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ABSTRACT

The Hercules–Corona Borealis Great Wall is a statistically significant clustering
of gamma-ray bursts around redshift 2. Motivated by recent theoretical results indi-
cating that a maximal Universal structure size may indeed coincide with its estimated
size (2−3 Gpc), we reexamine the question of this Great Wall’s existence from both
observational and theoretical perspectives. Our statistical analyses confirm the clus-
tering’s presence in the most reliable data set currently available, and we present a
video showing what this data set looks like in 3D. Cosmological explanations (i.e.
having to do with the distribution of gravitating matter) and astrophysical explana-
tions (i.e. having to do with the rate of star formation over cosmic time and space)
regarding the origin of such a structure are presented and briefly discussed and the
role of observational bias is also discussed at length. This, together with the scientific
importance of using gamma-ray bursts as unique cosmological probes, emphasises the
need for future missions such as the THESEUS satellite which will provide us with
unprecedentedly homogeneous data of gamma-ray bursts with measured redshifts. We
conclude from all this that the Hercules–Corona Borealis Great Wall may indeed be
the largest structure in the Universe – but to be able to decide conclusively whether
it actually exists, we need THESEUS.

Key words: gamma-ray burst: general – gamma-rays: general – methods: data anal-
ysis – methods: statistical – Cosmology: large-scale structure of Universe – Cosmology:
observations

1 INTRODUCTION

The largest observed structure in the Universe so far re-
ported was inferred from a clustering of gamma-ray bursts
(GRBs). This clustering, called the Hercules–Corona Bore-
alis Great Wall (Horváth et al. 2014, 2015), is characterised
by an anisotropy in the GRB angular distribution at a red-
shift (z) of around 2, and is found by statistical analyses
of the GRB angular locations and assumed radial distances.

? E-mail: horvath.istvan@uni-nke.hu

The clustering’s celestial position corresponds to the constel-
lations of Hercules and Corona Borealis, hence the name.

Although the clustering’s initial discovery (Horváth
et al. 2014) was supported by subsequent observations
(Horváth et al. 2015), the physical nature of the structure
is still unknown. Because of this, it is important to continue
verifying the cluster’s existence as the GRB database grows.
In this paper we examine this question further by analysing
an even larger, yet reliable data set. Our motivation to do
so comes from the recent theoretical results of Canay &
Eingorn (2020), who find that the screening length λ above
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2 I. Horváth et al.

which large-scale structure formation is suppressed do actu-
ally coincide with the size of the Hercules–Corona Borealis
Great Wall (2.6 Gpc). However, for a complete picture alter-
native explanations should also be discussed, including the
possibility of this structure being an observational artefact
(Ukwatta & Woźniak 2016).

The angular distribution of GRBs has been extensively
studied over the past few decades. For the most part, GRBs
have been found to be uniformly distributed on the sky
(Briggs et al. 1996; Balázs et al. 1998, 1999; Mészáros et al.
2000; Magliocchetti et al. 2003; Vavrek et al. 2008; Ř́ıpa &
Shafieloo 2019; Andrade et al. 2019), although some sub-
samples appear to deviate from isotropy (Balázs et al. 1998;
Cline et al. 1999; Mészáros et al. 2000; Litvin et al. 2001;
Magliocchetti et al. 2003; Vavrek et al. 2008). Apart from the
Hercules–Corona Borealis Great Wall identified by our group
(Horváth et al. 2014, 2015), another large GRB-defined
structure has been recently reported. This structure, found
by Balázs et al. (2015) in the redshift range of 0.78 < z < 0.86
using a variety of statistical methods, is called the Giant
GRB Ring. It appears to be somewhat smaller (1.72 Gpc)
than the Hercules–Corona Borealis Great Wall (2−3 Gpc),
but its presence in the data has been confirmed by further,
elaborate statistical analysis (Balázs et al. 2018). While the
physical and astrophysical nature of both structures are not
conclusively understood (cf. the discussions in Balázs et al.
2015, 2018), their existence may provide a challenge to stan-
dard assumptions about universal homogeneity and isotropy
(i.e. the cosmological principle; see however Li & Lin 2015).
This means that studying structures like these is of high
scientific importance.

Aside from GRBs, there are other large structures dis-
covered in the 21st century. Namely, the Sloan Great Wall
which is a giant filament of galaxies has a size of ∼ 0.4 Gpc
(Gott et al. 2005), while the Huge Large Quasar Group
which possibly consist of 73 quasars has a size of 1.2 Gpc
(Clowes et al. 2013). Nonetheless, both GRB-defined struc-
tures (the Giant GRB Ring and the Hercules–Corona Bore-
alis Great Wall) exceed these in size.

Here we focus our attention to the Hercules–Corona
Borealis Great Wall (from now on, Great Wall). We aim
to reexamine the question of its existence from various as-
pects, and offer both arguments and counter-arguments for
it. In addition to performing statistical analyses on an up-to-
date and reliable data set and discussing recent results which
challenged the existence of the Great Wall (Christian 2020),
we also offer various scenarios for the origin of such a large
structure. This makes the present work an organic comple-
tion to the first two papers on the Great Wall (Horváth et al.
2014, 2015) in which formation scenarios were only passingly
mentioned. Additionally, we present a video showing an or-
thographic 3D representation of the ‘GRB Universe’, with
the Great Wall marked. And last but not least, we offer
counter-arguments too: by discussing the relevance of ob-
servational bias in the collecting of the data and guided by
the relevant investigation of Ukwatta & Woźniak (2016), we
conclude that new, more homogeneous data sets may be re-
quired to draw conclusive answers about the anisotropy of
the Universe and the existence of large structures. We sug-
gest that the proposed satellite mission THESEUS is the
most ideal instrument to collect such data.

The paper is organised as follows. Section 2 describes

the data set we use here, and presents the video of the GRB
Universe. Section 3 discusses the statistical analyses we per-
form on the data (namely, a nearest-neighbour analysis and
a point-radius bootstrap method). Section 4 addresses tech-
niques applied and results obtained in previous work. Sec-
tion 5 offers theoretically oriented discussions about the pos-
sible cosmological and/or astrophysical origin of such a large
structure as the Great Wall. Amongst these, Section 5.4 in
particular discusses the role of observational bias and argues
for the uttermost importance of such a future mission as the
THESEUS satellite. Section 6 summarises our arguments
both for and against the existence of the HerculesâĂŞCorona
Borealis Great Wall being amongst the largest structures in
the Universe.

2 THE DATA

2.1 Previous work and the current sample

The first identification of a clustering of GRBs in Horváth
et al. (2014) was based on an analysis of 283 GRBs that had
been localised prior to July 2012. By November 2013, the
redshifts of 361 GRBs had been determined, which repre-
sented a 28% increase in the sample size. In Horváth et al.
(2015) therefore this sample has been studied: indeed, the
number of GRBs around redshift z = 2 (1.6 ≤ z < 2.1) where
the clustering resides had increased from 31 bursts to 44
bursts in that 1.5 years’ time, a 42% sample size increase
that was large enough to warrant the updated analysis.

