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9 A note about online nonrepetitive coloring k-trees
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Abstract

We prove that it is always possible to color online nonrepetitively any (partial)
k-tree (that is, graphs with tree-width at most k) with 4k colors. This implies that it
is always possible to color online nonrepetitively cycles, trees and series-parallel graphs
with 16 colors. Our results generalize the respective (offline) nonrepetitive coloring
results.

1 Introduction

A sequence x1...x2l is a repetition if xi = xk+i holds for all 1 ≤ i ≤ l. A sequence is
nonrepetitive if it does not contain a string of consecutive entries forming a repetition. In
1906, Thue [9] found an infinite nonrepetitive sequence using only three symbols.

Alon, Grytzuk, Ha luszczak, Riordan [1] generalized the notion of nonrepetitiveness to
graphs: a coloring c of a graph G is nonrepetitive if there is no path v1, ..., v2l in G such
that the string c(v1), ..., c(v2l) is a repetition. The Thue-coloring number of a graph G is the
least integer π(G) such that there exists a nonrepetitive coloring c of G with c : V (G) →
{1, 2, ..., π(G)}. With this notation Thue’s result says π(P∞) = 3 (the fact that 2 colors are
not enough can be easily seen even for a path of length 4). A survey and a nice introduction
to the topic is [5].

In this paper we investigate an online variant of Thue’s theorem, where in each step we
get a new vertex v together with some edges that connect v to previous vertices. Deletion
of any edge is also allowed in any step, as anyway this just makes easier to color. We have
to color the new vertex such that the coloring of the new graph remains nonrepetitive. Note

∗Alfréd Rényi Institute of Mathematics and MTA-ELTE Lendület Combinatorial Geometry Research
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that we color a vertex immediately when it is coming and no recoloring of previous vertices
is allowed.

We now define this coloring scheme formally. At the beginning we start with some
graph G0 (it is the empty graph if not defined otherwise) and in each step t, we get a
new vertex vt and Dt, a set of edges connecting vt to some previous vertices vi, i < t and
Ct ⊂ E(Gt−1), a set of edges in the previous graph, and we set V (Gt) = V (G) ∪ {vt} and
E(Gt) = E(G) ∪ Dt \ Ct. In this step we have to color vt such that Gt is nonrepetitively
colored. If under some restriction R on Dt and Ct we can continue this nonrepetitive coloring
process until we reach the final graph Gn (n = ∞ is allowed), irrespective of what exactly
the Dt’s are, we say that we can color nonrepetitively online any graph that can be generated
according to R.

We list some natural graph classes with the corresponding restriction on Dt and Ct (G0

is always the graph with a single vertex if not stated otherwise):

Definition 1.1. Online left-to-right path: all time Gt−1 is a path and in a step we append
a vertex at the same end of this path (Dt = vtvt−1 and Ct = ∅).

Online path: all time Gt−1 is a path and in a step we either append a vertex at one end
of this path or we subdivide an edge by adding the new vertex connecting two consecutive
vertices on the path and deleting the edge between these two points.

Online tree: all time Gt−1 is a tree and in a step we either connect the new vertex to one
of the vertices, or we subdivide an edge by adding the new vertex connecting two consecutive
vertices of the tree and deleting the edge between these two points.

Online cycle: G0 is a triangle, all time Gt−1 is a cycle and in a step we subdivide an edge
by adding the new vertex connecting two consecutive vertices on the cycle and deleting the
edge between these two points.

Online series-parallel graph: all time Gt−1 is a series-parallel graph and in a step we
either connect the new vertex to one of the vertices, or we subdivide an edge by adding the
new vertex connecting two adjacent vertices of the graph and deleting the edge between these
two points, or we just add the new vertex connecting two adjacent vertices of the graph.

Online partial k-tree: all time Gt−1 is a partial k-tree and in a step we connect the new
vertex to a clique of size at most k and delete some edges from Gt−1.

Online k-tree: G0 is a complete graph on k + 1 vertices, all time Gt−1 is a k-tree and in
a step we connect the new vertex to a clique of size k.

Note that the left-to-right online version is uninteresting as an infinite (offline) Thue-
coloring gives a coloring with 3 colors in this setting too. However, the list-coloring version
is non-trivial already of this most simple online graph, as we will see in the last section,
where we extend our scope to online nonrepetitive list-colorings.

