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Abstract 

 
The margins within the geographic range of species are often specific in terms of ecological 
and evolutionary processes, and can strongly influence the species’ reaction to climate change. 
One of the frequently observed features at range margins is fragmentation, caused internally by 
population dynamics or externally by the limited availability of suitable habitat sites. We study 
both causes, and describe the transition from a connected to a fragmented state across space 
using a gradient metapopulation model.  Our approach is characterized by the following 
features. 1) Inhomogeneities can occur at two spatial scales: there is a broad-scale gradient, 
which can be patterned by fine-scale heterogeneities. 2) We study the occupancy of this terrain 
in a steady-state on two temporal scales: in snapshots and by long-term averages. The 
simulations reveal some general scaling laws that are applicable in various environments, 
independently of the mechanism of fragmentation. The edge of the connected region (the hull) 
is a fractal with dimension 7/4. Its width and length changes with the gradient according to 
universal scaling laws, that are characteristic for the percolation transition. The results suggest 
that percolation theory is a powerful tool for understanding the structure of range margins in a 
broad variety of real-life scenarios, including those in which the environmental gradient is 
combined with fine-scale heterogeneity. This provides a new method for comparing the range 
margins of different species in various geographic regions, and monitoring range shifts under 
climate change. 
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Introduction 
 
 The margins of geographic ranges have been in the focus of ecology and evolutionary 
biology for several decades. In comparison with the core of distribution, they are often specific 
in terms of genetic composition and in the manifestation of phenotypic plasticity (Holt and Keitt 
2005; Gaston 2009; Kubisch et al. 2014). Typically, an environmental gradient causes a decline 
in the abundance of a species (Brown et al. 1996; Vucetich and Waite 2003). Thus, the response 
of the population to the key environmental factor(s) can directly be observed across space 
(altitude, latitude or other direction). The study of range margins helps to understand the natural 
limitations of a species, and to predict the direction and magnitude of range shift in case of a 
climate change (Travis 2003; Best et al. 2007; Geber 2008; Mustin et al. 2009; Turner and 
Wong 2010; Eppinga et al. 2013; Tejo et al. 2017). Usually multiple environmental factors are 
involved (temperature, moisture, etc.). 
 Metapopulation modelling simplifies these complex scenarios by considering the 
changes in the demographic rates across space (Wilson et al. 1996; Holt and Keitt 2000; Gastner 
et al. 2009; Oborny et al. 2009). Thus, it provides a unified theoretical framework for the study 
of range dynamics across environmental gradients [see Holt et al. (2005); Kubisch et al. (2014) 
and Oborny (2018) for reviews]. 
 The most fundamental variables are the rate of colonization (c), and the rate of local 
extinction (e) in each habitat site. In the simplest gradient situation, c and/or 1/𝑒 changes 
linearly along a spatial axis x. (The choice of  1/𝑒 instead of e is motivated by using 𝜆 =   as 

a control parameter; see later). We refer to this case as the even slope (ES) model (Fig. 1.a). In 
more complex cases, further heterogeneity may occur beside the gradient. For example, a 
hillside is usually uneven topographically, and it may contain rock outcrops. To study these 
cases, we introduce a rugged slope (RS) model, in which fine-scale heterogeneity also occurs 
(Fig. 1.b). 

Gradient metapopulation models that can be classified as ES models have been used from 
the 1990s (Lennon et al. 1997; Holt and Keitt 2000; Holt et al. 2005; Antonovics et al. 2006; 
Gastner et al. 2009; Oborny et al. 2009). Although the details differed in these models, they 
share two main conclusions. 1) A smooth change in the environment causes an abrupt change 
in the steady-state occupancy n(x). 2) Towards the range limit, the originally continuous 
occupancy gets fragmented. These conclusions are common with many other kinds of gradient 
metapopulation models as well [e.g., Wilson et al. (1996); Zeng and Malanson (2006); see 
Oborny (2018) for a review]. 

To complement these approaches, some range edge models have included fine-scale 
heterogeneity, but without any gradient in the demographic rates (Holt and Keitt 2000; Holt et 
al. 2005). Our RS model and a patch occupancy model introduced by Mustin et al. (2009) 
combine these approaches, as they include a demographic gradient as well as fine-scale 
heterogeneity. In the model of Mustin et al., the primary focus was on the density profile of the 
whole metapopulation, and on the distortion of this profile during a range shift. In the present 
study, there is no range shift, and we investigate the two-dimensional pattern of occupancy. 
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Fig. 1. The environment and the steady-state occupancy in a lattice with L=200. a) The 
environmental gradient in the ES model. b) The same gradient with fine-scale heterogeneity in 
the RS model. Shading indicates the quality of the environment from c=0 (white) to c=1 (black). 
The abundance of bad sites is a=0.5, and their penetrability is w=0.5. (See the definition of a 
and w in the Methods.) c) and d) Snapshots showing the occupancies at time 214 (measured in 
Monte Carlo steps). White/black denote empty/occupied. e) and f) Long-term averages of the 
occupancy, measured after time 214 (see the text for details). Shading shows the occupancies 
from 0 (white) to 1 (black). 