Based on this data set, Balázs et al. (2015) also found
the Great Wall using a statistical method that was indepen-
dently developed from those in Horváth et al. (2014, 2015)
and the present work. Although these authors focused on re-
porting another large structure (the Giant GRB Ring), their
Fig. 2 shows the Great Wall too, with a 1σ − 2σ significance.

As of March 2018, the redshifts of 487 GRBs have been
measured (mostly comprised of bursts detected by NASA’s
Swift experiment)1. This represents an increase in sample
size of yet another 35% in the five-year period since the
Horváth et al. (2015) analysis. This largest sample is what
we work with and analyse here.

2.2 On the importance of data selection

Recently Christian (2020) used a data set2 containing al-
most every GRB observed by any instrument, hereafter re-
ferred to as the “Greiner table”. One of the goals of this
data set is the support of the fast precise localization and
optical afterglow measurements of the GRBs, therefore this
table is more of a subjective data collection than a formal
database. It includes entries with all published redshift es-
timations (e.g. optical afterglow, photo-z, Lyman-α limits)
which could support the observational work. As explained
below, use of the table without carefully accounting for all
included redshift entries is considered ill-advised.

We have downloaded the GitHub files3 used by Chris-
tian (2020) and have compared them to the Greiner table

1 http://www.astro.caltech.edu/grbox/grbox.php
2 http://www.mpe.mpg.de/~jcg/grbgen.html
3 https://github.com/Sam-2727/Gamma-ray-burst-isotropy
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Figure 1. The GRB Universe. Orthographic 3D representation

of our 4D Universe as seen by GRBs in our data set (details in

Sect. 2.3). Left: all GRBs with known distances (blue). Those be-
tween 1.6 < z < 2.1 are marked (red). The size of the dots, as well

as their shading, refer to the distance of the given object from

an imaginary external viewer. Right: only GRBs in the redshift
range 1.6 < z < 2.1 are shown, with those that likely belong to

the Great Wall marked by yellow crosses (i.e. with galactic coor-
dinates b & 0 and 0 . l . 180). Comoving distances, converted

from redshift z values, are indicated at 3 Gpc and 6 Gpc. A video

showing the same GRB Universe rotating around, can be seen at
or downloaded under this link.

from which they were taken. We notice, first of all, that
the GitHub files failed to exclude 25 GRBs having photo-
metric redshifts with large uncertainties as well as 24 GRBs
marked by question marks. Second, more than a dozen GRBs
in the Greiner table are marked as having redshifts differ-
ing by more than 0.2 (some by as much as 0.4) from the
values given in the notes of the Gamma-ray Coordination
Network4. Thus Christian’s database contains a significant
amount of data characterized by potentially large uncertain-
ties. Only when correcting for these values or at least prop-
erly discussing their effects can the results and conclusions
of Christian (2020) be considered fully reliable.

Our catalog database (published by the Caltech Astron-
omy Department) tries to avoid the poorly-defined measure-
ments found in the Greiner table. This database has been
carefully reviewed by its creators to exclude measurements
with large systematic uncertainties, which has resulted in a
small yet homogeneous catalog filled with data that can be
more easily trusted for spatial analysis.

2.3 The GRB Universe – a video

We believe in the power of visualisation. Therefore, together
with presenting statistical analyses on the data in Sect. 3,
we present a video showing a 3D representation of the data
set (rotating around in various directions). Figure 1 shows
only a snapshot, and we encourage the reader to take a look
at the whole video under this link.

The video represents our 4 dimensional Universe only in
3 dimensions. Every GRB in the sample is shown by one dot,
according to its redshift and observed celestial position. To

4 http://gcn.gsfc.nasa.gov/

Table 1. The equal-sized (64 GRBs in each) radial groups.

group name GR1 GR2 GR3 GR4 GR5 GR6

zmin 0.45 0.82 1.21 1.6 2.1 2.67

zmax 0.82 1.21 1.6 2.1 2.67 3.65

calculate orthographic coordinates in parsecs, redshift val-
ues were converted into comoving distances using standard
cosmological parameters (Planck Collaboration et al. 2018).
This means that every spherical (i.e. 2 dimensional) layer is
actually a 3 dimensional space at a given cosmic age (where
time is given by z or, as in here, the comoving distance).

In the video, the Earth-based observer is located in the
centre of the distribution. The viewer of the video is, how-
ever, sitting ‘outside’ of the Universe and looking at it from
an imaginary 10 Gpc distance. The size and brightness of
the dots are both scaled with their respective distance from
the viewer, as one over distance squared; that is, the smaller
and dimmer a dot, the farther away from the viewer it is.

In the video, the Great Wall’s approximate position is
marked such that its redshift range is given in red and its
galactic coordinates are given in yellow. Note however that
we can gladly provide videos of the same style for GRBs in
any redshift range and galactic locations upon request.

3 STATISTICAL ANALYSES

3.1 Nearest-neighbour analysis

The GRB cluster representing the Great Wall was previ-
ously localised in the 1.6 < z < 2.1 redshift range. We
continue studying GRBs in this approximate redshift range
while maintaining independent radial sub-samples of similar
sizes. Amongst the 487 GRBs in our current sample there
are 64 in the 1.6 < z < 2.1 redshift range (13.14%). Thus,
the sub-sample size chosen for this analysis is 64. (Our initial
analysis, Horváth et al. 2014, had 31 of 283 GRBs (10.95%)
in this redshift range, and our second analysis, Horváth et al.
2015, had 44 of 361 GRBs (12.19%).)

The first statistical tool we apply to the sample is
the nearest-neighbour analysis and the second (presented
in Sect. 3.2) is the point-radius bootstrap method. As men-
tioned previously, we subdivide our sample into equal-sized
radial groups, with each group containing 64 GRBs. Thus,
we have six non-overlapping groups within z ranges defined
in Table 1. The nearest 51 (z < 0.45) and the farthest 52
(3.65 < z) GRBs have been omitted.

The angular distribution of each radial group can
be studied by independently applying the kth nearest-
neighbour statistics to the data points (i.e. GRB celestial
positions) in each group. Nearest-neighbour statistics have
been often used in the literature (Scott & Tout 1989; Slechta
& Meszaros 1997; Tarnopolski 2017) to characterise isotropy.
The nearest-neighbour distance indicates the angular sepa-
ration between each GRB and its closest neighbour. Sim-
ilarly, the second-nearest neighbour indicates the angular
separation between each GRB and its second-closest neigh-
bour. The total of all kth nearest-neighbour defines a set
that describes a distribution’s angular characteristics almost
completely.