Online paths are a natural class, they can be imagined also as points on a line and in
each step a new point is placed somewhere on the line. We need that at all times all intervals
are non-repetitively colored. Many other types of colorings are investigated for this online
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set of points, see, eg., the intriguing problem about online conflict-free coloring points on
the line [2].

Finishing the introduction, to put our online model in context, we briefly mention other
online models that gained attention in recent years related to various colorings. Our online
model, where vertices arrive one-by-one is probably regarded most widely, there are many
results for various colorings and for hypergraphs as well. In the semi-online model a vertex
does not need to be colored immediately. In the dynamic (also called quasi-online) model
we know in advance the whole sequence of vertices and edges that will arrive while we
still require that in each step the coloring has some required property. Finally, the online
choosability (also called paintability) model is an online variant of list-coloring, where the
whole graph is given in advance and the lists of the colors are arriving one-by-one: in each
step for the next color a subset is given which can receive this color and one has to color an
independent subset of this subset with this color.

1.1 Our results

Theorem 1.2. Using 4k colors we can color online nonrepetitively any k-tree.

Coloring nonrepetitively a subgraph G′ of a graph G always requires a subset of the
conditions compared to nonrepetitively coloring the original graph G. In particular, for
partial k-trees we can always suppose that Ct = ∅, i.e., we do not delete edges, and also we can
suppose that |Dt| = min(k, |Vt−1|), i.e., we always connect vt to exactly k previous vertices
or to all previous vertices if there are less vertices. Thus to color online nonrepetitively
partial k-trees it is enough to color online nonrepetitively (non-partial) k-trees. We note
that (offline) partial k-trees are exactly the graphs that have tree-width bounded by k.

Corollary 1.3. Using 4k colors we can color online nonrepetitively any partial k-tree.

This strengthens the result of Kündgen and Pelsmajer [8], who showed that graphs
that have tree-width bounded by k, that is, partial k-trees, are (offline) nonrepetitively
4k-colorable. The proof of our result is based on this offline result.

It is easy to see that online trees, cycles and series-parallel graphs are online partial
2-trees and thus it follows that:

Corollary 1.4. Using 16 colors we can color online nonrepetitively any tree, any cycle and
any series-parallel graph.

For paths the upper bound can be slightly improved by examining the proof more care-
fully.

Theorem 1.5. Using 12 colors we can color online nonrepetitively any path.
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We note that after solving Theorem 1.5 it came to our knowledge that it was proved
simultaneously and independently by Grytczuk et al. [6] using the same methods. They
also proved by a simple argument that 5 is a lower bound. We include the short proof of
Theorem 1.5 for the sake of completeness and because it raises some open problems which
we want to highlight.

In the next section we prove these theorems and in the last section we propose the
investigation of the list-coloring version of these problems and prove some preliminary results.

2 Online nonrepetitive colorings

We first prove Theorem 1.2 which guarantees a nonrepetitive online coloring of k-trees using
4k colors, then we prove Theorem 1.5 that improves the needed number of colors from 16 to
12 in the special case of online coloring paths.

Proof of Theorem 1.2. During the proof we consider the (online built) graphs Gt with their
vertices numbered according to the online process as v1, v2 . . . , that is V (Gt) = {v1, v2 . . . vt}.

We first define an (infinite) universal graph U , which is a k-tree, and for any Gt that
can be built online (i.e., there exists a sequence of graphs G0 ⊂ G1 ⊂ . . . Gt that follows
the restriction of being an online k-tree), we give an injection injGt

from the underlying
numbered vertices v1, v2, . . . vt to the vertices of U such that the image of Gt is a subgraph of
U . These injections will be incremental, i.e. if Gt is an extension of Gt−1 following the rules
of building an online k-tree, then injGt

is an extension of injGt−1
, i.e. these two injections

coincide on the first t− 1 vertices. Thus, if for two graphs G and G′ the induced subgraphs
on their first t0 vertices are (numbered) isomorphic, then these first t0 vertices are embedded
into U by injG and injG′ in the same way.