            It has been generally observed in the above-mentioned gradient metapopulation models 
that the range margin consisted of a ‘mainland’ (at the favourable end of the slope) and of 
several ‘islands’ (at the unfavourable one). Real-life range margins have also been observed to 
get fragmented towards the edge (Brown et al. 1996; Zeng and Malanson 2006; Kunin et al. 
2009; Eppinga et al. 2013; Saravia et al. 2018). Milne et al. (1996) separated the connected 
from the fragmented portion of the occupied sites, and delineated the hull of the connected 
patch in a pinyon-juniper woodland in New Mexico. To our knowledge, they were the first 
researchers who proposed the use of percolation theory for analyzing range margins. We 
continued these investigations (Gastner et al. 2009) utilizing that percolation theory suggests 
some universal scaling laws concerning the hull (see these laws in the Methods). Their validity 
was checked in simulated patterns produced by an ES model; and the applicability of the 
method was demonstrated on a satellite image of another pinyon-juniper woodland in New 
Mexico (Gastner et al. 2009). 
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 The present paper focuses on the effect of fine-grained heterogeneity in the 
environment. In the RS model, we place small obstacles onto the slope, and ask the following 
questions. 

1) How does the abundance and penetrability of the obstacles influence the range 
edge? 

2) Are the scaling laws detected in snapshots also applicable in the long run, for 
the averages of occupancies? 

We show that the scaling laws are broadly applicable. Accordingly, we propose that the 
geographic distributions of species should be delineated at the hull in order to monitor range 
shifts reliably. 
 
Methods 

 
A metapopulation model across an environmental gradient 
 The model is based on the so-called contact process (CP), which is a frequently applied 
tool for modelling the occupancy of space by metapopulations [see Oborny et al. (2007) for 
review]. It is typically implemented in regular lattices, in which every lattice cell (site) has z 
neighbours. A site can be empty or occupied. The following transitions occur independently. 
An empty site i can become occupied by colonization from the neighborhood. If ℎ  of the z 

neighbors are occupied, then the rate of occupation is 𝑐 ∙ , where 𝑐  is the local colonization 

rate. Note that the rate of colonization from a donor site to a recipient one is determined in this 
formulation by a parameter (𝑐 ) characteristic of the recipient site. Occupied cells can become 
empty spontaneously with a local extinction rate 𝑒 . 
 In the simplest, homogeneous CP (Harris 1974), the values of c and e are constant, i.e., 
uniform in every site. Time can thus be conveniently rescaled by the average lifetime of 
occupancy in each cell, 1/𝑒. Therefore, the proportion of occupied sites (n) in the steady-state 
depends only on a single parameter, 𝜆 =  . Changing this control parameter, 𝜆, the  
metapopulation undergoes a phase transition from a living to an extinct state at a critical 
threshold 𝜆 , where the correlation length is infinite (Marro et al. 2005).  
In the even slope (ES) contact processes, the demographic parameters change smoothly along 
a spatial axis (x); while they are constant in the perpendicular, y direction (Fig. 1.a). According 

to earlier results with these c(x) and e(x) functions,  𝜆(𝑥) =
( )

( )
  is a good predictor of the local 

density n(x), i.e., it determines n(x) with high accuracy (Oborny et al. 2009). 
 In our ES and RS models, we have a two-dimensional square lattice of size 𝐿 × 𝐿, with 
open boundaries in the x direction and periodic boundary conditions in the y direction. The 
neighborhood of each lattice cell (site) consists of the four adjacent cells (z=4), and represents 
the dispersal kernel of the species. Thus, the spatial unit is defined according to the dispersal 
distance. e is kept constant throughout the lattice. The environmental gradient is implemented 
by changing the colonizaton rate linearly in space as 𝑐(𝑥) = 𝑔𝑥, where 𝑔 denotes the gradient. 
We set 𝑔 = 1/𝐿. Therefore, c(x) always ranges from 1/L to 1.  
 In the RS model, we dilute the lattice by obstacles against spreading. The probability of 
a site being bad (an obstacle) is a, while being good (no obstacle) is 1-a. Good and bad sites are 
uniformly and independently distributed over the lattice. Good sites are colonized as described 
in the ES model: the local colonization rate is determined by the gradient, 𝜁(𝑥, 𝑦) = 𝑐(𝑥). Bad 
sites are colonized with a rate 𝜁(𝑥, 𝑦) = 𝑤 ∙ 𝑐(𝑥), where 0 ≤ 𝑤 ≤ 1. Therefore, the ES model 
is a special case of the RS model, at w=1. In the forthcoming text, we refer to a as the abundance 
and to w as the penetrability of the obstacles. We assume that the spatial configuration of the 
obstacles does not change over the time span of the study. The best examples for such 
permanent, fine scale heterogeneities are microtopographic differences over a terrain, which 
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can cause differences in the availability of water, soil quality, and other environmental 
variables. In statistical physics, this is referred to as quenched disorder. Fig. 1.b shows an 
example for the RS environment. For the dynamics of the contact process in the presence of 
quenched disorder, but without any gradient, we refer the reader to Moreira and Dickman 
(1996).  
 
