles [20], Losonczi

[18] and also many former results obtained in various particular cases of this problem, cf. [1], [4], [5], [7],

[10], [11], [12], [13], [14], [15], [16], [17], [21], [23]. As direct applications of the results obtained on the

equality of generalized Bajraktarević means, we consider and solve the homogeneity problem of these means

under general conditions.

2 Auxiliary results

In order to describe the regularity conditions related to the two generating functions f, g of the mean

Mf,g,m;µ, we introduce some regularity classes. The class C0(I) consists of all those pairs of continuous

functions f, g : I → R that form a Chebyshev system over I .

If n ≥ 1, then we say that the pair (f, g) is in the class Cn(I) if f, g are n-times continuously differen-

tiable functions such that (f, g) ∈ C0(I) and the Wronski determinant

∣

∣

∣

∣

f ′(x) f(x)
g′(x) g(x)

∣

∣

∣

∣

= ∂1Df,g(x, x) (x ∈ I) (2.1)

does not vanish on I . Provided that g is positive, then we have that

(

f

g

)′

(x) =
∂1Df,g(x, x)

g2(x)
(2.2)

hence condition ∂1Df,g(x, x) 6= 0 implies that f/g is strictly monotone, whence it follows that (f, g) ∈
C0(I). Obviously, C0(I) ⊇ C1(I) ⊇ C2(I) ⊇ · · · .

It is easy to see that if (f, g), (h, k) ∈ C0(I) and

f = αh+ βk,

g = γh+ δk,
(2.3)

where the constants α, β, γ, δ ∈ R satisfy αδ − βγ 6= 0, then, by the product theorem for determinants, it

follows that

Df,g =

∣

∣

∣

∣

α β
γ δ

∣

∣

∣

∣

·Dh,k. (2.4)

This, in view of Lemma 1.1, implies that the identity

Mf,g,m;µ =Mh,k,m;µ (2.5)

also holds for any measurable family of d-variable means m : Id × T → I and probability measure µ.

If (2.3) holds for some constants α, β, γ, δ ∈ R with αδ − βγ 6= 0, then we say that the pairs (f, g) and

(h, k) are equivalent. It is obvious that any necessary and/or sufficient condition for (1.12) has to be invariant

with respect to the equivalence of the generating functions.
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For the characterization of the equivalence, we introduce the following notations: for (f, g) ∈ C2(I), the

functions Φf,g,Ψf,g : I → R are defined by

Φf,g(x) :=
∂21Df,g(x, x)

∂1Df,g(x, x)
and Ψf,g(x) := −∂

2
1∂2Df,g(x, x)

∂1Df,g(x, x)
(x ∈ I). (2.6)

In other words,

Φf,g :=

∣

∣

∣

∣

f ′′ f
g′′ g

∣

∣

∣

∣

∣

∣

∣

∣

f ′ f
g′ g

∣

∣

∣

∣

and Ψf,g := −

∣

∣

∣

∣

f ′′ f ′

g′′ g′

∣

∣

∣

∣

∣

∣

∣

∣

f ′ f
g′ g

∣

∣

∣

∣

. (2.7)

Theorem 2.1. If (f, g), (h, k) ∈ C2(I), then the pairs (f, g) and (h, k) are equivalent if and only if

Φf,g = Φh,k and Ψf,g = Ψh,k. (2.8)

Proof. If (f, g) and (h, k) are equivalent, then, for some α, β, γ, δ ∈ R with αδ − βγ 6= 0, we have (2.3),

which implies (2.4). Using this formula and the definition of Φf,g,Ψf,g,Φh,k, and Ψh,k, the identities in (2.8)

follow directly.

Now assume that (2.8) is valid on I and consider the following second order homogeneous linear differ-

ential equation

y′′ = Φf,gy
′ +Ψf,gy. (2.9)

Using the definitions of Φf,g,Ψf,g from (2.7), we can rewrite it in the following equivalent form

y′′ =

∣

∣

∣

∣

f ′′ f
g′′ g

∣

∣

∣

∣

∣

∣

∣

∣

f ′ f
g′ g

∣

∣

∣

∣

y′ −

∣

∣

∣

∣

f ′′ f ′

g′′ g′

∣

∣

∣

∣

∣

∣

∣

∣

f ′ f
g′ g

∣

∣

∣

∣

y.

After multiplying this equation by

∣

∣

∣

∣

f ′ f
g′ g

∣

∣

∣

∣

, and rearranging every term to one side of the equation, we infer

that (2.9) is equivalent to
∣

∣

∣

∣

∣

∣

y′′ y′ y
f ′′ f ′ f
g′′ g′ g

∣

∣

∣

∣

∣

∣

= 0. (2.10)

The functions y = f and y = g are trivially solutions of (2.10), therefore they are solutions of (2.9) as well.

Their Wronski determinant is nonzero, hence every solution of (2.9) is a linear combination of them.

On the other hand, due to the identities (2.8), the differential equation (2.9) is also equivalent to

y′′ = Φh,ky
′ +Ψh,ky.

By a similar argument as above, we can see that h and k are also linearly independent solutions of this

second order homogeneous linear differential equation. Therefore, f and g should be their (independent)

linear combinations, i.e., (2.3) should hold for some α, β, γ, δ ∈ R with αδ − βγ 6= 0. This proves the

equivalence of the pairs (f, g) and (h, k).
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The following lemma is an immediate consequence of the asymmetry property

Df,g(x, y) = −Df,g(y, x) (x, y ∈ I).

Lemma 2.2. If (f, g) ∈ Cn(I) for n ∈ {1, 2, 3} then, for all x ∈ I ,

∂2Df,g(x, x) = −∂1Df,g(x, x), ∂1∂2Df,g(x, x) = 0,

∂22Df,g(x, x) = −∂21Df,g(x, x), ∂22∂1Df,g(x, x) = −∂21∂2Df,g(x, x),
(2.11)

and

∂32Df,g(x, x) = −∂31Df,g(x, x), (2.12)

respectively.

Lemma 2.3. If (f, g) ∈ C3(I), then

∂31Df,g(x, x)

∂1Df,g(x, x)
= Φ′

f,g(x) + Φ2
f,g(x) + Ψf,g(x) (x ∈ I). (2.13)

Proof. By computing the derivative of Φf,g(x), we get

Φ′
f,g(x) =

∂31Df,g(x, x) + ∂2∂
2
1Df,g(x, x)

∂1Df,g(x, x)
−
∂21Df,g(x, x)

(

∂21Df,g(x, x) + ∂2∂1Df,g(x, x)
)

(∂1Df,g(x, x))2
.

Since ∂1∂2Df,g(x, x) = 0 is consequence of the asymmetry property Df,g(x, y) = −Df,g(y, x), we get that

Φ′
f,g(x) =

∂31Df,g(x, x)

∂1Df,g(x, x)
+
∂2∂

2
1Df,g(x, x)

∂1Df,g(x, x)
−
(

∂21Df,g(x, x)

∂1Df,g(x, x)

)2

=
∂31Df,g(x, x)

∂1Df,g(x, x)
−Ψf,g(x)− Φ2

f,g(x),

whence equation (2.13) follows immediately.

The following result, which is based on [6, Theorem 3], allows us to assume more regularity on Cheby-

shev systems.