MNRAS 000, 1–12 (2020)
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We perform Monte Carlo simulations for our GRB sam-
ple to characterise nearest-neighbour distributions and their
deviations from isotropy. We generate 10 000 catalogues us-
ing 64 GRB locations selected randomly from the observa-
tions, without repetition. We measure all the kth nearest-
neighbour distances (where k ≤ 63) from these catalogues,
and use them to create the empirical reference function. As
every catalogue has its own distance points, we create a
joint equidistant 0 − π angular scale onto which each cat-
alogue is extrapolated. The mean of these extrapolated dis-
tance functions from the catalogues is used as an empirical
reference function. This way the reference contains all the
effects coming from the uneven sky exposure as the cata-
logues contain all the angular distribution information. The
suspected anisotropy is also included in the catalogs, which
lowers the sensitivity of the test. However we suspect that
this effect is small, considering the weakness of the sus-
pected anisotropy signal. For the statistics, similarly to the
Kolmogorov–Smirnov distance D we calculate the largest
difference between each catalogue’s kth nearest-neighbour
distributions and this reference function.

The same approach is used for the real GRB data
too: the D-bvalue distributions are determined for every
kth nearest-neighbour for the real GRB groups (Rácz et al.
2017). Thus, the number of random catalogues containing
D distances larger than that of the real group provides an
estimate of how anisotropic the real group is. This can be
used to approximate the probability in hypothesis testing.

Applying this technique on our six radial GRB groups,
we find that Group 4 (GR4) – the one previously found to
contain the Great Wall – is the most anisotropic. (The sec-
ond most anisotropic is the neighbouring GR5.) For almost
every k, GR4 (1.6 < z < 2.1 ) contains the largest values of
D. There are several cases for GR4 in the k = 6 − 20 range
where the real data’s D distance is greater than that found
for 99.75% (2.5σ of the normal distribution) of the random
ones, however, no particularly strong peak is found. There
is no significant grouping of the larger D values compared
with the random distributions. This result hints that a more
sensitive statistical measure should be used to check the vi-
ability of this anomaly because maximum distance methods
like the Kolmogorov–Smirnov method are not very sensitive
(although they are robust). For example, if the sky expo-
sure could be determined (or assumed, cf. Sect. 5.4.1) the
real spatial two-point correlation function could be applied
(Bagoly et al. 2014; Bagoly et al. 2015; Li & Lin 2015) as a
validation technique.

3.2 The point radius bootstrap method

In order to test for the existence of the clustering in the cur-
rent database while accounting for known sampling biases,
we apply the point radius bootstrap method. This method
was described in Sec. 5 of Horváth et al. (2014). We repeat
the same analysis here, albeit for a much larger data set (as
explained in Sect. 2).

To use the point radius bootstrap method, we assume
that the sky exposure is independent of z (also cf. Sect. 5.4 on
the caveats). We randomly choose a sub-sample of 64 GRBs
from the observed data-set. (We have tested that the re-
sults do not depend on including or excluding GRBs between
1.6 < z ≤ 2.1 in this sub-sample.) Then we compare the sky

Table 2. Largest number of GRBs found within a certain area of
the sky.

radius 32.9◦ 34.9◦ 36.9◦ 38.7◦ 40.5◦ 42.3◦ 43.9◦

surf. area 0.08 0.09 0.10 0.11 0.12 0.13 0.14

GRBs 21 23 24 27 28 30 32

radius 45.6◦ 47.2◦ 48.7◦ 50.2◦ 51.7◦ 53.1◦ 54.5◦

surf. area 0.15 0.16 0.17 0.18 0.19 0.20 0.21

GRBs 33 33 33 34 35 36 36

radius 55.9◦ 57.3◦ 58.7◦ 60.0◦ 61.3◦ 62.6◦ 63.9◦

surf. area 0.22 0.23 0.24 0.25 0.26 0.27 0.28

GRBs 37 37 37 38 38 38 39

Figure 2. Results of the Monte Carlo bootstrap point-radius test

on a variety of different angular scales. The horizontal coordinate
is the area of the circle in the sky relative to the whole sky (4π).

The vertical coordinate is the logarithm of the relative frequency

found from the 10,000 runs. The calculations were made for 64
GRBs in the 1.6 < z < 2.1 range (black), for the 77 GRBs in the

1.6 < z < 2.3 range (blue) and the 77 GRBs in the 1.5 < z <

2.1 range (green). Horizontal red (black) line shows the 2σ (3σ)
deviations.

distribution of this sub-sample with the sky distribution of
64 GRBs with 1.6 < z ≤ 2.1.

To study the selected GRBs in two dimensions, we
choose random locations on the celestial sphere and deter-
mine how many of the 64 points lie within a circle of pre-
defined angular radius (for example, within 20◦). We repeat
the process a large number of times, i.e. 20 000 times. From
these 20 000 cases we select the largest number of GRBs
found within the angular circle (for more details about this
method see our previous works, Horváth et al. 2014, 2015,
where the same method was applied).

This analysis is performed with the 64 GRBs that be-
long to our location of interest, and also with 64 randomly
chosen GRB locations from the observed data (i.e. from the
known 487 GRBs). We repeat the experiment 10 000 times
in order to understand the statistical variations of this sub-

MNRAS 000, 1–12 (2020)
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sample. We also perform the same technique using angular
circles of different radii. The frequencies obtained this way
are shown in Figure 2 (black).

Table 2 shows the maximum number of GRBs in a given
angular circle. The most significant deviation from isotropy
appears in a circle covering 15 percent of the sky (see Fig. 2);
at least 33 GRBs are contained inside this circle. The signif-
icance reaches 3σ between regions covering 11 percent and
20 percent of the sky (Fig. 2, the black horizontal line shows
the 3σ limit). In these regions, between 27 and 36 GRBs are
found (out of 64).

We check whether the sky distribution anisotropy spans
a larger z interval than the 1.6 < z ≤ 2.1 range in which
the clustering was originally identified. To do this, we apply
the point radius bootstrap method to regions extended to
other redshifts. We consider two such regions: one extended
to smaller redshifts (1.5 < z ≤ 2.1) and the other extended
to larger redshifts (1.6 < z ≤ 2.3). Since both volumes con-
tain 77 GRBs, we choose a sub-sample of 77 GRBs from the
observed dataset. Then we select random locations on the
celestial sphere and determine how many of the 77 points
lie within a circle of predefined angular radius. We estimate
statistics for this test by repeating the process 20 000 times.
From these 20 000 Monte Carlo runs we select the largest
number of GRBs found within the angular circle. We re-
peat the process with 77 different randomly chosen GRB
positions (from the known 487 GRBs), and we repeat the
experiment 10 000 times in order to understand the statisti-
cal variations of this sub-sample. We also perform the same
technique using angular circles of different radii.