Numerical simulations 
 We performed numerical simulations and, after the system relaxed to the steady-state, 
we analyzed the occupancy of sites. Figs. 1.c and d present snapshots from the simulations in 
the ES and RS model, respectively. Figs. 1.e and f show long-term averages, produced by the 
state of each site. Using the same simulated environment, we let the metapopulation grow and 
reach a steady-state at time T1. We then take snapshots of the configuration of the system 
periodically, separated by a time interval T2. Let qi,n, denote the state of site i at the nth 
measurement. qi,n=0 if the site is empty, and 1 if the site is occupied. The long-term average 
occupancy in site i is defined as 

 𝑛 =
∑ , ,        Eqn. 1 

where N denotes the number of measurements. In the simulations producing Figs. 1.e and f, the 
following parameter values were used: T1=214 Monte Carlo steps (MCS), T2=211 MCS, and 
N=1000. To study the scaling laws that characterize the hull (see later), we used T1=215 MCS, 
T2=212 MCS, and N=100. We ensured that the relaxation time T1 was sufficient, checking that 
an increase of T1 did not change the measured quantities significantly.     
Note that, in the limit 𝑁 → ∞,  the long-term average occupancies can be interpreted as local 
(site-dependent) occupation probabilities. 
            The study of the scaling laws necessitated to transform 𝑛  into a binary variable. We 
considered the species present in site i, if its long-term occupancy exceeded an arbitrary 
threshold, 𝑛 > 𝑏, and it was considered absent otherwise. The occupancy threshold b was 0.25, 
0.50, or 0.75. Altogether, we analysed three kinds of patterns: 

1) snapshot in the ES (Fig. 1.c), 
2) snapshot in the RS (Fig. 1.d), 
3) and the long-term occupancy in the RS (Fig. 1.f) in a binary version. 

 
Percolation structure of the range margin 
 The above-mentioned spatial patterns can be analyzed in the framework of percolation 
theory. It is a powerful tool for revealing the connectivity structure within a set of sites (Stauffer 
and Aharony 1994); for ecological applications, see Loehle (1996), Milne et al. (1996), Li 
(2001), Oborny et al. (2007), Solé (2011) and the references cited therein. In the present model, 
let us define two occupied sites connected if, and only if, they are neighbours in the lattice (thus, 
we use the same neighbourhood size as in the contact process, although this is not a necessary 
choice). A set of directly or indirectly linked occupied sites makes a percolation cluster. 
Therefore, each percolation cluster is surrounded by unoccupied sites. 
 Traditional percolation models assume homogeneous space (no gradient), in which the 
occupied sites (called ‘open’ sites in the original terminology) are randomly distributed, and do 
not change over time. Let p denote the probability that a site is occupied. Let us consider first 
a finite system: a lattice with size 𝐿 × 𝐿. It is an exciting question whether there exists a pathway 
along which it is possible to walk from one side of the lattice to the opposite side by stepping 
into occupied sites only. A cluster which contains such a pathway is referred to as a spanning 
cluster, and the probability of existence of a spanning cluster is called as percolation probability. 
It has been proven that the number of spanning clusters can only be 0 or 1 in the infinite system 
limit (Stauffer and Aharony 1994). Percolation theory has revealed that in an infinite system, 
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there is a threshold in p at which a spanning cluster emerges; i.e., the percolation probability 
R=0 at 𝑝 < 𝑝 , and R>0 at 𝑝 > 𝑝 , where 𝑝  is the percolation threshold. Numerical simulations 
have estimated the percolation threshold pc = 0.592746 in the two-dimensional square lattice 
with four-cell neighborhood (Stauffer and Aharony 1994).  
 The shape of R(p) is well-known in the vicinity of the threshold, at 𝑝 > 𝑝 . 