Assume we have shown such a universal graph U that it is also a k-tree. As U is
infinite, by this we mean that it is a union of an infinite sequence of increasing k-trees
U1 ⊂ U2 ⊂ · · · = U , where in U the vertices of Ui induce the graph Ui. Now Kündgen
and Pelsmajer [8] showed that graphs that have tree-width bounded by k, thus in particular
k-trees, are nonrepetitively 4k-colorable. Thus every Ui is non-repetitively 4k-colorable.
Using König’s Lemma, the classical result about infinite sequences, we can deduce that U is
nonrepetitively 4k-colorable as well. By that we mean a coloring for which every finite path
in U is nonrepetitively colored. Let us regard this coloring as a function c on the vertices of
U .

The coloring process is the following. We maintain that at any time t, every vertex vi
(i ≤ t) of Gt is colored to c′(vi) = c(injGt

(vi)). Suppose that we colored G1, . . .Gt−1 and
then we get the new vertex and the new edges incident to it, together with Gt−1 they form
Gt. Now by definition of U and inj, the embedding of Gt extends the embedding of Gt−1,
thus we can color the new vertex vt to c′(vt) = c(injGt

(vt)) and it remains true that every
vertex vi(i ≤ t) of Gt is colored to c′(vi) = c(injGt

(vi)).
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As the coloring c on U is an offline nonrepetitive coloring, c is a nonrepetitive coloring
also on any subgraph of U . In particular, during the coloring process at any time it is a
nonrepetitive coloring of injGt

(Gt). As injGt
injects Gt into U as a subgraph of U , the

coloring c′ of Gt is also a nonrepetitive coloring of Gt.
Now we only need to construct U as a sequence of graphs U1 ⊂ U2 ⊂ · · · = U . This is

done by choosing U1 = Kk+1, the complete graph on k + 1 vertices, and then Ui is defined
recursively by adding a new vertex v for each k-clique of Ui−1 and connecting v to the
vertices of the clique. In words, in each step we extend Ui−1 in all possible ways that the
online construction of k-trees allows. It is easy to see that there is a natural embedding of
all Gt to some Us, s ≤ t, which gives an injection for all Gt into U , so that it is naturally
incremental in the needed way. As we start with U1 being a k-tree and extending Ui−1 to Ui

is just a sequence of operations where we add a new vertex v for a k-clique and connect it
to the vertices of the clique, all the Ui’s are k-trees by induction, just like we needed.

Proof of Theorem 1.5. We build a universal graph O similarly as in the previous proof. O1

is a two-vertex graph with an edge. For i ≥ 0, the graph Oi+1 is obtained from Oi by adding
some vertices and edges. So Oi is a subgraph of Oi+1. The edges of Oi are called old edges of
Oi+1 and edges in E(Oi+1)−E(Oi) are called new edges. The set of new edges of Oi+1 forms
a path. The two end vertices of the path formed by new edges are called the end vertices
of Oi+1. Initially, the only edge of O1 is a new edge. Assume Oi is given. To construct
Oi+1, for each new edge e of Oi, we add a vertex ve and connect ve to the two end-vertices
of e. Also, we append a vertex to each of the two end vertices of Oi. It is easy to see that
we maintained that the pending edges form a path. In words, Oi+1 is obtained from Oi by
adding a vertex in all possible ways that is allowed by the restriction of an online path, but
we proceed only on new edges of Oi.

Observe that Oi is an outerplanar graph (see Figure 1(a)) and also it is easy to see that
O is indeed a universal graph of online paths. The proof of this is left to the reader, defining
the injections is similar to the previous proof. The main difference from the previous proof
is that in the online process now edges may be deleted as well, thus Gt−1 is not always a
subgraph of Gt, nevertheless Gt is always a subgraph of O. For an example of embedding an
online path see Figure 1(b). It was proved in [8] that for any outerplanar graph there exists
a nonrepetitive 12-coloring, thus every Oi also admits a nonrepetitive 12-coloring, which in
turn again using König’s Lemma implies that O admits a nonrepetitive 12-coloring which
finally implies that paths are online nonrepetitively 12-colorable.