Lemma 2.4. Let n ∈ N ∪ {0} and (f, g) ∈ Cn(I). Then there exist α, β, γ, δ ∈ R with αδ − βγ 6= 0 and

(h, k) ∈ Cn(I) such that (2.3) holds and k is positive and h/k is strictly monotone. Furthermore, if n ≥ 1,

then the derivative of h/k does not vanish on I .

For its proof, the reader should consult [6, Theorem 3] and [24, Lemma 2] for n = 0 and n ≥ 1,

respectively.

For the computation of the first-, second- and third-order partial derivatives of the mean Mf,g,m;µ at the

diagonal of Id, we will establish a result below. For brevity, we introduce the following notation: If ppp ∈ Id

and δ > 0 then let B(ppp, δ) stand for the ball {xxx ∈ Id : |xxx − ppp| ≤ δ}. Furthermore, if µ is a probability

measure on the measurable space (T,A) and q ≥ 1, then the space of measurable functions ϕ : T → R such

that |ϕ|q is µ-integrable will be denoted by Lq(T,A, µ) or shortly by Lq.

If ϕ : T → R is a µ-integrable function, then we set

〈ϕ〉µ :=

∫

T

ϕ(t) dµ(t).
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More generally, if ϕ : Id × T → R, and for some xxx ∈ Id, the map t 7→ ϕ(xxx, t), t) is µ-integrable, then we

write

〈ϕ〉µ(xxx) :=
∫

T

ϕ(xxx, t) dµ(t). (2.14)

Given a number q ≥ 1, a function ϕ : Id×T → R is said to be of Lq-type at ppp ∈ Id, if ϕ(ppp, ·) is measurable,

furthermore, there exist δ > 0 and a function a ∈ Lq such that

|ϕ(xxx, t)| ≤ a(t) (t ∈ T, xxx ∈ B(ppp, δ)).

Let C1(I
d × T ) denote the class of measurable families of d-variable means m : Id × T → I with the

following two additional properties:

(H5) For every t ∈ T , the function m(·, t) is continuously partially differentiable over Id such that, for all

ppp ∈ Id, i ∈ {1, . . . , d}, the function ∂im is of L1-type at ppp.

Analogously, we define C2(I
d × T ) to be the following subclass of C1(I

d × T ):

(H6) For every t ∈ T , the function m(·, t) is twice continuously partially differentiable over Id such that,

for all ppp ∈ Id and i, j ∈ {1, . . . , d}, the function ∂im is of L2-type and ∂i∂jm is of L1-type at ppp.

Similarly, we define C3(I
d × T ) to be the following subclass of C2(I

d × T ):

(H7) For every t ∈ T , the function m(·, t) is three times continuously partially differentiable over Id such

that, for all ppp ∈ Id and i, j, l ∈ {1, . . . , d}, the function ∂im is of L3-type, ∂i∂jm is of L
3

2 -type, and

∂i∂j∂lm is of L1-type at ppp.

In order to formulate the results below, we introduce the following notation: for i, j, l ∈ {1, . . . , d},

define σ(i, j, l) to be the set of all cyclic permutations of (i, j, l), that is,

σ(i, j, l) := {(i, j, l), (j, l, i), (l, i, j)}.

Lemma 2.5. Let n ∈ {1, 2, 3} and let ϕ : I → R be a n-times continuously differentiable function and

m ∈ Cn(I
d × T ). Then the function Φ : Id → R defined by

Φ(xxx) :=

∫

T

ϕ(m(xxx, t)) dµ(t) (2.15)

is n-times continuously differentiable on Id. Furthermore, for i ∈ {1, . . . , d},

∂iΦ(ppp) =

∫

T

ϕ′(m(ppp, t)) ∂im(ppp, t) dµ(t) (ppp ∈ Id) (2.16)

for i, j ∈ {1, . . . , d} and n = 2,

∂i∂jΦ(ppp) =

∫

T

[

ϕ′′(m(ppp, t)) ∂im(ppp, t) ∂jm(ppp, t) + ϕ′(m(ppp, t)) ∂i∂jm(ppp, t)
]

dµ(t) (ppp ∈ Id) (2.17)

and, for i, j, l ∈ {1, . . . , d} and n = 3,

∂i∂j∂lΦ(ppp) =

∫

T

[

ϕ′′′(m(ppp, t))
∏

r∈{i,j,l}

∂rm(ppp, t) + ϕ′′(m(ppp, t))
∑

(α,β,γ)∈σ(i,j,l)

(

∂αm(ppp, t) ∂β∂γm(ppp, t)

+ ϕ′(m(ppp, t)) ∂i∂j∂lm(ppp, t)
]

dµ(t) (ppp ∈ Id).

(2.18)
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The proof of the above lemma for the cases n = 1 and n = 2 was elaborated in details in the paper

[24], the argument concerning the case n = 3 is completely analogous, therefore, we omit it. For the sake of

convenience, introduce the following notations: For m ∈ C1(I
d × T ) and r ∈ {1, . . . , d}, denote

∂∗rm(xxx, t) := ∂rm(xxx, t)− 〈∂rm〉µ(xxx) (xxx ∈ Id, t ∈ T ),

and, for x ∈ I , set

x(d) := (x, . . . , x) ∈ Id.

Theorem 2.6. Let (f, g) ∈ C1(I), let m ∈ C1(I
d × T ) be a measurable family of means, and let µ be

a probability measure on the measurable space (T,A). Then Mf,g,m;µ is continuously differentiable on Id

and, for all i ∈ {1, . . . , d} and x ∈ I ,

∂iMf,g,m;µ

(

x(d)
)

= 〈∂im〉µ
(

x(d)
)

. (2.19)

If, in addition, (f, g) ∈ C2(I), let m ∈ C2(I
d × T ), then Mf,g,m;µ is twice continuously differentiable on Id

and, for all i, j ∈ {1, . . . , d} and x ∈ I ,

∂i∂jMf,g,m;µ

(

x(d)
)

= Φf,g(x)
〈

∂∗im∂∗jm
〉

µ

(

x(d)
)

+ 〈∂i∂jm〉µ
(

x(d)
)

. (2.20)

Finally, if (f, g) ∈ C3(I), let m ∈ C3(I
d × T ), then Mf,g,m;µ is three times continuously differentiable on

Id and, for all i, j, l ∈ {1, . . . , d} and x ∈ I ,

∂i∂j∂lMf,g,m;µ

(

x(d)
)

=
(

Φ′
f,g(x) + Φ2

f,g(x)
)(〈

∂im∂jm∂lm
〉

µ
− 〈∂im〉µ〈∂jm〉µ〈∂lm〉µ

)(

x(d)
)

+Φf,g(x)
∑

(α,β,γ)∈σ(i,j,l)

(

〈∂α∂βm∂γm〉µ − ∂α∂βMf,g,m;µ∂γMf,g,m;µ

)(

x(d)
)

+Ψf,g(x)
〈

∂∗im∂∗jm∂∗l m
〉

µ

(

x(d)
)

+ 〈∂i∂j∂lm〉µ
(

x(d)
)

.