)( cppR  ,         Eqn 2. 

where ∝ denotes ‘proportional to’. The scaling exponent 36/5  is universal in the sense that 
it does not depend on the local details of the system, for example, on the lattice geometry or 
neighborhood size. It is fully determined by the dimensionality of the system (D=2 in the 
present case). This and other scaling laws in the vicinity of the threshold [see more in (Stauffer 
and Aharony 1994)] show that the system undergoes a continuous phase transition at the 
threshold. The universal nature of the scaling relations is related to the fact that the characteristic 
size of percolation clusters becomes infinite at the percolation threshold, which make the local 
details irrelevant. Among the universality classes of critical phenomena, this system belongs to 
the so-called isotropic percolation universality class [Bunde (1991); from a biological 
perspective, see Oborny et al. (2007)]. 
 The pattern of occupied and empty sites in the steady state of our model differs from a 
standard percolation pattern in several respects. Let us discuss these differences, and consider 
first the contact process without a gradient. 
 First, the model assumes limited dispersal distance, as it states that colonization from 
an occupied site can only occur to neighboring empty sites. This induces spatial correlations 
between the occupancies of different sites. They are characterized by a correlation length ξ, 
which is finite apart from the critical threshold. Irrespective of the presence of these 
correlations, it is still possible to delineate percolation clusters and observe a phase transition, 
manifested by the appearance of a spanning cluster. Due to the spatial correlations, the threshold 
value of this transition is different from that of standard percolation (Gastner et al. 2009). We 
will return to the role of correlations in detail in the Discussion.  
 Second, our model contains an environmental gradient, which makes the occupancy 
change along x. According to the definition of the model, the average long-term occupancy of 
sites having the same x coordinate is an increasing function of x. In the simulations, we have 
chosen the extinction rate in such a way that the occupancy near the edge x=1 is well below, 
while near the edge x=L is well above the percolation threshold. As a consequence, at some 
coordinate in the interior of the lattice, the occupancy crosses its percolation threshold value. 
 We consider the largest percolation cluster present in the system, which we also refer to 
as the ‘mainland’, while other clusters are referred to as ‘islands’. Similarly, we can define the 
largest cluster of unoccupied sites as the ‘sea’. Due to our choice of the parameters, there are 
some properties in almost all samples in the large system size limit, i.e., the fraction of such 
samples tends rapidly to 1 as 𝐿 → ∞. These properties are the following. i) The mainland is 
present in the x=L edge of the lattice, while absent in the x=1 edge; furthermore, the mainland 
is spanning in the y direction, i.e., it has constituents at all transversal coordinates 𝑦 = 1, … , 𝐿. 
ii) Similarly, the sea is present at 𝑥 = 1, absent at 𝑥 = 𝐿, and is spanning in the y direction. iii) 
The mainland and the sea have a common interface, or, in other words, no more than one 
spanning cluster of occupied sites exists. 
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Fig. 2. Connectivity of the occupied sites. Black: islands, red and green: mainland. Red marks 
the hull. The white sites are unoccupied. Note that white ‘lakes’ can occur even within the 
mainland, and these can also contain islands. The examples are the same as in Fig. 1. a) A 
snapshot in the ES model. b) Long-term average occupancies in the same realization. The 
occupancy thresholds are b=0.25, 0.50, and 2/3 respectively, from the top to the bottom of the 
figure. 
 
The hull 
 Within this complex structure, the hull of the mainland is one of the most remarkable 
objects (Fig. 2.a). It can be defined as the ‘coastline’, i.e., the set of sites which belong to the 
mainland and are adjacent to the sea. In the limit of infinite system size, the hull is unique. In 
the simulations, we always checked whether the mainland and the sea spanned across the lattice 
in the y direction. We used only those realizations in which this condition was satisfied. 
 It has been numerically demonstrated in the ES (Gastner et al. 2009) that the hull is a 
fractal, and has the same fractal dimension, df = 7/4, as the hull of the spanning cluster in a 
similar non-gradient system [i.e., in ordinary percolation (Voss 1984; Saleur and Duplantier 
1987)]. In this paper, we examine this in the RS as well, both in snapshots and in the binary 
patterns obtained from the long-term average occupancies (see above). We refer to the first as 
the snapshot hull, and to the second as the long-term hull. 
 In the simulated patterns, the mainland is determined by the Hoshen-Kopelman 
algorithm, and its hull is delineated by the left-turning biased walk method (Gastner et al. 2009). 
This method searches for the outermost path on the mainland, which is a sequence of sites 
visited by a left-turning biased walk. Due to the periodic boundary condition in the y direction, 
the path is closed, i.e. the walk returns to the starting position. 
 The length of the hull (u) is defined as the number of steps in the walk. The width 𝑣 of 
the hull is defined as the standard deviation of the x coordinates of the sites constituting the hull 