In the above proof we do not need the full strength of the result of [8] about outerplanar
graphs, in fact we just need that only some specific (on the figures the vertically monotone
paths) need to be nonrepetitively colored, which may be useful for possible improvements
on the needed number of colors. To make this statement exact, we generalize nonrepetitive
colorings to directed trees and more generally to directed graphs (which seems to be an
interesting notion in its own right).
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Figure 1: (a) A drawing of a part of O5 and (b) injection of an online path on 9 vertices to
O

Definition 2.1. A vertical path in a rooted tree T is a simple path whose first vertex is a
descendant of the last or vice versa. A coloring of a rooted tree T is vertically-nonrepetitive
if there is no repetitive sequence among color sequences of vertical paths in T .

This definition was implicitly present in the literature. In the next section we show a
result about such coloring of trees. We generalize this further to general directed graphs.

Definition 2.2. A coloring of a directed graph G is directed-nonrepetitive if there is no
repetitive sequence among color sequences of directed paths in T .

Note that given a non-directed graph H if we direct all its edges in both directions, then
the new directed graph G is directed-nonrepetitively colored if and only if under the same
coloring H is nonrepetitively colored. Thus this notion generalizes to directed graphs the
original notion of nonrepetitive colorings (of undirected graphs).

Definition 2.3. A coloring of a planar graph O embedded in the plane with no horizontal
edges is vertically-nonrepetitive if after directing the edges from top to bottom, this directed
graph G is directed-nonrepetitive.

During the rest of this section by a graph we always mean an outerplanar graph together
with its embedding.

Problem 2.4. What is the minimal constant sp such that for any embedded planar graph G

there exists a vertically-nonrepetitive coloring of G using sp colors? What is the minimal con-
stant so such that for any embedded outerplanar graph G there exists a vertically-nonrepetitive
coloring of G using so colors?
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By the result of [8] so is at most 12 as there exists a 12-coloring such that there are no
repetitive paths at all (and thus there are no vertical repetitive paths). Furthermore, by the
very recent result of [3] sp is at most 768 as there exists a 768-coloring such that there are
no repetitive paths at all.

In the next problem by O we mean the same universal graph for online paths defined in
the proof of Theorem 1.5, embedded in the way suggested by Figure 1(a).

Problem 2.5. What is the minimal constant s′o such that there exists a vertically-nonrepetitive
coloring of O using s′o colors?

Again, s′o is at most 12 by the result about outerplanar graphs. As we claimed before,
there is a strong connection to the online path coloring problem. Namely, if s′o is a solution
to Problem 2.5 then Theorem 1.5 holds even in the case if we change 12 to s′o. To see this,
one only has to check that any embedding of Gt is a vertical path in O if it is embedded in
the way suggested by Figure 1(b).

3 Online list-colorings

The definition of online coloring paths, k-trees and other graph classes generalizes in a
natural way to list-colorings. The list-coloring version seems to be much harder, as already
the innocent-looking problem of coloring online nonrepetitively a left-to-right path is non-
trivial. Yet, this case is implied by previous research, as we shall see now.

Indeed, from [7] it follows that lists of size 4 are enough for such a left-to-right online
list-coloring. Their result which we need is about vertically-nonrepetitive list-colorings of
trees (in fact they prove a more general lemma):

Lemma 3.1 (Kozik and Micek [7]). For any rooted tree T and any list assignment with lists
of size 4 there exists a vertically-nonrepetitive list-coloring of T .

We note that without the restriction that we consider only vertical paths, there is no such
constant. Indeed, by the result of Fiorenzi, Ochem, Ossona de Mendez and Zhu [4] for any
l there exists a tree which needs lists of size l to guarantee the existence of a nonrepetitive
list-coloring.

Lemma 3.1 implies the online result by applying it to the (infinite) rooted tree of all
possible list assignments. We omit the details of this otherwise straightforward proof, just
note that what is needed is that in any step t depending on the previous lists there is only
a finite number of practically different possible lists Lt:

Corollary 3.2. If all the lists of vertices have size at least 4, then a left-to-right path is
online nonrepetitively list-colorable.

For the other online graph classes we investigated in the previous section, it is unknown
if such a constant exists.
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Problem 3.3. Is there some constant c such that if all the lists have size at least c then
there is an online list-coloring algorithm for paths?

Is there some constant c(k) such that if all the lists have size at least c(k) then there is
an online list-coloring algorithm for (partial) k-trees?
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