(2.21)

Proof. Let n ∈ {1, 2, 3} and assume that (f, g) ∈ Cn(I), m ∈ Cn(I
d × T ). In view of Lemma 2.4, we

may assume that g is positive, f/g is strictly monotone with a non-vanishing first-order derivative. Then f ,

g and the inverse of f/g are n-times continuously differentiable and, by Lemma 2.5, we also have that the

mappings

xxx 7→
∫

T

f
(

m(xxx, t)
)

dµ(t) and xxx 7→
∫

T

g
(

m(xxx, t)
)

dµ(t)

are n-times continuously differentiable on Id. On the other hand, we now also have formula (1.8) for the

d-variable mean Mf,g,m;µ. Thus, using the standard calculus rules, it follows that Mf,g,m;µ is n-times con-

tinuously differentiable on Id.

For the equalities (2.19) and (2.20), the reader shall establish [24, Theorem 4]. To prove the third formula

stated in (2.21), let us consider the case n = 3. In view of Lemma 1.1, we have the following identity

∫

T

Df,g(m(xxx, t),Mf,g,m;µ(xxx)) dµ(t) = 0 (xxx ∈ Id). (2.22)
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For the sake of brevity, for α, β ∈ N ∪ {0} with 1 ≤ α+ β ≤ 3, introduce the following notation

∆α,β(xxx, t) := ∂α1 ∂
β
2Df,g(m(xxx, t),Mf,g,m;µ(xxx)) (xxx ∈ Id t ∈ T ).

Performing the partial differentiations ∂i, ∂j∂i and ∂l∂j∂i on equality (2.22) side by side, we get

∫

T

[

∆1,0(xxx, t)∂im(xxx, t) + ∆0,1(xxx, t)∂iMf,g,m;µ(xxx)
]

dµ(t) = 0,

∫

T

[

∆2,0(xxx, t)∂im(xxx, t)∂jm(xxx, t) + ∆0,2(xxx, t)∂jMf,g,m;µ(xxx)∂iMf,g,m;µ(xxx)

+ ∆1,1(xxx, t)
(

∂jMf,g,m;µ(xxx)∂im(xxx, t) + ∂iMf,g,m;µ(xxx)∂jm(xxx, t)
)

+∆1,0(xxx, t)∂j∂im(xxx, t) + ∆0,1(xxx, t)∂j∂iMf,g,m;µ(xxx)
]

dµ(t) = 0,

and

∫

T

[

∆3,0(xxx, t)
∏

r∈{i,j,l}

∂rm(xxx, t) + ∆0,3(xxx, t)
∏

r∈{i,j,l}

∂rMf,g,m;µ(xxx)

+ ∆2,1(xxx, t)
∑

(α,β,γ)∈σ(i,j,l)

∂αMf,g,m;µ(xxx)∂βm(xxx, t)∂γm(xxx, t)

+ ∆1,2(xxx, t)
∑

(α,β,γ)∈σ(i,j,l)

∂αMf,g,m;µ(xxx)∂βMf,g,m;µ(xxx)∂γm(xxx, t)

+ ∆2,0(xxx, t)
∑

(α,β,γ)∈σ(i,j,l)

∂α∂βm(xxx, t)∂γm(xxx, t) + ∆0,2(xxx, t)
∑

(α,β,γ)∈σ(i,j,l)

∂α∂βMf,g,m;µ(xxx)∂γMf,g,m;µ(xxx)

+ ∆1,1(xxx, t)
∑

(α,β,γ)∈σ(i,j,l)

(

∂α∂βMf,g,m;µ(xxx)∂γm(xxx, t) + ∂αMf,g,m;µ(xxx)∂β∂γm(xxx, t)
)

+∆1,0(xxx, t)∂i∂j∂lm(xxx, t) + ∆0,1(xxx, t)∂i∂j∂lMf,g,m;µ(xxx)
]

dµ(t) = 0,

respectively. Using the identities (2.11), (2.12) and substituting x(d) ∈ Id, we get that

∫

T

[

∂31Df,g(x, x)
(

∏

r∈{i,j,l}

∂rm
(

x(d), t
)

−
∏

r∈{i,j,l}

∂rMf,g,m;µ

(

x(d)
)

)

+ ∂21∂2Df,g(x, x)
∑

(α,β,γ)∈σ(i,j,l)

∂αMf,g,m;µ

(

x(d)
)

(

∂βm
(

x(d), t
)

− ∂βMf,g,m;µ

(

x(d)
)

)

∂γm
(

x(d), t
)

+ ∂21Df,g(x, x)
∑

(α,β,γ)∈σ(i,j,l)

(

∂α∂βm
(

x(d), t
)

∂γm
(

x(d), t
)

− ∂α∂βMf,g,m;µ

(

x(d)
)

∂γMf,g,m;µ

(

x(d)
)

)

+ ∂1Df,g(x, x)∂i∂j∂lm
(

x(d), t
)

− ∂1Df,g(x, x)∂i∂j∂lMf,g,m;µ

(

x(d)
)

]

dµ(t) = 0.

Now, dividing the above equality by ∂1Df,g(x, x) and using the definitions of Φf,g and Ψf,g, and also the
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identity (2.13), for x(d) ∈ Id, the following formula follows

∂i∂j∂lMf,g,m;µ

(

x(d)
)

=
(

Φ′
f,g(x) + Φ2

f,g(x) + Ψf,g(x)
)

∫

T

(

∏

r∈{i,j,l}

∂rm
(

x(d), t
)

−
∏

r∈{i,j,l}

∂rMf,g,m;µ

(

x(d)
)

)

dµ(t)

−Ψf,g(x)
∑

(α,β,γ)∈σ(i,j,l)

∂αMf,g,m;µ

(

x(d)
)

∫

T

(

∂βm
(

x(d), t
)

− ∂βMf,g,m;µ

(

x(d)
)

)

∂γm
(

x(d), t
)

dµ(t)

+ Φf,g(x)
∑

(α,β,γ)∈σ(i,j,l)

∫

T

(

∂α∂βm
(

x(d), t
)

∂γm
(

x(d), t
)

− ∂α∂βMf,g,m;µ

(

x(d)
)

∂γMf,g,m;µ

(

x(d)
)

)

dµ(t)

+

∫

T

∂i∂j∂lm
(

x(d), t
)

dµ(t).

By using formula (2.19) and definition (2.14), we get the following simplified equation

∂i∂j∂lMf,g,m;µ

(

x(d)
)

=
(

Φ′
f,g(x) + Φ2

f,g(x)
)(〈

∂im∂jm∂lm
〉

µ
− 〈∂im〉µ〈∂jm〉µ〈∂lm〉µ

)(

x(d)
)

+Φf,g(x)
∑

(α,β,γ)∈σ(i,j,l)

(

〈∂α∂βm∂γm〉µ − ∂α∂βMf,g,m;µ∂γMf,g,m;µ

)

(

x(d)
)

+Ψf,g(x)
(

〈

∂im∂jm∂lm
〉

µ
−

∑

(α,β,γ)∈σ(i,j,l)

〈∂αm〉µ〈∂βm∂γm〉µ + 2〈∂im〉µ〈∂jm〉µ〈∂lm〉µ
)

(

x(d)
)

+ 〈∂i∂j∂lm〉µ
(

x(d)
)

.

This equality, combined with the following easy-to-see identity,
〈

∂im∂jm∂lm
〉

µ
−

∑

(α,β,γ)∈σ(i,j,l)

〈∂αm〉µ〈∂βm∂γm〉µ + 2〈∂im〉µ〈∂jm〉µ〈∂lm〉µ =
〈

∂∗im∂∗jm∂∗lm
〉

µ

yields formula (2.21) of the theorem.