[as in Gastner et al. (2009)]: 𝑣 = ∑ (𝑥 − �̅� ) , where �̅� = ∑ 𝑥  . In the numerical 

simulations, we calculated the average u and 𝑣 over many independent random samples. In the 
case of the snapshot hull, the number of samples was 1000 for each size, except for the largest 
sizes, L=1024 and 2048, where it was 100 and 10, respectively. For the long-term hull, it was 
100 for each size, except for L=2048, where it was 10. We investigate the dependence of the 
length (u) and width (v) of the hull on the environmental gradient g. The fractal dimension of 
the hull is estimated by the equipaced polygon method (Batty and Longley 1994; Gastner et al. 
2009). For each hull, i.e. sequence of sites, we calculate the mean Euclidean distance 𝑑(𝑘) 
between all pairs of sites separated by k steps in the sequence. The fractal dimension, df, can be 
then determined from the following scaling relation, 
 𝑑(𝑘)~𝑘 / .         Eqn. 3 
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Results 
 
 The simulations show that the hull is a fractal in a broad range of k. This is the range 
within which a straight line can be fitted to the datapoints in Fig. 3 (according to Eqn. 3). The 
fractal dimension is df=7/4 in every case. 
 

 
Fig. 3. Estimation of the fractal dimension of the hull (according to Eqn 3) in the RS model. 
The simulations differ in the duration of the observation (snapshot versus long-term, 
abbreviated as sn versus lt), and in the system size (L). The legends in panel a) apply for all 
panels. The abundance (a) and penetrability (w) of the bad sites are indicated in the upper left 
corner. The occupancy threshold in the lt simulations is b=0.5. The straight line has a slope 
4/7, which corresponds to a fractal dimension 7/4. 
 
 
 The most notable result is that fine-grained heterogeneity did not influence the fractal 
dimension: it was 7/4 both in the ES (Gastner et al. 2009) and in the RS (Fig. 3), in spite of the 
fact that it did influence the mean position and width of the hull (compare Figs. 1.c and d). 
Varying the abundance (a) and penetrability (w) of the obstacles within the RS did not influence 
the fractal dimension either (compare Figs. 3.a-c). We varied a and w arbitrarily in rather broad 
ranges. In each case, the extinction rate was set so that the mean coordinate x of the hull is 
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roughly in the middle of the lattice. With this choice, the survival of the population up to the 
end of the simulation was practically sure. Fig. 3.a was obtained in an environment in which 
the obstacles were sparse (a=0.25), and unpenetrable (w=0). Conversely, the habitat in Fig. 3.c 
contained a high number of penetrable obstacles (a=0.75, w=0.25). Fig. 3.b is intermediate. In 
spite of the great differences in the habitats, df=7/4 was general. 
 The same fractal dimension was observable not only in the snapshot hulls (sn), but also 
in the long-term averages (lt). According to this result, averaging did not create a more round-
shaped hull, only decreased the width of the hull (see later), preserving its fractal structure. 
Furthermore, the fractal dimension did not change when we varied the occupancy threshold (b) 
at the delineation of the lt hull (Fig. 4), in spite of the fact that the hull shifted along the gradient, 
and its width also changed (Fig. 2.b). 
 
 

 
Fig. 4. Estimation of the fractal dimension of the hull by the same method as in Fig. 3. The 
curves show long-term averages in the RS model at a system size L=1024. They differ in the 
arbitrary threshold value (b) which separates the occupied vs. unoccupied state. The straight 
line has a slope 4/7, which corresponds to a fractal dimension 7/4. 
 