The result with the 77 GRBs from the 1.5 < z ≤ 2.1
interval and with the 77 GRBs from the 1.6 < z ≤ 2.3 interval
are presented in Fig. 2.

Figure 2 shows that the extended z interval 1.5 < z ≤ 2.1
(with 77 GRBs) contains a much less significant anisotropy
than the one found in 1.6 < z ≤ 2.1, and it never reaches
the 3σ level (green). However, the extended z interval 1.6 <
z ≤ 2.3 (again with 77 GRBs) shows a similar anisotropy
at a similar significance level (blue in Fig. 2). For relative
surface areas between 0.05 and 0.1, the 64 GRBs in the
originally-defined z interval 1.6 < z ≤ 2.1 show the largest
significance, but in the 0.17 - 0.27 interval, the 77 GRBs
(1.6 < z ≤ 2.3) exhibit the greater significance. In both cases
the minimum frequency is around 0.15 (containing 33 of 64
and 37 of 77 GRBs, respectively). The probability of find-
ing 33 of 64 randomly-distributed GRBs in only 15% of the
sky is extremely low (≈ 10−12). Similarly, the probability of
finding 37 of 77 randomly-distributed GRBs in such a small
fraction of the sky is also extremely low (≈ 10−12).

These results imply that the clustering of GRBs in the
Hercules–Corona Borealis Great Wall is indeed statistically
significant in the most reliable database currently available.
Note however that the assumption of randomness may not
be entirely valid due to the anisotropic presence of galactic
dust. We discuss possible caveats and observational biases
in Sect. 5.4.

4 COMMENTS ON TECHNIQUES USED IN
PREVIOUS WORK

4.1 On the inadequacy of applying the 2D
Kolmogorov–Smirnov test to data on a sphere

Recently, Christian (2020) investigated the Great Wall’s
existence by applying the two-dimensional Kolmogorov–
Smirnov test to a GRB data set that we discussed and found
wanting in Sect. 2.2. They concluded that the test indicated
only a 0.054 probability in support of the GRB clustering’s
existence. Furthermore, they raised some concerns about
why Horváth et al. (2014) had used this test in the orig-
inal paper discovering the GRB clustering but not in the
follow-up analysis in Horváth et al. (2015). Their question
suggested that the 2D Kolmogorov–Smirnov test had been
excluded from the latter analysis because it did not support
the high confidence claimed by Horváth et al. (2015) about
the existence of the clustering. We address these concerns
here.

The Kolmogorov–Smirnov test is typically used for real-
valued random variables since the unique structure of the
real line R allows for an unambiguous definition of the
Kolmogorov–Smirnov distance. This distance of cumulative
distribution functions is invariant under postcomposition by
homeomorphisms of R. However, for random variables with
values in other topological spaces, the definition cannot be
extended in an invariant way in general. Nonetheless, several
analogies of the Kolmogorov–Smirnov test have been pro-
posed, cf. Peacock (1983) and later Fasano & Franceschini
(1987) who work with rectangular regions of the plane R2.
In our earlier work (Horváth et al. 2014), we implicitly as-
sumed that this test could be adequately applied to two-
dimensional sky distributions, i.e. to random variables with
values in the sphere S2. However, we later realized that the
method used by Peacock (1983) and Fasano & Franceschini
(1987) cannot be transported to the whole of S2 due to topo-
logical reasons. Of course, one can work with a punctured
sphere by using a coordinate chart but the result of such an
analysis will depend on the chosen coordinates. A further
drawback of this (pseudo) Kolmogorov–Smirnov method is
that it is not invariant under SO(3) transformations, i.e.
simple rotations. A valid, SO(3)-invariant 2D Kolmogorov–
Smirnov analysis on S2 is an interesting problem but it is
out of scope here.

For completeness, and to check our results against
those of Christian (2020), we have applied the (pseudo)
2D Kolmogorov–Smirnov test here to our present data set.
Since there are 64 GRBs in the 1.6 < z < 2.1 range (GR4),
for comparison we choose redshift groups with 64 GRBs in
each. There are 243 GRBs with z < 1.6 and 180 GRBs
with 2.1 < z, allowing only three 64-GRB disjoint groups
(GR1, GR2, GR3) at lower redshift and two (GR5, GR6)
at higher redshift than that of GR4 (Table 1 shows their
redshift range). Table 3 shows the largest 2D Kolmogorov–
Smirnov distances found between the groups, using the 2D
Kolmogorov–Smirnov test as described in Horváth et al.
(2014). Note that the three largest Kolmogorov–Smirnov
distances, corresponding to the greatest differences in the
sky distribution, do relate to GR4 (1.6 < z < 2.1). We es-
timate the significance of these anisotropies by selecting 64
GRBs at random from the complete 487-GRB sample. The
2D Kolmogorov–Smirnov values are obtained by comparing

MNRAS 000, 1–12 (2020)
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Table 3. The 2D KST distances between the GRB groups.

group name GR2 GR3 GR4 GR5 GR6

GR1 18 12 19 17 14

GR2 16 14 18 16

GR3 19 13 15

GR4 16 20

GR5 13

these distributions, and the process is repeated 3999 times
to generate a statistical estimate. Only 6.9% of the runs pro-
duce Kolmogorov–Smirnov distances greater than or equal
to 19 and only 4.1% of the runs produce Kolmogorov–
Smirnov distances greater than or equal to 20. These re-
sults are similar to the 5.4% probability obtained by Chris-
tian (2020). However, as mentioned previously, we discount
these results because we believe that there are inherent flaws
when applying the flat 2D Kolmogorov–Smirnov process on
a sphere.

4.2 Addressing additional criticisms by Christian
(2020)

Christian (2020) questioned the results of Horváth et al.
(2014) obtained with the point-radius bootstrap method,
criticizing the authors for assuming that the number of
bursts within a random angular radius followed a binomial
distribution. This unfounded criticism was due to an unfor-
tunate misreading of Horváth et al. (2014): binomial prob-
abilities were only included in a bracketed note to demon-
strate extreme behavior, and this note was never used as
the basis for a statistical argument. In fact, Horváth et al.
(2014) stated that the distribution was selected to coincide
with the sky exposure (e.g., see Sect. 5.4.1 in this paper),
thus indicating that burst locations on the plane of the sky
were not distributed randomly and could not be character-
ized by binomial probabilities. In attempting to correct this
suspected error, Christian (2020) repeated the analysis with
the point-radius bootstrap method using the Horváth et al.
(2014) data and found p ≈ 0.002. This result is consistent
with the Horváth et al. (2014) results (see their Fig. 2) which
found that the probability reached the 3σ level (p=0.0028)
twice. Thus Christian (2020)’s result from the point-radius
bootstrap method supports the conclusions of Horváth et al.
(2014) instead of contradicting them.