We note that, using the equality in (2.20), the formula (2.21) for the third-order partial derivatives can be

made more explicit.

3 Equality of generalized Bajraktarević means

In this section we characterize the equality of generalized Bajraktarević and quasi-arithmetic means under 3

times and 2 times differentiability assumptions, respectively.

Theorem 3.1. Let (f, g), (h, k) ∈ C3(I), let m ∈ C3(I
d×T ) be a measurable family of means, and let µ be

a probability measure on the measurable space (T,A). Assume that, there exists a dense subset D ⊆ I such

that, for all x ∈ D,

µ
(

{

t ∈ T | ∂∗1m
(

x(d), t
)

= · · · = ∂∗dm
(

x(d), t
)

= 0
}

)

< 1 (3.1)

and there exist i, j, l ∈ {1, . . . , d} such that

〈

∂∗im∂∗jm∂∗l m
〉

µ

(

x(d)
)

6= 0. (3.2)

Then the following assertions are equivalent:
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(i) For all xxx ∈ Id,

Mf,g,m;µ(xxx) =Mh,k,m;µ(xxx); (3.3)

(ii) There exists an open set U ⊆ Id containing the subdiagonal {x(d) | x ∈ D} such that, for all xxx ∈ U ,

the equality (3.3) holds;

(iii) The two identities in (2.8) hold;

(iv) The pairs (f, g) and (h, k) are equivalent.

Proof. The implication (i)⇒(ii) is trivial. As we have seen it at the beginning of Section 2, equivalent pairs

generate identical means, hence the implication (iv)⇒(i) is also valid. The implication (iii)⇒(iv) is the con-

sequence of Theorem 2.1. Therefore, it remains to show that condition (ii) implies (iii).

Assume that condition (ii) holds for some open set U ⊆ Id containing the subdiagonal {x(d) | x ∈ D}.

By the regularity assumptions of the theorem, the two means are 3 times continuously differentiable over U .

Therefore, for all i, j, l ∈ {1, . . . , d} and xxx ∈ U ,

∂iMf,g,m;µ(xxx) = ∂iMh,k,m;µ(xxx), ∂i∂jMf,g,m;µ(xxx) = ∂i∂jMh,k,m;µ(xxx),

∂i∂j∂lMf,g,m;µ(xxx) = ∂i∂j∂lMh,k,m;µ(xxx).

In particular, for all i, j, l ∈ {1, . . . , d} and x ∈ D, we have

∂iMf,g,m;µ(x
(d)) = ∂iMh,k,m;µ(x

(d)), ∂i∂jMf,g,m;µ(x
(d)) = ∂i∂jMh,k,m;µ(x

(d)),

∂i∂j∂lMf,g,m;µ(x
(d)) = ∂i∂j∂lMh,k,m;µ(x

(d)).
(3.4)

In order to show that the two identities in (2.8) hold on I , let x ∈ D be fixed. Inequality (3.1) implies that,

for some i ∈ {1, . . . , d},

µ
(

{

t ∈ T | ∂∗im
(

x(d), t
)

6= 0
}

)

> 0

Therefore, there exists a set S ⊆ T of positive µ-measure such that
(

∂∗im
(

x(d), t
))2

> 0 holds for all t ∈ S.

This yields that
〈

(∂∗im)2
〉

µ

(

x(d)
)

> 0. (3.5)

Using the second equality in (3.4) for j = i, and applying formula (2.20), we get that

Φf,g(x)
〈

∂∗im)2
〉

µ

(

x(d)
)

= Φh,k(x)
〈

∂∗im)2
〉

µ

(

x(d)
)

.

In view of (3.5), this equality implies that, for all x ∈ D,

Φf,g(x) = Φh,k(x). (3.6)

By the density of D in I and the continuity of the functions Φf,g and Φh,k, we obtain that these functions are

identical on I . Hence the first equality in (2.8) has been verified.

Observe that, until now, we have used only twice continuous differentiability assumptions. The third-

order differentiability will only be used to derive the second equality in (2.8).
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By the assumptions of the theorem, for x ∈ D, there exists i, j, l ∈ {1, . . . , d} such that (3.2) holds. The

third equality in (3.4) combined with formula (2.21), and then the identity Φf,g = Φh,k now imply that

Ψf,g(x)
〈

∂∗im∂∗jm∂∗l m
〉

µ

(

x(d)
)

= Ψh,k(x)
〈

∂∗im∂∗jm∂∗l m
〉

µ

(

x(d)
)

.

Using condition (3.2), for all x ∈ D, this simplifies to

Ψf,g(x) = Ψh,k(x). (3.7)

The density of D in I and the continuity of the functions Ψf,g and Ψh,k yields that these functions are

identical on I . Therefore, the second equality in (2.8) has also been shown.

In the next corollary we consider the particular case of Theorem 3.1 when the measurable family m is

given in the form

m(xxx, t) = ϕ1(t)x1 + · · ·+ ϕd(t)xd (xxx = (x1, . . . , xd) ∈ Id, t ∈ T ). (3.8)

For a µ integrable function ϕ : T → R define ϕ∗ : T → R by

ϕ∗(t) := ϕ(t) − 〈ϕ〉µ.

Corollary 3.2. Let (f, g), (h, k) ∈ C3(I), let µ be a probability measure on the measurable space (T,A), let

ϕ1, . . . , ϕd : T → [0, 1] µ-measurable functions with ϕ1 + · · · + ϕd = 1 and define the measurable family

m : Id × T → R by (3.8). Assume that

µ
(

{

t ∈ T | ϕ∗
1(t) = · · · = ϕ∗

d(t) = 0
}

)

< 1 (3.9)

and there exist i, j, l ∈ {1, . . . , d} such that

〈

ϕ∗
i ϕ

∗
j ϕ

∗
l

〉

µ
6= 0. (3.10)

Then the following assertions are equivalent:

(i) For all xxx ∈ Id, the equality (3.3) holds;

(ii) There exists a dense subset D ⊆ I and an open set U ⊆ Id containing the subdiagonal {x(d) | x ∈ D}
such that, for all xxx ∈ U , the equality (3.3) holds;

(iii) The pairs (f, g) and (h, k) are equivalent.

Proof. The measurable family m : Id × T → R is given by (3.8), hence m ∈ C3(I
d × T ) and, for all

(xxx, t) ∈ Id × T and i, j, l ∈ {1, . . . , d}, we have

∂im(xxx, t) = ϕi(t) and ∂∗im(xxx, t) = ϕ∗
i (t).

Therefore, conditions (3.9) and (3.10) are equivalent to (3.1) and (3.2), respectively. Thus, the result is a

direct consequence of Theorem 3.1.
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The next corollary concerns the case when T = [0, 1] and µ is a probability measure on the sigma algebra

of Borel subsets of [0, 1]. In this setting, define µ̂1 to be the first moment and µn to be the nth centralized

moment of the measure µ by

µ̂1 :=

∫

[0,1]
t dµ(t), µn :=

∫

[0,1]
(t− µ̂1)

n dµ(t) (n ∈ N).