 The data plotted in Figs. 3 and 4 deviate from the straight lines at low and high k because 
of finite size effects. At low k, the deviation is caused by the finite size of the lattice cells, due 
to which the spatial resolution cannot be infinitely fine, as should be in an ideal fractal. At high 
values of k, on the other hand, the deviation is caused by the environmental gradient, which 
confines the hull within a zone of width 𝑣 in the x direction. This width is determined by the 
condition that, at the edges of this zone, the characteristic linear size of islands or empty patches 
is comparable with the distance to the average position of the hull. 
This yields a scaling law of the width in terms of the gradient (see Equation 5 below), in which 
the scaling exponent φ=4/7 can be expressed by the spatial correlation length’s exponent of 
ordinary (homogeneous) percolation, 𝜈 =4/3, via the general relationship φ =𝜈 /(1 + 𝜈 ) 
(Sapoval et al. 1985). The width 𝑣 thus increases sublinearly with L (see Equation 5 below); 
therefore, in large systems it remains much smaller than the system size. The curve  𝑑(𝑘) starts 
to deviate from the power law at the value of k at which  𝑑(𝑘) becomes comparable with 𝑣.  
Well beyond this value of k, the hull appears as a one-dimensional object; thus, the slope of the 
curve gradually changes from 4/7 to 1. The range of k within which the hull can be considered 
a fractal is wider in larger systems. This is illustrated in Fig. 3 at system sizes L=128, 256, 512, 
1024, and 2048. 
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 The scaling law concerning the fractal dimension (Eqn 3) is not the only one that can 
be expected. On the basis of theoretical considerations (Gastner et al. 2009), the length (u) and 
width (v) of the hull should also obey characteristic scaling laws, 
 𝑢(𝑔) ∝ 𝑔 ,        Eqn 4 
 𝑣(𝑔) ∝ 𝑔 ,         Eqn 5 
where g is the environmental gradient. ω and φ are universal exponents. Their values for the 
two-dimensional gradient percolation are ω=3/7 and φ=4/7. The validity of these scaling laws 
has been confirmed by numerical simulations for the contact process in ES environments 
(Gastner et al. 2009). Our present study is the first to demonstrate the validity of these laws in 
RS environments as well (Fig. 5). It is remarkable that the exponents remain the same in 
different environments, varying the abundance (a) and penetrability (w) of the obstacles in the 
RS. 
 

 
Fig. 5. Dependence of the a) length and b) width of the hull on the environmental gradient g in 
the RS model. The slopes of the straight lines are a) 4/7 and b) 3/7, according to the scaling 
laws expressed by Eqns 4 and 5, respectively. The size of the lattice in the y direction was 
Ly=4096 in every case, while the size in the x direction varied with g, according to Lx=1/g. 
 
 
Discussion 
 
 In this work, we considered a metapopulation model on a two-dimensional lattice, in 
the presence of an environmental gradient and fine-scale heterogeneities. We partitioned the 
range margin into a connected and a fragmented part. According to our numerical results, the 
hull of the connected part (i.e., of the ‘mainland’) is a fractal, and has the same fractal dimension 
(7/4) as the traditional percolation hull under a broad variety of conditions. The fractal 
dimension, as well as the exponents characterizing the scaling of the width and the length of 
the hull were found to be universal irrespective of 

 the presence vs. absence of fine-grained obstacles (RS vs. ES), 
 the abundance of the obstacles (a), 
 penetrability of the obstacles (w), 
 the duration of the observation (snapshot vs. long-term), 
 and, in case of long-term observations, the threshold above which we considered 

a site occupied (b).  
The question arises how to explain this generality of the fractal dimension of the hull. The 
explanation is based on percolation theory. df=7/4 has been found in ordinary site percolation 
(Voss 1984; Saleur and Duplantier 1987; Stauffer and Aharony 1994), and in gradient 
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percolation (Sapoval et al. 1985; Gastner et al. 2009). Nevertheless, df=7/4 in the ES and RS 
models is not self-evident. 
 In the ordinary and gradient percolation models, the states of the sites are uncorrelated. 
In contrast, in the ES and RS models they are correlated, since colonizations do not occur 
uniformly on arbitrary sites, but only on neighboring sites. Thus, the contact process produces 
a clumped pattern (Figs. 1.c and d). Let us define the correlation length ξ as the characteristic 
distance beyond which the occupancies can be considered statistically independent. As λ 
changes in the x direction, ξ also changes (Oborny et al. 2009). It is well known that in the 
gradient free contact process (𝑔 = 0) there is a sharp extinction threshold (𝜆 ) at which the 
population becomes extinct in the infinite system. Furthermore, approaching this threshold, the 
correlation length ξ increases to infinity [see Marro et al. (2005); Henkel et al. (2008); Ódor 
(2008)].  In the gradient contact process (𝑔 > 0) let us refer to the coordinate 𝑥  where 𝜆(𝑥 ) =
𝜆  as the extinction limit. As x approaches the extinction limit, the local correlation length ξ 
thus increases. Why does this correlation not alter the percolation transition, i.e., why can we 
observe its characteristic exponents at the hull? The reason is that the hull is at higher x values 
than the extinction limit, within the densely populated region (Fig. 2.a). Here, the correlation 
length is finite. At a length scale > ξ, the occupancies can be considered uncorrelated, and thus 
the scaling laws known from standard percolation models apply. 
 This conclusion can also be illuminated by the following argument, which is standard 
in the statistical physics of phase transitions. Let us assume that a coarse-graining of the system 
is performed by dividing the lattice into cells of linear size ξ, and, in the case of the map of 
long-term occupancies, an averaging within each cell is performed; while, in the case of a 
snapshot, a majority rule is applied to obtain discrete (0/1) occupancies of the cells. In this way, 
one obtains a coarse-grained system with practically uncorrelated occupancies of the cells. 
Thus, applying a further discretization on the map of long-term occupancies after coarse-
graining, the resulting state does not essentially differ from that of the traditional gradient 
percolation model. As a consequence, the properties of the hull, when viewed on scales well 
beyond ξ, must be the same as those of the gradient percolation hull. Thus, the exponents 
appearing in the various power-laws are expected to be unaltered, and the details of the spatial 
pattern within the scale ξ affect, at most, the prefactors in the power laws. 
 The scaling laws found in this work are valid in the limit 𝑔 → 0, which is equivalent to  
𝐿 → ∞, owing to the relation g=1/L in our model. For small system sizes, corrections may be 
needed to the scaling laws, because the extinction limit may get so close to the percolation limit 
that the hull’s shape gets distorted; therefore, a deviation from the asymptotic value of the 
exponent df=7/4 can be expected. Fig. 3 demonstrates, however, that this kind of finite-size 
effect is negligible even in rather small systems, at L=128. The datapoints fitted well to the 
straight line, indicating df=7/4 in a considerable range of k. 
           Let us discuss the validity of the results for other possible implementations of the 
environmental gradient. Throughout the paper, we used a constant extinction rate and a linearly 
varying colonization rate, 𝑐(𝑥) = 𝑔𝑥, so that the control parameter, 𝜆(𝑥) =c(x)/e, varies 
strictly linearly in the whole range of 𝑥. We could, however, have equally well chosen a 
constant colonization rate, 𝑐, and a constant gradient in 𝑒, with 𝑒(𝑥) = 𝑔𝑥. In that case, 
although the control parameter 𝜆(𝑥) =c/e(x) is not a linear function of  𝑥, it can still be 
expanded in a Taylor series around the average position of the hull, 𝑥 , as 𝜆(𝑥) = 𝜆(𝑥 ) −
[ ( )]