In Sect. 3.3 of their paper, Christian (2020) concluded
that Horváth et al. (2014) had overstated the significance
of a GRB anisotropy between 1.6 < z < 2.1. Applying the
nearest-neighbour analysis to randomly-generated distribu-
tions, they found that “181 out of the 5,000 samples had
a higher K-statistic” than the anisotropic distribution did.
We are unfortunately unable to reproduce Christian (2020)’s
nearest-neighbour result using data and programs down-
loaded from their GitHub files (cf. Sect. 2.2). When we run
5,000 random samples we only obtain a higher K-statistic
72 times rather than 181 times as quoted in the paper. Con-
cerned that we might have obtained this result by statistical
fluke, we repeated this 5,000-sample analysis 400 times. On
average, we only obtained higher K-statistics 70.09 times out

of 5,000 (with a standard deviation of 12.85, a minimum of
38 times, and a maximum of 98 times). Therefore, rather
than the p-value of 0.0362 obtained by Christian (2020), we
find that p is 0.014 using the same data and program files.
Again, these results support our hypothesis that the GRB
anisotropy is significant as opposed to the conclusion stated
by Christian (2020).

4.3 Are sampling biases responsible for the
anisotropy?

Ukwatta & Woźniak (2016) claimed that the GRB
anisotropy found between 1.6 < z < 2.1 (Horváth et al.
2014) could be produced solely by anisotropies in the sam-
ple’s sky exposure. To test this hypothesis, they generated
three density maps. The maps correspond to a uniform sky
exposure, Swift’s sky exposure (taken from Swift’s recorded
instrument pointings; their Fig. 4), and a combined exposure
that was meant to convolve Swift’s sky exposure with effects
of interstellar extinction. However, the combined exposure,
meant to most clearly represent the sampling biases, appears
to be invalid for several reasons.

First, Ukwatta & Woźniak (2016) constructed the com-
bined exposure by convolving the Swift density map with
the density map obtained from detection of 311 Swift GRBs
with measured redshifts (their Fig. 5). Since the 311-GRB
density map already accounted for Swift’s exposure (GRBs
could only have been included in this distribution if Swift
had detected them), the convolution improperly magnified
the importance of Swift’s exposure.

Second, the extinction component of the exposure was
not calculated independently of the data (as Swift’s exposure
had been). This means that any anisotropies inherent to the
data were incorporated into the sky exposure calculation.
Third, in Sect. 5.4 we briefly discuss the inadequacy of kernel
based methods for the sky exposure function reconstruction
in anisotropy studies.

Ukwatta & Woźniak (2016) also chose to compare the
improperly-corrected density map to the data with only a
2D Kolmogorov–Smirnov test and the nth nearest neigh-
bour test, excluding the more sensitive point-radius boot-
strap method used by Horváth et al. (2014) and discussed
in Sect. 3.2. One important advantage of the point-radius
bootstrap method is that it randomly selects GRBs from
sky regions according to the observed data, and thus follows
the uncorrected density function rather than a uniform one.

As shown in Fig. 17 of Ukwatta & Woźniak (2016),
∼60 GRBs per redshift bin are required to exclude a chance
alignment with a reasonably good confidence. Although they
estimated that it would take a decade to have a sufficiently
large sample to make a definitive statement, the data we use
in the present study already allows us to work with a sample
size of 64. Nonetheless, we refrain from claiming here that
the present sample size would be large enough already for
drawing strong conclusions. We argue instead that – based
also on our Sect. 2.2 showing the importance of a unified
data set – more data needs to be taken in a homogeneous
way. We come back to the possibilities for increasing the
sample size in Sect. 5.4.2.

While we cannot completely exclude the possibility that
sky exposure and galactic extinction might be responsible
for the GRB anisotropy (we discuss this possibility further in
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Sect. 5.4.1), our results suggest that this is not the case, and
the quantitative analysis presented by Ukwatta & Woźniak
(2016) is not convincing in its current form. We therefore
assume that the anisotropy is not caused by instrumental
biases, and this leads us to propose several physical expla-
nations as follows (Sect. 5.1–5.3).

5 DISCUSSION: THE LARGEST STRUCTURE
IN THE UNIVERSE?

5.1 The cosmological screening length

From certain perturbative theories of cosmology, a charac-
teristic length is derived above which no cosmic structures
can grow. It is called the screening length because, practi-
cally, the gravitational field gets damped above that distance
due to the presence of gravitational objects. Below we elab-
orate on the prediction of such a characteristic screening
scale from theory, including the summary of said theories
and their consequences for our Universe’s largest possible
structures.

In a Universe that is perfectly homogeneous and
isotropic, the Einstein equations are typically solved
by the means of a FriedmannâĂŞLemâıtreâĂŞRobert-
sonâĂŞWalker metric (Weinberg 1972; Wald 1984). How-
ever, the real Universe is obviously not perfectly homoge-
neous and isotropic – there are small-scale variations in the
distribution of matter for example, as the existence of stars,
galaxies and other objects confirm. (For a review on embed-
ding inhomogeneities in the Universe see e.g. Faraoni 2018.)
Since this deviation from perfect homogeneity and isotropy
is small, it is a reasonable approach to solve the Einstein
equations up to a first order perturbation around the exact
Friedman–Lemâıtre–Robertson–Walker metric. This way we
may get a fairly realistic model of cosmology in which the
fact that objects exist is accounted for.

Such perturbative theories of General Relativity have
been derived (e.g., Eingorn 2016 and Hahn & Paranjape
2016) by perturbing the metric (as well as the energy-
momentum tensor) in the Einstein equations, while ne-
glecting higher-order terms. The resulting equation takes
the form of a well-known linear partial differential equa-
tion called the inhomogeneous Helmholtz equation (Bardeen
1980; Stewart 1990; Ellis & van Elst 1999).

The solution of the inhomogeneous Helmholtz equation
can be computed by a convolution with the fundamental
solution (Green function) which, for this equation, has the
form of a Yukawa potential. What concerns us here is solving
the equation of motion of an arbitrary particle of the system
under the influence of all other particles, because this pro-
vides the form the gravitational force takes. By computing
this (cf. e.g., Eq. (11) of Canay & Eingorn 2020) it turns
out that the forces caused by the inhomogeneities scale as
e−r/λ × 1/r2. Notice that this form contains an exponen-
tially decaying factor. Such a decay means that gravity gets
damped (or in other words, screened) above the character-
istic length λ.

This characteristic (screening) length depends on the
terms applied in the initial perturbation of the metric and of
the energy-momentum tensor in the Einstein equation. For
example, Eingorn (2016) used a so-called discrete cosmol-
ogy where the perturbation added to the energy-momentum

tensor describes discrete sources, that is, point-like gravita-
tional masses. On the other hand, Hahn & Paranjape (2016)
applied continuous matter sources with small enough density
fluctuations. Realising that both approaches are valid but at
different scales, Canay & Eingorn (2020) took the next step
and combined these two into a unified theory. The screening
length these authors derived from their unified approach can
be expressed as some function of the Hubble parameter H
and the scaling factor a0 (see their Eq. (43)). For today’s
values of the cosmological parameters, the screening length
is obtained to be 2.57 Gpc.