Corollary 3.3. Let (f, g), (h, k) ∈ C3(I) such that g and k do not vanish on I . Let µ be a probability measure

on the sigma algebra of Borel subsets of [0, 1] with µ2 6= 0 and µ3 6= 0. Then the following assertions are

equivalent:

(i) For all (x, y) ∈ I2, the equality

(

f

g

)−1
( ∫

[0,1] f
(

tx+ (1− t)y
)

dµ(t)
∫

[0,1] g
(

tx+ (1− t)y)
)

dµ(t)

)

=

(

h

k

)−1
( ∫

[0,1] h
(

tx+ (1− t)y
)

dµ(t)
∫

[0,1] k
(

tx+ (1− t)y)
)

dµ(t)

)

(3.11)

holds;

(ii) There exists a dense subset D ⊆ I and an open set U ⊆ I2 containing the subdiagonal {(x, x) | x ∈
D} such that, for all (x, y) ∈ U , the equality (3.11) holds;

(iii) The pairs (f, g) and (h, k) are equivalent.

Proof. For the proof of the result, we will apply Corollary 3.2 in the case when d = 2 and the measurable

family of means m : I2 × [0, 1] → R is given by

m((x, y), t) := tx+ (1− t)y (x, y ∈ I, t ∈ [0, 1]), (3.12)

that is, when ϕ1(t) := t and ϕ2(t) := 1− t for t ∈ [0, 1]. In this case, we have that ϕ∗
1(t) = −ϕ∗

2(t) = t− µ̂1
and, it is also immediately seen that conditions (3.9) and (3.10) are equivalent to the inequalities µ2 6= 0 and

µ3 6= 0, respectively. Therefore, the result directly follows from Corollary 3.2.

The next corollary concerns the equality of nonsymmetric weighted two-variable Bajraktarević means.

Corollary 3.4. Let (f, g), (h, k) ∈ C3(I) such that g and k do not vanish on I . Let s ∈ (0, 12)∪ (12 , 1). Then

the following assertions are equivalent:

(i) For all (x, y) ∈ I2, the equality

(

f

g

)−1(sf(x) + (1− s)f(y)

sg(x) + (1− s)g(y)

)

=

(

h

k

)−1(sh(x) + (1− s)h(y)

sk(x) + (1− s)k(y)

)

(3.13)

holds;

(ii) There exists a dense subset D ⊆ I and an open set U ⊆ I2 containing the subdiagonal {(x, x) | x ∈
D} such that, for all (x, y) ∈ U , the equality (3.13) holds;

(iii) The pairs (f, g) and (h, k) are equivalent.
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Proof. Let s ∈ (0, 12) ∪ (12 , 1) and apply the previous corollary for the measure µ := (1− s)δ0 + sδ1. Then

µ is a probability measure on the sigma algebra of the Borels sets of [0, 1] and, for any continuous function

ϕ : [0, 1] → R, we have

∫

T

ϕ(t) dµ(t) =

∫

T

ϕ(t) d((1 − s)δ0 + sδ1)(t) = (1− s) · ϕ(0) + s · ϕ(1). (3.14)

Therefore,

µ̂1 =

∫

T

t dµ(t) = (1− s) · 0 + s · 1 = s

and

µ2 =

∫

T

(t− µ̂1)
2 dµ(t) = (1− s) · (−s)2 + s · (1− s)2 = s(1− s) 6= 0,

µ3 =

∫

T

(t− µ̂1)
3 dµ(t) = (1− s) · (−s)3 + s · (1− s)3 = s(1− s)(1− 2s) 6= 0.

Thus µ possesses the properties required in the previous corollary. To complete the proof of the corollary,

observe that, for any continuous function ψ : I → R and x, y ∈ I , we have

∫

[0,1]
ψ
(

tx+ (1− t)y
)

dµ(t) = sψ(x) + (1− s)ψ(y)

if (3.14) is applied to the function ϕ(t) := ψ(tx+(1−t)y). In view of the above equality for ψ ∈ {f, g, h, k},

equation (3.13) is equivalent to (3.11) and hence Corollary 3.3 directly implies Corollary 3.4.

4 Equality of generalized quasi-arithmetic means

In the following results, we are going to characterize the equality of generalized quasi-arithmetic means in

various settings.

Theorem 4.1. Let f, g : I → R be twice continuously differentiable functions such that f ′ and g′ do not

vanish on I . Letm ∈ C2(I
d×T ) be a measurable family of means, and let µ be a probability measure on the

measurable space (T,A). Assume that, there exists a dense subset D ⊆ I such that, for all x ∈ D, condition

(3.1) holds. Then the following assertions are equivalent:

(i) For all xxx ∈ Id,

f−1

(
∫

T

f
(

m(xxx, t)
)

dµ(t)

)

= g−1

(
∫

T

g
(

m(xxx, t)
)

dµ(t)

)

; (4.1)

(ii) There exists an open set U ⊆ Id containing the subdiagonal {x(d) | x ∈ D} such that, for all xxx ∈ U ,

the equality (4.1) holds;

(iii) The functions f ′′/f ′ and g′′/g′ are identical on I;

(iv) There exist real constants a, b such that g = af + b.
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Proof. The implications (i)⇒(ii) and (iv)⇒(i) are trivial. The implication (iii)⇒(iv) can be seen directly by

integrating the equality f ′′/f ′ = g′′/g′ twice. Therefore, it remains to show that condition (ii) implies (iii).

First observe that the regularity conditions imply that (f, 1), (g, 1) ∈ C2(I). We can also see that (4.1) is

equivalent to the equality of the two generalized Bajraktarević means Mf,1,m;µ and Mg,1,m;µ. Now repeating

the same argument that was followed in the proof of Theorem 3.1, we can deduce (under twice differen-

tiability assumptions), that Φf,1 is equal to Φg,1 on I . This yields that f ′′/f ′ and g′′/g′ are identical on

I .

Corollary 4.2. Let f, g : I → R be twice continuously differentiable functions such that f ′ and g′ do not

vanish on I , let µ be a probability measure on the measurable space (T,A), let ϕ1, . . . , ϕd : T → [0, 1]

µ-measurable functions with ϕ1+· · ·+ϕd = 1 such that condition (3.9) holds. Then the following assertions

are equivalent:

(i) For all (x1, . . . , xd) ∈ Id,

f−1

(
∫

T

f
(

ϕ1(t)x1 + · · ·+ ϕd(t)xd)
)

dµ(t)

)

= g−1

(
∫

T

g
(

ϕ1(t)x1 + · · · + ϕd(t)xd
)

dµ(t)

)

;

(4.2)

(ii) There exists an open set U ⊆ Id containing the subdiagonal {x(d) | x ∈ D} such that, for all

(x1, . . . , xd) ∈ U , the equality (4.2) holds;

(iii) There exist real constants a, b such that g = af + b.

The proof of this corollary is based on Theorem 4.1 and can be elaborated in the same way as the proof

of Corollary 3.2, the details are left to the reader.

The following consequence of Corollary 4.2 has been dealt with in the paper [21, Theorem 7]. There f

and g are assumed only to be continuous, however, the equivalence to condition (ii) is missing.