(𝑥 − 𝑥 ) + 𝑂([𝑔(𝑥 − 𝑥 )] ) . For a small gradient, the higher order terms are 

negligible near the linear one, and we arrive at the same linear dependence as in the previous 
case. The fractal properties of the hull are therefore expected to be universal also with respect 
to the particular implementation of the gradient (see also Gastner et al. 2012).  
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 There are further noteworthy parameters, which influence the average position and 
width of the hull, and thus, influence whether it reaches to the extinction limit. First of all, the 
step length (s) at the delineation of the clusters is an arbitrary choice. The larger is s, the closer 
the hull gets to the extinction limit. Secondly, in the study of long-term averages, the choice of 
b can also influence the position and width of the hull (Fig. 2.b). Choosing a larger b increases 
the chance that the hull is not distorted. 
 It is interesting to consider that the fractal structure of the hull remains invariant in spite 
of shifting it along x by varying s (Gastner et al. 2009) or b (in the present study). This indicates 
the existence of a considerable fractal zone within the range margin. The existence of this zone 
gives some freedom in choosing the parameter values at the detection of the hull. This is 
particularly useful when analyzing real-life data. A typical example is analyzing a satellite 
image which shows the occupancy of space by a species or vegetation type along a gradient 
[e.g., Milne et al. (1996); Gastner et al. (2009); Saravia et al. (2018)]. The first step is to mark 
out the largest percolation cluster using a given neighborhood size s. The next one is to delineate 
the hull with the same s. The value of s is a matter of choice within reasonable limits, so that 
the hull should be within the margin, but sufficiently far from the extinction limit to avoid 
distortion. It is worth checking whether this fractal dimension is 7/4. Obtaining 7/4 confirms 
that the hull has been identified correctly, and there is no hidden environmental factor in the 
background which would invalidate our assumptions about the system, e.g., a sudden change 
in the environmental conditions instead of a gradient. It should be noted, however, that we have 
tested various density profiles at the hull, including cases in which the probability of occupation 
changed according to a step function, and these did not change the fractal dimension 7/4 
(Gastner and Oborny 2012). 
 After checking the fractal dimension, we propose to mark the mean position of the hull 
along x as the actual range edge. On those terrains in which the direction of the gradient is 
changing, we suggest estimating the mean in a sliding window. Theoretical considerations 
suggest that delineating the hull, i.e., the ‘connectivity limit’, is statistically more reliable that 
delineating the extinction limit (Oborny 2018). Therefore, we propose focusing on the hull 
when monitoring range shifts. The universal nature of the scaling relations at the hull, revealed 
by theoretical models, suggests that range shifts in different geographic regions, even in 
different species can be compared directly, as the fine-scale details of the pattern-generating 
processes become irrelevant at the hull, and produce the same fractal structure. Our present 
results broaden the scope of the applicability of the method to RS environments. 
 