Canay & Eingorn (2020) points out that this screening
length of 2.57 Gpc exceeds the diameter of the Giant GRB
Ring (1.7 Gpc) and matches the size of the Hercules–Corona
Borealis Great Wall (2−3 Gpc). Again, this theoretically de-
rived length is a consequence of solving the Einstein equation
when matter is slightly non-homogeneous and non-isotropic,
and its quoted value has been obtained by unifying two per-
turbative approaches to the same problem.

The theoretical calculations we summarised here are,
of course, not free of assumptions – starting with the fact
that they all neglect higher order terms in the equations.
Also, tensor perturbations of the metric (those associated
with gravitational waves for example) are omitted due to
their sources being way below accuracy limits of the present
problem. Still, the formalism explained above is widely used
in modern cosmological simulations.

If the value that Canay & Eingorn (2020) derives for
the cosmological screening length is valid, this would indeed
be an interesting coincidence with the size of the Hercules–
Corona Borealis Great Wall. To paraphrase these authors:
provided that this colossal structure indeed exists, in light
of their theoretical predictions for the screening length the
Great Wall may be called not just “the largest observed” but
simply “the largest” in the Universe.

5.2 A direction-dependent Hubble constant?

While not reaching the scales investigated by perturbative
cosmology, nor the scales traced out by GRBs, recent results
from galaxy cluster analyses probing cosmic isotropy out to
z . 0.3 are worth mentioning here (Migkas et al. 2020).
These authors find that, after excluding all possible alterna-
tive explanations for their measurements, an anisotropy of
the Hubble constant, H0, seems to persist. In other words,
their measurements are consistent with the Hubble constant
having different values at different celestial positions (rang-
ing between H0 = 65 and 77 km/s/Mpc), as shown in their
Fig. 23.

We can only speculate if such an explanation could be
behind the existence of the Hercules–Corona Borealis Great
Wall too, albeit at much larger scales. For example, if the
nature of dark-matter is such that it leads to different expan-
sion rates for different directions in the Universe, that could
possibly lead to measuring a non-constant H0 for galaxy
clusters, as well as observing large scale anisotropies in the
GRB spatial distribution.

5.3 A wave in star formation rate?

Astrophysical reasons for a clustering of GRBs are also
worth to look at. Indeed, an excessive amount of gravitat-
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ing matter would have an imprint on the cosmic microwave
background due to the integrated Sachs–Wolfe effect (Sachs
& Wolfe 1967) but such an imprint is not seen. Further-
more, analysing galaxies in the Millennium Simulation (An-
gulo et al. 2012), Balázs et al. (2015) demonstrated that
the spatial distribution of galaxies with normal vs. high star
formation rate is probably different (cf. their Fig. 6). There-
fore, as Balázs et al. (2015) also noted, there may be astro-
physical reasons other than cosmology and gravity for such
anisotropies as the Great Wall. We present such speculative
reasons in Sects. 5.3.2 and 5.3.3, but for this we need to dis-
cuss the nature of GRB progenitors and the host galaxies
first.

5.3.1 GRB progenitors and star formation

According to one of the most commonly accepted progeni-
tor theories (Yoon & Langer 2005; Woosley & Heger 2006)
long-duration GRBs (LGRBs, with prompt emission dura-
tion longer than 2 s) originate from massive 20−30 M� stars
(Yoon et al. 2006; Cantiello et al. 2007; Dessart et al. 2008;
van Marle et al. 2008) that rotate fast and undergo chem-
ically homogeneous stellar evolution (Szécsi et al. 2015b)
and explode in the collapsar scenario (Woosley 1993; Mac-
Fadyen & Woosley 1999). For other progenitor theories, see
a review in (Szécsi 2017b). In the scenario mentioned above,
a metallicity of . 0.5 Z� is required for such a massive star
to maintain its sufficiently fast rotational rate throughout its
life and to thus form a LGRB. The reason for this metallic-
ity dependence is that massive stars lose angular momentum
in their stellar winds, the strength of which is a function of
the metallicity. For a more detailed discussion of such line-
driven stellar winds and the spectral properties of LGRB
progenitors, see Kubátová et al. (2019). Formation of such a
progenitor thus should take place in a host galaxy with low
metallicity locally or globally.

Short-duration GRBs (SGRBs) are associated with the
merger of two neutron stars i.e. the remnants of massive
stars, which merge after a time interval in the order of billion
years from birth (Blinnikov et al. 1984; Eichler et al. 1989;
Berger 2014; Ruiz et al. 2016; Szécsi 2017a; Vigna-Gómez
et al. 2018). Intermediate-duration GRBs are not well un-
derstood from the point of view of a proposed progenitor.
Since the majority of GRBs are long-duration anyway (only
28 out of the 487 GRBs studied here, or 6%, have dura-
tions, T90 < 2 s), we focus the following discussion mainly
on LGRBs.

From the initial mass function (Salpeter 1955; Riaz
et al. 2020) and the fact that the lifetime of a star depends
strongly on its mass (Kippenhahn & Weigert 1990), it fol-
lows that massive stars are rare. As a consequence, wherever
we see quite massive stars like an LGRB progenitor, we can
suppose there is active star formation going on in that place.
On the other hand, the time the SGRB progenitor binary
neutron stars need to merge can be quite long, so SGRBs
are not expected to trace star-forming activity.

According to various studies, the cosmic star formation
rate density peaked 3 to 3.5 billion years after the Big Bang
(Strolger et al. 2004; Langer & Norman 2006; Rafelski et al.
2012; Madau & Dickinson 2014; Madau & Fragos 2017; Nei-
jssel et al. 2019). Based on that one may also expect the
LGRB rate peaking at around 2 < z < 3.

5.3.2 Waves of star formation

Whatever the cosmic star formation history was like, the
spatial distribution of star formation rate does not have to
be uniform or isotropic at any given time. Indeed, a clus-
tering of LGRBs can be, in principle, the consequence of an
enhanced star formation activity around the given spatial re-
gion without any significant increase of matter density. Just
like star formation in galactic spiral arms.

In that picture the Great Wall is either a result of a
significant single fluctuation or a (propagating?) wave of star
formation rate. The latter would slowly undulate over cosmic
time, enhancing star formation in one spacial direction at a
given z and in another direction at another z. The existence
of such waves is not excluded by our data set. Although they
would be present at all redshifts (i.e. not only at z ∼ 2), the
fact that the global star formation rate is observed to peak
at around z ∼ 2−3 may mean that at other redshifts we
simply do not have a large enough GRB sample to detect
the ups and downs of these supposed waves.