Corollary 4.3. Let f, g : I → R be twice continuously differentiable functions such that f ′ and g′ do not

vanish on I . Let µ be a probability measure on the sigma algebra of Borel subsets of [0, 1] with µ2 6= 0. Then

the following assertions are equivalent:

(i) For all (x, y) ∈ I2, the equality

f−1

(
∫

T

f
(

tx+ (1− t)y
)

dµ(t)

)

= g−1

(
∫

T

g
(

tx+ (1− t)y
)

dµ(t)

)

; (4.3)

(ii) There exists a dense subset D ⊆ I and an open set U ⊆ I2 containing the subdiagonal {(x, x) | x ∈
D} such that, for all (x, y) ∈ U , the equality (4.3) holds;

(iii) There exist real constants a, b such that g = af + b.

This result follows exactly in the same way from Corollary 4.2 as Corollary 3.3 follows from Corol-

lary 3.2. The next statement is related to the equality problem of weighted two-variable quasi-arithmetic
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means. We note that the equivalence of conditions (i) and (iii) can be obtained under the assumption of con-

tinuity of the generating functions f and g. For further and important particular cases of Corollary 4.3, we

refer to the examples elaborated in the paper [21].

Corollary 4.4. Let f, g : I → R be twice continuously differentiable functions such that f ′ and g′ do not

vanish on I . Let s ∈ (0, 1). Then the following assertions are equivalent:

(i) For all (x, y) ∈ I2, the equality

f−1(sf(x) + (1− s)f(y)) = g−1(sg(x) + (1− s)g(y)); (4.4)

(ii) There exists a dense subset D ⊆ I and an open set U ⊆ I2 containing the subdiagonal {(x, x) | x ∈
D} such that, for all (x, y) ∈ U , the equality (4.4) holds;

(iii) There exist real constants a, b such that g = af + b.

The proof of the above corollary is analogous to that of Corollary 3.4. It can be deduced from Corol-

lary 4.3 by taking the measure µ := (1− s)δ0 + sδ1 and observing that µ2 = s(1− s) 6= 0.

5 Homogeneity of generalized Bajraktarević means

In this section we characterize the homogeneity of generalized Bajraktarević and quasi-arithmetic means

under 3 times and 2 times differentiability assumptions, respectively.

Given a nonempty open subinterval I of R+ and c > 0, introduce the following notations:

cI := {cx | x ∈ I} and I/I := {x/y | x, y ∈ I}.

These sets are also open subintervals of R+ and the interval I/I is logarithmically symmetric with respect

to 1, i.e., u ∈ I/I holds if and only if 1/u ∈ I/I . It is also easy to see that the intersection Iλ := I ∩
(

1
λ
I
)

is nonempty if and only if λ ∈ I/I .

A d-variable mean M : Id → R is called homogeneous if, for all λ ∈ I/I and for all xxx ∈ Idλ ,

M(λxxx) = λM(xxx).

We will also use the following notation: For a function f : I → R and number λ > 0, the function

fλ :
(

1
λ
I
)

→ R is defined by

fλ(x) = f(λx).

Lemma 5.1. Assume that m ∈ C1(I
d × T ) is a homogeneous measurable family of means, and µ is a

probability measure on the measurable space (T,A). Then, for all i ∈ {1, . . . , d} and for all t ∈ T , the

mapping

I ∋ x 7→ ∂∗im(x(d), t)

is constant on I .
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Proof. By the homogeneity of the measurable family m, for all λ ∈ I/I and for all xxx ∈ Idλ, we have that

m(λxxx, t) = λm(xxx, t).

Differentiating this identity with respect to the ith variable, we get

λ∂im(λxxx, t) = λ∂im(xxx, t),

which simplifies to

∂im(λxxx, t) = ∂im(xxx, t).

Let x, y ∈ I be arbitrary elements. Then, taking λ := y/x, and xxx := x(d), the above equality yields that

∂im(y(d), t) = ∂im(x(d), t)

hold for all x, y ∈ I and t ∈ T . Using this identity, the statement of the lemma follows immediately.

Theorem 5.2. Let (f, g) ∈ C3(I), let m ∈ C3(I
d × T ) be a homogeneous measurable family of means, and

let µ be a probability measure on the measurable space (T,A). Assume that there exists a point x0 ∈ I such

that

µ
(

{

t ∈ T | ∂∗1m
(

x
(d)
0 , t

)

= · · · = ∂∗dm
(

x
(d)
0 , t

)

= 0
}

)

< 1 (5.1)

and there exist i, j, l ∈ {1, . . . , d} such that

〈

∂∗im∂∗jm∂∗l m
〉

µ

(

x
(d)
0

)

6= 0. (5.2)

Then the following assertions are equivalent:

(i) Mf,g,m;µ is homogeneous;

(ii) For all λ ∈ I/I and for all xxx ∈ Idλ ,

Mf,g,m;µ(xxx) =Mfλ,gλ,m;µ(xxx);

(iii) For all λ ∈ I/I , the pairs (f, g) and (fλ, gλ) are equivalent on the interval Iλ;

(iv) For all λ ∈ I/I and for all x ∈ Iλ,

Φf,g(x) = Φfλ,gλ(x) and Ψf,g(x) = Ψfλ,gλ(x);

(v) There exist two real numbers α, β such that y = f and y = g are solutions of the second-order linear

differential equation

y′′(x) =
α

x
y′(x) +

β

x2
y(x) (x ∈ I); (5.3)

(vi) There exists a pair (p, q) ∈ {(z, w) ∈ C
2 | z + w, zw ∈ R} such that Mf,g,m;µ is equal to the

d-variable generalized Gini mean Gp,q,m;µ.
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Proof. Observe first that, based on Lemma 5.1, if there exists x0 ∈ I and i, j, l ∈ {1, . . . , d} such that

conditions (5.1) and (5.2) hold, then they are also satisfied for all x0 ∈ I .

In order to simplify the computations, in view of Lemma 2.4, we may assume that g is positive, f/g is

strictly monotone with a non-vanishing first-order derivative.

Let Mf,g,m;µ be a homogeneous mean. Then, for all λ ∈ I/I and xxx ∈ Idλ, we have

1

λ
Mf,g,m;µ(λxxx) =Mf,g,m;µ(xxx).

Fix λ ∈ I/I arbitrarily. Using that m is a homogeneous measurable family of means and the definition of

the functions fλ, gλ, we can rewrite the last equality as follows

1

λ

(

f

g

)−1
(

∫

T
fλ
(

m(xxx, t)
)

dµ(t)
∫

T
gλ
(

m(xxx, t)
)

dµ(t)

)

=

(

f

g

)−1
(

∫

T
f
(

m(xxx, t)
)

dµ(t)
∫

T
g
(

m(xxx, t)
)

dµ(t)

)

. (5.4)

Also, one can easily see that, for all u ∈ (f/g)(I), we get

1

λ

(

f

g

)−1

(u) =

(

fλ
gλ

)−1

(u),

hence the equality in (5.4) reduces to

Mfλ,gλ,m;µ(xxx) =Mf,g,m;µ(xxx).

Therefore, the homogeneity of the meanMf,g,m;µ implies (ii), that is the equality of the two d-variable gener-

alized Bajraktarević means Mf,g,m;µ and Mfλ,gλ,m;µ on Idλ. In fact, from this argument, also the equivalence

of these statements can be seen.

Applying Theorem 3.1 for h := fλ, k := gλ, we get that (ii), (iii), and (iv) are equivalent to each other

and therefore to (i), too.