Outlook 
 
 Species range edges can be influenced by other species, for example, by competitors. 
This underlines the utility of delineating the range edge at the hull, where the species occurs in 
relatively high density: the population's dynamics is probably less disturbed by external 
influences at the hull than at the extinction edge. In general, the study of multi-species edges 
with positive and negative feedback loops (including those which act through modifying the 
environment) is an important matter for future research.  
 A considerable value of percolation-based approaches is that they deepen our 
understanding of connectivity within the range of a species, which is a key to many ecological 
and evolutionary processes. For example, connectivity can affect gene flow; and thus, can 
influence the pace and direction of microevolution (Geber 2008; Kunin et al. 2009; Kubisch et 
al. 2014). Low connectivity, and thus, limited gene flow along an environmental gradient may 
be beneficial or detrimental for the survival of a (meta)population, depending on the species 
and key environmental factors. On the positive side, low connectivity can facilitate local 
adaptation (Kubisch et al. 2014). Thus, it can increase genetic diversity on a broad, geographic 
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scale (Gaston 2009; Kunin et al. 2009). On the negative side, it may lead to the loss of diversity 
on the local scale, especially within small islands of occurrence (Gaston 2009; Kunin et al. 
2009). Low gene flow may also prevent the spreading of those mutations which arise further 
away from their optimum place along the gradient (Turner and Wong 2010). These factors 
become particularly important when the climate is changing. In this case, survival of a species 
at its range margin may hinge on its ability to colonize new locations, and to adapt to the 
environment locally (Brown et al. 1996; Geber 2008; Kubisch et al. 2014). Thus, the study of 
range margins in terms of connectivity can provide important pieces of information about the 
responses of species to climate change. 
 Connectivity of the occupied sites determines not only the flow of genes, but more 
generally, the flow of material and energy. For example, the connected vs. fragmented 
occurrence of shrubs in a shrubland or of trees in a woodland can significantly influence the 
evaporation and diffusion of water (Vincenot et al. 2016; Meron 2016; Ilstedt et al. 2016), and 
the spreading of pathogens (Orozco-Fuentes et al. 2019) and of fire (Abades et al. 2014). The 
density of trees has been shown to influence the access to food of the chipmunk Eutamias 
umbrinus against it more aggressive competior, Eutamias dorsalis, as E. umbrinus can use the 
trees as shelters (Brown 1971). Connectivity in a population of an insect-pollinated plant can 
significantly influence the pollinator’s foraging behavior (Bernhardt et al. 2008). When 
connectivity changes along an environmental gradient, these behaviors can also be 
hypothesized to change. 
 It is particularly interesting to consider the pattern of occupied sites from the aspect of 
another species which uses the present species as a habitat [see, for example, a review by 
Saravia et al. (2018) about global forest fragmentation]; or, conversely, requires unoccupied 
sites for spreading (Solé et al. 2005). Habitat connectivity is one of the central topics in 
landscape ecology (Gardner et al. 1987; With et al. 1997; Fahrig 2003; Oborny et al. 2007; Solé 
2011). The focus is primarily on those cases in which the patch pattern is caused by abiotic 
factors (e.g. topography, hydrology) or by human activities (land use). The present study 
highlights the importance of studying connectivity in those cases in which the patch pattern is 
generated (at least partly) biotically, through metapopulation dynamics. In our ES, 
metapopulation dynamics was the only pattern-generating factor (modelled by a contact 
process). The RS was a mixed case, as metapopulation dynamics met a pre-existing pattern of 
good and bad sites. In both cases, the mainland-island structure emerged spontaneously. This 
pattern was dynamically changing, i.e., islands could merge with the mainland, and new islands 
were born by splitting. The study of these dynamically changing patterns is an exciting 
challenge for landscape ecology [c.f. Kun et al. (2019)]. 
 In conclusion, the hull is a demarcation line between the core and periphery of a 
metapopulation in terms of connectivity. It has a robust fractal structure, which is insensitive to 
the details of delineation. We suggest marking the edge of a species’ range at the mean position 
of the hull. This allows for detecting range shifts. The universal features of the hull make it 
possible to compare different species and/or geographic locations, even if the limiting factors 
are different. Several papers have called for a unified theoretical view of range margins [e.g., 
Brown et al. (1996); Maurer and Taper (2002); Holt and Keitt (2005); Antonovics et al. (2006); 
Gaston (2009); Kubisch et al. (2014)]. We believe that utilizing the universalities that emerge 
at critical phase transitions, independently of the details of the system, is an important step in 
this direction. 
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