In short, the Great Wall may be an upturn of a cosmic
wave of star formation rate propagating over space-time. If
we had more data at all redshifts, we might be able to follow
these waves as they slowly heave and fade as the Universe
evolves.

If such waves exist and are the reason for the clustering
of GRBs in the Great Wall, we can estimate their wave-
lengths. Following Balázs et al. (2015, who computed the
lifetime of another large cosmic structure, cf. their Sect. 4.3.2
and their Eq. (11)), and using the observed distance and size
of 1 Gpc and 2 Gpc of the Great Wall, we obtain a wave-
length of ∼109 yr.

These speculations assumed that the rate of the GRB
progenitor formation follows the general star formation rate
in a given volume of space-time. However, as a result of the
Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z <
6.3, Palmerio et al. (2019) claims that LGRBs are not good
tracers of star formation. This implies that our speculations
about a fluctuation or a wave in star formation rate is way
too simplistic. Still these authors find an enhanced fraction
of starburst galaxies amongst the LGRB hosts. Thus, our
simplistic picture can be improved by discussing the role
the host’s metallicity may play in this process.

5.3.3 The role of metallicity

Finding some LGRBs in metal-poor host galaxies (Vergani
et al. 2015; Japelj et al. 2016; Perley et al. 2016; Palmerio
et al. 2019) is in accordance with the expected low metal-
licity of the progenitor. While the exact connection of the
host’s metallicity to the progenitor’s metallicity is not nec-
essarily trivial (about this see for example Metha & Trenti
2020 who investigated the scenario of high-metallicity galax-
ies hosting low-metallicity regions where LGRBs form), also
from theory there seems to be a link between LGRB progen-
itors and metal-poor dwarf galaxies as pointed out by Szécsi
et al. (2015a).

In light of all this, the simple picture from Sect. 5.3.2
about GRBs tracing star formation activity and thus possi-
bly evidencing some kind of wave in cosmic star formation
rate, should be refined. LGRBs seems to trace metal-poor
star formation activity. So if the speculative interpretation
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of the Great Wall as some kind of wave propagating through
cosmic space and time is valid, this could mean a wave in
low-metallicity star formation rate instead.

Further research is needed to figure out the origin of
such a wave. For example, we refer to Mocz et al. (2019)
who studied a possible formation scenario of the first galax-
ies, suggesting that the first stars formed along dark matter
filaments. Such a process may result in large scale metal-
licity anisotropies. And these may in turn result in an en-
hanced low-metallicity star formation activity and thus in
anisotropies of the LGRBs distribution.

5.4 A side-effect of observational biases?

Cosmological calculations and astrophysical speculations
aside, it would be premature to exclude observational bias
of some sort as a feasible explanation. Indeed, Ukwatta &
Woźniak (2016) also concluded using all-sky density maps
that it is probably the sky exposure and galactic extinction
that causes the finding of the Great Wall. While we have
raised some concerns (cf. Sect. 4.3) about the details of their
method, we do agree that there are complex observational
biases arising when measuring GRB positions and redshifts,
and that ideally these should be properly excluded before
any definitive statement is made about the Great Wall’s ex-
istence.

The detection probability of the redshift-determined
GRBs in the sky is a combined probability. It depends not
only on the various trigger conditions of the space instru-
ments but the corresponding optical follow-ups, too. These
include e.g., timing, telescope/instrument availability, ob-
server interest, observatory latitudes, seasonal weather, and
Galactic extinction.

Albeit in principle it would be possible to integrate the
satellite’s known field-of-view timeline (e.g., Swift pointings,
see Sect. 5.4.1) and from this simulate the triggering, a syn-
thetic reconstruction of the sky exposure for all satellites
involved in our sample falls well outside the scope of the
current work. And even if this were done, one would still
need to combine it with a reliable model for selection effects
related to the ground-based follow-up, which itself depends
on many factors, including the impact of galactic extinction
on detection by ground-based telescopes as well as purely hu-
man factors. Indeed, observers need to be interested enough
in any given burst to dedicate their time and instrument
to follow-up observations. This brings a possibly crucial yet
rarely discussed component into the already complex prob-
lem of biases, which we investigate further in Sect. 5.4.2.

5.4.1 On the sky exposure

Simple models for the sky exposure of Swift and, thus, at
least for the biases in determining celestial position (i.e.
pointing) of GRBs do exist. Bagoly et al. (2014), Bagoly
et al. (2015), Li & Lin (2015) as well as Ukwatta & Woźniak
(2016) reconstructed the empirical sky exposure function of
a GRB-like angular point process using kernel based meth-
ods.

Unfortunately however, these reconstructions require a
kernel size to be set a priori: the typically observed num-
ber of GRBs puts the actual smoothing filter size in the

15 − 40◦ range. Since the typical variability scale for the
optical galactic extinction is smaller than that (the angu-
lar distribution of GRB’s with redshift clearly shows a thin
galactic disk), kernel based methods are expected to smooth
out the fine details of the real exposure function. The kernel
acts as a low-pass filter for the Fourier transform, and since
the power spectrum is the square of the Fourier transform
the filtering effect is stronger on it. As the two-point corre-
lation function is the inverse Fourier transform of the power
spectrum, it is smoothed too – approximately applying the
kernel filtering twice. Therefore all point statistics which are
based on the estimated sky exposure function get distorted
as finer details below the kernel size are not followed. This
high frequency suppression effect is barely visible directly
as the Poisson sampling usually generates higher noise level,
but any analysis using large number of Monte Carlo simula-
tions will contain (and sometimes clearly show) it (cf. Bagoly
et al. 2015 and Li & Lin 2015). The constraining effects of
angular cell size was demonstrated in the measurement of
galactic extinction by Hakkila et al. (1997).

Alternatively, the sky exposure function should be more
precisely determined with non-parametric density estima-
tors, like in Bagoly et al. (2014), although the Poisson noise
originating from the small numbers seems to dominate the
sky exposure function estimation in this simple Voronoi-
based methods. These techniques should be further refined
and developed for a better analysis in the future.

5.4.2 Observers’ bias and future prospects with THESEUS

Since Swift has been launched in 2004, the number of GRBs
with well-determined sky position has been nearly constant
(∼120/year). However, the number of GRBs followed up by
optical telescopes on the ground, has been continuously de-
clining since: while it used to be ∼44/year in 2008, it was
only ∼15/year in 2015 (see Fig. 3). This decline has been
consistent, showing a year-to-year decrease of ∼10%5.

This implies that, unless there is an extra feature rais-
ing interest – such as an unexpectedly large redshift value
indicated by the spacecraft’s optical detector – observers on
the ground are less and less likely to dedicate their resources
for an ‘average’ (not so interesting) GRB. Indeed, it seems
that if early optical afterglow detection (and sub-arc minute
pointing) is done with Swift’s UltraViolet and Optical Tele-
scope, this vastly increases the chance that a ground-based
follow-up and measuring of the spectrum of the afterglow
would happen. For instance, for redshifts z < 1 it enhances
the chance by more than 60%.