In order to understand the content of condition (iv), observe first that, for all x ∈ 1
λ
I ,

Φfλ,gλ(x) =
∂21Dfλ,gλ(x, x)

∂1Dfλ,gλ(x, x)
= λ

∂21Df,g(λx, λx)

∂1Df,g(λx, λx)
= λΦf,g(λx)

and similarly,

Ψfλ,gλ(x) =
∂21∂2Dfλ,gλ(x, x)

∂1Dfλ,gλ(x, x)
= λ2

∂21∂2Df,g(λx, λx)

∂1Df,g(λx, λx)
= λ2Ψf,g(λx).

Therefore, condition (iv) holds if and only if, for all λ ∈ I/I and x ∈ Iλ,

λΦf,g(λx) = Φf,g(x) and λ2Ψf,g(λx) = Ψf,g(x). (5.5)

We now show that the maps x 7→ xΦf,g(x) and x 7→ x2Ψf,g(x) are constants over I . To see this, let u, v ∈ I

be arbitrary. Then λ := v/u ∈ I/I and x := u ∈ Iλ. Therefore, by first equality in (5.5),

uΦf,g(u) = uΦf,g(x) = uλΦf,g(λx) = vΦf,g(v),
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which proves that x 7→ xΦf,g(x) is a constant map on I . Denoting the value of this map by α, we get that

Φf,g(x) =
α

x
(x ∈ I). (5.6)

A completely similar argument applied for the second identity in (5.5) shows that there exists a constant

β ∈ R such that

Ψf,g(x) =
β

x2
(x ∈ I). (5.7)

One can also see that these identities are also sufficient for (5.5) to hold.

As we have seen in the proof of Theorem 2.1, the functions f and g are solutions of the second order

homogeneous linear differential equation (2.9), hence, by the formulae (5.6) and (5.7), we can see that

condition (v) is fulfilled. To prove the implication (v)⇒(vi), assume that y = f and y = g are solutions of

the homogeneous second-order Cauchy–Euler equation (5.3) for some α, β ∈ R. For a function y : I → R

define Y := y ◦ exp. Then y = Y ◦ log, and using the chain rule, we deduce that

y′(x) =
1

x
Y ′(log x) and y′′(x) =

1

x2
(

Y ′′(log x)− Y ′(log x)
)

.

Substituting these expressions into equation (5.3), we get that y : I → R is a solution of (5.3) if and only

if Y : log(I) → R is the solution of the following homogeneous second-order differential equation with

constant coefficients

Y ′′(u) = (α+ 1)Y ′(u) + βY (u) (u ∈ log(I)). (5.8)

Denote by p and q the roots of the characteristic polynomial

r2 − (α+ 1)r − β = 0. (5.9)

Then, we have that (p, q) ∈ {(z, w) ∈ C
2 | z + w, zw ∈ R}. Therefore, either p, q ∈ R or p = q̄ ∈ C \ R.

According to these possibilities, a fundamental system Y1, Y2 : log(I) → R for the solution of (5.8) can be

obtained in the following form

Y1(u) = exp(pu), Y2(u) = exp(qu) if p, q ∈ R, p 6= q,

Y1(u) = exp(pu), Y2(u) = u exp(pu) if p = q ∈ R,

Y1(u) = exp(au) cos(bu), Y2(u) = exp(au) sin(bu) if p = q̄ = a+ bi, a, b ∈ R, b 6= 0.

Substituting u = log x, we get that the functions y1, y2 : I → R defined by

y1(x) = xp, y2(x) = xq if p, q ∈ R, p 6= q,

y1(x) = xp log(x), y2(x) = xp if p = q ∈ R,

y1(x) = xa cos(b log(x)), y2(x) = xa sin(b log(x)) if p = q̄ = a+ bi, a, b ∈ R, b 6= 0.
(5.10)

form a fundamental system of differential equation (5.3). Therefore, f and g are linear combinations of y1

and y2. Thus the pairs (f, g) and (y1, y2) determine the same Bajraktarević mean (provided that they belong

to C3(I). It is obvious that these functions are infinitely many times differentiable. One can also easily see

that their Wronski determinant does not vanish anywhere. As we have seen it in the introduction, these
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functions always form a Chebyshev system on R+ if p, q ∈ R. On the other hand, if p = q̄ 6∈ R, then (y1, y2)

is a Chebyshev system over I if and only if I/I is contained in the open interval
(

exp
(

− π
|b|

)

, exp
(

π
|b|

))

.

This implies that, in each of the above cases, Mf,g,m;µ is equal to the d-variable generalized Gini mean

Gp,q,m;µ (which we defined in the introduction). Hence the implication (v)⇒(vi) is satisfied.

To complete the proof of the theorem, we can easily prove the implication (vi)⇒(iv). Assume that, for

some (p, q) ∈ {(z, w) ∈ C
2 | z + w, zw ∈ R}, we have

Mf,g,m;µ(xxx) = Gp,q,m;µ(xxx) (xxx ∈ Id),

then Theorem 3.1 implies that the pairs (f, g) and (y1, y2) are equivalent. Therefore, Theorem 2.1 implies

that

Φf,g(x) = Φy1,y2(x) =
p+ q − 1

x
and Ψf,g(x) = Ψy1,y2(x) =

pq

x2
.

Then, for all λ ∈ I/I and x ∈ Iλ, the two equations of condition (iv) are trivially satisfied. This completes

the proof of the theorem.

In the following result, we derive an important particular case of Theorem 5.2 when the measurable

family of means consists of weighted d-variable arithmetic means.

Corollary 5.3. Let (f, g) ∈ C3(I), let µ be a probability measure on the measurable space (T,A), let

ϕ1, . . . , ϕd : T → [0, 1] µ-measurable functions with ϕ1 + · · · + ϕd = 1 and define the measurable

family m : Id × T → R by (3.8). Assume that conditions (3.9) and (3.10) are satisfied. Then Mf,g,m;µ is

homogeneous if and only if there exists a pair (p, q) ∈ {(z, w) ∈ C
2 | z+w, zw ∈ R} such that Mf,g,m;µ is

equal to the d-variable generalized Gini mean Gp,q,m;µ.

Proof. Applying the same argument as in the proof of Corollary 3.2, the verification of this corollary directly

follows from the previous theorem because the measurable family m is trivially homogeneous and infinitely

many times differentiable, furthermore, (3.9) and (3.10) imply conditions (5.1) and (5.2).

The following two results are direct consequences of Corollary 5.3. Their proofs go on the same line as

the proofs of Corollary 3.3 and Corollary 3.4, respectively but using Corollary 5.3 instead of Corollary 3.2.