From this we conclude two things. First, we believe
this loss creates a very strong argument for building op-
tical/UV/IR telescopes on board of upcoming gamma-
satellites. The THESEUS mission (Amati et al. 2018; Stratta
et al. 2018), for example, is currently being designed to host
an Infrared Telescope (Götz et al. 2018). In light of the facts
we report above, the importance of such a mission cannot
be emphasised enough, both for motivating ground-based
observers to follow-up interesting GRBs and for providing
estimated redshifts for a large number of GRBs out to the

5 We used the publicly available data set of Jochen Greiner. http:

//www.mpe.mpg.de/~jcg/grbgen.html
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Figure 3. Follow-up observations of the last two decades. The

blue line shows the ratio of GRBs with redshift to all well-localised

GRBs (i.e. localised within a few hours to days to less than
1◦ accuracy). The data are taken from Jochen Greiner’s compila-

tion (http://www.mpe.mpg.de/~jcg/grbgen.html). Since 2006 an

approximately constant rate of well localised GRBs (≈ 120/year)
are observed; however, the number of redshift measurements is

clearly decreasing. This loss of interest in GRB redshift measure-
ments amongst the observers can be well approximated with an

exponential decay (red line). After 2006 only ≈ 90% of the pre-

vious year’s redshift observations are obtained annually. If this
trend continues, in 2026 we will observe less than 8 GRBs with

redshift.

epochs of the First Stars. Indeed, THESEUS will be essential
for the future of studying cosmic isotropy with GRBs. Sec-
ond, the current sample of 487 GRBs with well-determined
redshift may be biased by observer interest in a way that
has previously not been accounted for. If so, this may mean
that despite enormous efforts of several communities to de-
tect and localise GRBs with an ever increasing precision, the
current data may only allow the study of cosmic isotropy in
a limited and preliminary way. Again, future space missions
such as THESEUS (which is currently undergoing assess-
ment and, upon getting a green light, has an expected launch
date of 2032) can change this by providing large, homoge-
neous samples of GRB redshift measurements. When this
happens, our results of a statistically significant clustering
of GRBs may need to be revised.

6 SUMMARY & CONCLUSIONS

If the Hercules–Corona Borealis Great Wall is real (and
not, for example, an observational artefact), it is the largest
structure known in the Universe. Here we offered arguments
both for and against it being real, and speculated about its
potential origin. Our arguments and speculations are based
on careful statistical tests we performed, as well as on the ex-
tensive study of the related literature. The main arguments
we have thus derived are summarised as follows.

Using an up-to-date data set of all GRBs with reli-
ably known redshift (Sect. 2), we performed two statis-
tical tests. The first one (kth nearest-neighbour analysis,
Sect. 3.1) showed us that the group containing the redshift
range 1.6 < z < 2.1 is the most anisotropic. For this group
(GR4) there were several cases in the k = 6−20 range where

the real dataâĂŹs Kolmogorov–Smirnov like D distance was
above the 99.75% of the random ones. However, the fact that
no stronger peak was found implies that in future work more
sensitive statistical methods should be applied to check the
viability of this anomaly, as the used Kolmogorov–Smirnov
like method is not sensitive enough.

The second test we performed (point radius bootstrap
method, Sect. 3.2) is practically the same test that had been
used to establish the possibility of the Great Wall’s exis-
tence previously (Horváth et al. 2014, 2015), however now
with significantly more data points. Here, for the most com-
plete data set currently available, the point radius bootstrap
method showed us that the clustering of GRBs in this region
of the Universe is indeed statistically significant.

We dedicated Sect. 4 to addressing Ukwatta & Woź-
niak (2016) and Christian (2020), two papers that came to
a different conclusion from ours. We emphasize that both
the nearest-neighbour analysis and the point radius boot-
strap method, as used here, are independent of angular se-
lection effects, provided these angular biases are not redshift-
dependent. Thus we believe that the results obtained here
are valid in the case of angular sky exposure by Swift, var-
ious ground observers’ selection effects and for galactic ex-
tinction.

Investigating the literature for possible explanations of
large structure formation, we found the recent study of
Canay & Eingorn (2020) and discussed it in Sect. 5.1 – this
study in fact served as one of our main motivations for car-
rying out the present work. The authors concluded that,
from perturbative cosmological theories, an effective length
exists above which gravity gets screened. They derived this
value to be, coincidentally, consistent with the size of the
GRB Great Wall. Since such an interesting explanation for
the origin of the Great Wall has been published in the liter-
ature, we thought it was in place to supplement it with fur-
ther arguments. Accordingly, alternative explanations were
offered and discussed here, too. Motivated by recent results
of galaxy cluster measurements probing cosmic isotropy, we
speculated about the possibility that the Hubble constant
may not, in fact, be constant in every direction of the sky
(Sect. 5.2).

Beside cosmological explanations, we also offered astro-
physical ones (Sects. 5.3). In particular, we speculated about
systematic variations of the star-forming activity over cos-
mic time, including the role of metallicity. As our data can-
not exclude a wave-like propagation of the star formation
rate (note that the Great Wall coincides in redshift with
the observed peak of cosmic star formation history), such
waves have been suggested as another speculative source of
a clustering of GRBs in the Great Wall.

Although not scientifically conclusive at any rate, we
have created a video showing the orthographic 3D repre-
sentation of the 4D GRB Universe to present the commu-
nity with a means to visualise the Great Wall amongst all
GRBs with known redshift (cf. Fig. 1 and Sect. 2.3). In
the presently published video the position and distance of
the Great Wall have been marked, but we are glad to pro-
vide similar videos marking any position and distance values
upon request.

A 35% increase in the GRB sample size has allowed
us to re-explore our hypothesis regarding the existence of
the Hercules–Corona Borealis Great Wall. However, as we
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have demonstrated (Sect. 5.4), the window of opportunity
created for the GRB community by Swift may be closing.
Observer fatigue appears to be reducing the rate at which
GRBs with known redshift are measured, thus making it
harder for large-scale GRB isotropy studies to continue into
the future.

We are hopeful that this problem will be resolved be-
cause the proposed gamma-satellite mission THESEUS has
been designed to continue collecting a uniform and homoge-
neous GRB dataset. Having an infrared telescope on-board,
THESEUS can provide us with just the data we need to
study large-scale universal structures using GRBs and to
continue testing whether or not the Hercules–Corona Bore-
alis Great Wall is indeed real. If it is, it may well be the
largest observable structure in the Universe. We need THE-
SEUS to decide.
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Gott III J. R., Jurić M., Schlegel D., Hoyle F., Vogeley M.,
Tegmark M., Bahcall N., Brinkmann J., 2005, ApJ, 624, 463
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