Corollary 5.4. Let (f, g) ∈ C3(I) such that g does not vanish on I . Let µ be a probability measure on the

sigma algebra of Borel subsets of [0, 1] with µ2 6= 0 and µ3 6= 0. Then the the functional equation

(

f

g

)−1
(∫

[0,1] f
(

tλx+ (1− t)λy
)

dµ(t)
∫

[0,1] g
(

tλx+ (1− t)λy
)

dµ(t)

)

= λ

(

f

g

)−1
(∫

[0,1] f
(

tx+ (1− t)y
)

dµ(t)
∫

[0,1] g
(

tx+ (1− t)y
)

dµ(t)

)

holds for all λ ∈ I/I and for all (x, y) ∈ I2 if and only if there exists a pair (p, q) ∈ {(z, w) ∈ C
2 |

z + w, zw ∈ R} such that, for all x, y ∈ I , the expression

(

f

g

)−1
(∫

[0,1] f
(

tx+ (1− t)y
)

dµ(t)
∫

[0,1] g
(

tx+ (1− t)y
)

dµ(t)

)
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is of the form























































(∫

[0,1]

(

tx+ (1− t)y)
)p

dµ(t)
∫

[0,1]

(

tx+ (1− t)y)
)q

dµ(t)

)

1

p−q

if p, q ∈ R, p 6= q,

exp

(∫

[0,1]

(

tx+ (1− t)y)
)p

log
(

tx+ (1 − t)y)
)

dµ(t)
∫

[0,1]

(

tx+ (1 − t)y
)p

dµ(t)

)

if p = q ∈ R,

exp

(

1

b
arctan

(∫

[0,1]

(

tx+ (1− t)y)
)a

sin
(

b log
(

tx+ (1− t)y)
))

dµ(t)
∫

[0,1]

(

tx+ (1− t)y)
)a

cos
(

b log
(

tx+ (1 − t)y)
))

dµ(t)

))

if p = q̄ = a+ bi, b 6= 0,

provided that, in the last case, the inclusion I ⊆
(

exp
(

− π
2|b|

)

, exp
(

π
2|b|

))

holds.

The result presented in the above corollary was established by Losonczi in [18, Theorem 2.1] under

the assumption of six times continuous differentiability of f, g and the moment conditions µ2 6= 0 and

5µ2µ
2
4 + µ4µ6 − 6µ22µ6 6= 0. Having a careful look at the proof of this result in [18], under the condition

µ3 6= 0, the above conclusion was reached using only three times differentiability.

Corollary 5.5. Let (f, g) ∈ C3(I) such that g does not vanish on I . Let s ∈ (0, 12 ) ∪ (12 , 1). Then the

functional equation

(

f

g

)−1(sf(λx) + (1− s)f(λy)

sg(λx) + (1− s)g(λy)

)

= λ

(

f

g

)−1(sf(x) + (1− s)f(y)

sg(x) + (1− s)g(y)

)

holds for all λ ∈ I/I and for all (x, y) ∈ I2 if and only if there exists a pair (p, q) ∈ {(z, w) ∈ C
2 |

z + w, zw ∈ R} such that, for all x, y ∈ I , the expression

(

f

g

)−1(sf(x) + (1− s)f(y)

sg(x) + (1− s)g(y)

)

is of the form











































(

sxp + (1− s)yp

sxq + (1− s)yq

)
1

p−q

if p, q ∈ R, p 6= q,

exp

(

sxp log(x) + (1− s)yp log(y)

sxp + (1− s)yp

)

if p = q ∈ R,

exp

(

1

b
arctan

(

sxa sin(log(xb)) + (1− s)ya sin(log(yb))

sxa cos(log(xb)) + (1− s)ya cos(log(yb))

))

if p = q̄ = a+ bi, b 6= 0,

provided that, in the last case, the inclusion I ⊆
(

exp
(

− π
2|b|

)

, exp
(

π
2|b|

))

holds.

6 Homogeneity of generalized quasi-arithmetic means

In this section we consider particular cases of the results of Section 5, when all the means are generalized

quasi-arithmetic. Let I again be an open subinterval of R+. The proofs of the results can be obtained by

combining the arguments of Sections 4 and 5 therefore they are completely omitted.
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Theorem 6.1. Let f : I → R be a twice continuously differentiable function such that f ′ does not vanish

on I . Let m ∈ C2(I
d × T ) be a homogeneous measurable family of means, and let µ be a probability

measure on the measurable space (T,A). Assume that condition (5.1) holds. Then the following assertions

are equivalent:

(i) Mf,1,m;µ is homogeneous;

(ii) For all λ ∈ I/I and for all xxx ∈ Idλ ,

Mf,1,m;µ(xxx) =Mfλ,1,m;µ(xxx);

(iii) For all λ ∈ I/I , there exist real constants aλ, bλ such that fλ(x) = aλf(x) + bλ holds for all x ∈ Iλ;

(iv) For all λ ∈ I/I , the functions f ′′/f ′ and f ′′λ/f
′
λ are identical on Iλ,

(v) There exists a real number α such that y = f is a solution of the second-order linear differential

equation

y′′(x) =
α

x
y′(x) (x ∈ I);

(vi) There exists a real number p such that Mf,1,m;µ is equal to the d-variable generalized Hölder mean

Hp,m;µ.

The above theorem reduces to the following result if the measurable family consists of weighted arith-

metic means.

Corollary 6.2. Let f : I → R be a twice continuously differentiable function such that f ′ does not vanish

on I . Let µ be a probability measure on the measurable space (T,A), let ϕ1, . . . , ϕd : T → [0, 1] be µ-

measurable functions with ϕ1 + · · · + ϕd = 1 and define the measurable family m : Id × T → R by (3.8).

Assume that conditions (3.9) is satisfied. Then the d-variable generalized quasi-arithmetic mean Mf,1,m;µ

is homogeneous if and only if there exists a real number p such that Mf,1,m;µ is equal to the d-variable

generalized Hölder mean Hp,m;µ.

The following particular case of Corollary 6.2 was obtained by Burai and Jarczyk [7] in 2013.

Corollary 6.3. Let f : I → R be a twice continuously differentiable function such that f ′ does not vanish

on I . Let µ be a probability measure on the sigma algebra of Borel subsets of [0, 1] with µ2 6= 0 and µ3 6= 0.

Then the functional equation

f−1

(
∫

[0,1]

f
(

tλx+ (1− t)λy
)

dµ(t)

)

= λf−1

(
∫

[0,1]

f
(

tx+ (1− t)y
)

dµ(t)

)

holds for all λ ∈ I/I and for all (x, y) ∈ I2 if and only if there exists p ∈ R such that, for all x, y ∈ I ,

f−1

(
∫

[0,1]

f
(

tx+ (1− t)y
)

dµ(t)

)

=























(

∫

[0,1]

(

tx+ (1− t)y)
)p

dµ(t)

)
1

p

if p 6= 0,

exp

(

∫

[0,1]

(

tx+ (1− t)y)
)p

log
(

tx+ (1− t)y)
)

dµ(t)

)

if p = 0.
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Upon taking the particular measure µ := (1−s)δ0+sδ1 in the above corollary, we can deduce a classical

result for the homogeneity of two-variable weighted quasi-arithmetic means (cf. [9]).

Corollary 6.4. Let f : I → R be a twice continuously differentiable function such that f ′ does not vanish

on I . Let s ∈ (0, 12) ∪ (12 , 1). Then the functional equation

f−1(sf(λx) + (1− s)f(λy)) = λf−1(sf(x) + (1− s)f(y)

holds for all λ ∈ I/I and for all (x, y) ∈ I2 if and only if there exists a pair p ∈ R such that, for all x, y ∈ I ,

f−1(sf(x) + (1− s)f(y)) =







(sxp + (1− s)yp)
1

p if p 6= 0,

xsy1−s if p = 0.
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