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Abstract

The notion of block divisibility naturally leads one to introduce unitary cyclotomic poly-
nomials. We formulate some basic properties of unitary cyclotomic polynomials and study
how they are connected with cyclotomic, inclusion-exclusion and Kronecker polynomials.
Further, we derive some related arithmetic function identities involving the unitary analog
of the Dirichlet convolution.
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1 Introduction

1.1 Unitary divisors

A divisor d of n (d, n P N) is called a unitary divisor (or block divisor) if pd, n{dq “ 1,
notation d || n (note that this is in agreement with the standard notation pa || n used for prime
powers pa). If the prime power factorization of n is n “ pa1

1
¨ ¨ ¨ pass , then the set of its unitary

divisors consists of the integers d “ pb1
1

¨ ¨ ¨ pbss , where bi “ 0 or bi “ ai for any 1 ď i ď s.
The study of arithmetic functions defined by unitary divisors goes back to Vaidyanathaswamy

[29] and Cohen [4]. For example, the analogs of the sum-of-divisors function σ and Euler’s totient
function ϕ are σ˚pnq “ ř

d||n d, respectively ϕ˚pnq “ #tj : 1 ď j ď n, pj, nq˚ “ 1u, where
pj, nq˚ “ maxtd : d | j, d || nu.

Several properties of the unitary functions σ˚ and ϕ˚ run parallel to those of σ and ϕ,
respectively. For example, both functions σ˚ and ϕ˚ are multiplicative, and σ˚ppaq “ pa ` 1,
ϕ˚ppaq “ pa ´ 1 for prime powers pa (a ě 1). The unitary convolution of the functions f and g

is defined by
pf ˆ gqpnq “

ÿ

d||n

fpdqgpn{dq pn P Nq.

The set of arithmetic functions f such that fp1q ‰ 0 forms a commutative group under the
unitary convolution and the set of multiplicative functions is a subgroup. The identity is the
function ǫ, given by ǫp1q “ 1, ǫpnq “ 0 (n ą 1), similar to the case of Dirichlet convolution.
The inverse of the constant 1 function under the unitary convolution is µ˚pnq “ p´1qωpnq, where
ωpnq denotes the number of distinct prime factors of n. That is,

ÿ

d||n

µ˚
´n

d

¯

“
ÿ

d||n

µ˚pdq “ ǫpnq pn P Nq. (1)

See, e.g., the books by Apostol [1], McCarthy [14] and Sivaramakrishnan [21].

1.2 Unitary Ramanujan sums

The unitary Ramanujan sums c˚
npkq were defined by Cohen [4] as follows:

c˚
npkq “

ÿ

1ďjďn
pj,nq˚“1

ζjkn pk, n P Nq,

where ζn :“ e2πi{n. (The classical Ramanujan sums are defined similarly, but with pj, nq˚ “ 1
replaced by pj, nq “ 1.)

The identities
c˚
npkq “

ÿ

d||pk,nq˚

dµ˚pn{dq pn, k P Nq, (2)

ÿ

d||n

c˚
dpkq “ ̺npkq “

#

n if n | k;
0 otherwise,

(3)

can be compared to the corresponding ones concerning the classical Ramanujan sums cnpkq.
Note that c˚

npnq “ ϕ˚pnq, c˚
np1q “ µ˚pnq (n P N).
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1.3 Unitary cyclotomic polynomials

The cyclotomic polynomials Φnpxq are defined by

Φnpxq “
n

ź

j“1

pj,nq“1

`

x ´ ζjn
˘

. (4)

They arise as irreducible factors (see Weintraub [30]) on factorizing xn ´1 over the rationals:

xn ´ 1 “
ź

d|n

Φdpxq. (5)

By Möbius inversion it follows from (5) that

Φnpxq “
ź

d|n

´

xn{d ´ 1
¯µpdq

“
ź

d|n

´

xd ´ 1
¯µpn{dq

, (6)

where µ denotes the Möbius function.
The unitary cyclotomic polynomial Φ˚

npxq is defined by

Φ˚
npxq “

n
ź

j“1

pj,nq˚“1

`

x ´ ζjn
˘

, (7)

see [21, Ch. X]. It is monic, has integer coefficients and is of degree ϕ˚pnq. Furthermore, for any
natural number n we have

xn ´ 1 “
ź

d||n

Φ˚
dpxq (8)

and

Φ˚
npxq “

ź

d||n

´

xn{d ´ 1
¯µ˚pdq

“
ź

d||n

´

xd ´ 1
¯µ˚pn{dq

. (9)

See Section 2 for short direct proofs of these properties and further basic properties of unitary
cyclotomic polynomials.

If n is squarefree, then the unitary divisors of n coincide with the divisors of n and hence
comparing (6) with (9) yields Φ˚

npxq “ Φnpxq. In this case Φ˚
npxq is irreducible over the

rationals. However, a quick check shows, that for certain non-squarefree values of n, the
polynomial Φ˚

npxq is reducible over the rationals. For example, Φ˚
12pxq “ Φ6pxqΦ12pxq and

Φ˚
40pxq “ Φ10pxqΦ20pxqΦ40pxq. Indeed, we will show that Φ˚

n is reducible for every non-squarefree
integer n. This is a corollary of the fact that each polynomial Φ˚

npxq can be written as the product
of the cyclotomic polynomials Φdpxq, where d runs over the divisors of n such that κpdq “ κpnq,
with κpnq the squarefree kernel of n (Theorem 2). In fact, this is a consequence of a more general
result (Theorem 6) involving unitary divisors.

One can introduce the bi-unitary cyclotomic polynomials Φ˚˚
n pxq defined by

Φ˚˚
n pxq “

n
ź

j“1

pj,nq˚˚“1

`

x ´ ζjn
˘

,
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where pj, nq˚˚ stands for the greatest common unitary divisor of j and n. The degree of the
polynomial Φ˚˚

n pxq equals ϕ˚˚pnq, the bi-unitary Euler function, which is defined as ϕ˚˚pnq “
#tj : 1 ď j ď n, pj, nq˚˚ “ 1u, see the paper [26]. Although these definitions seem to be more
natural than the previous ones, the properties of Φ˚˚

n pxq and ϕ˚˚pnq are not similar to their
unitary analogs. For example, the function ϕ˚˚pnq is not multiplicative and the coefficients of
the polynomials Φ˚˚

n pxq are in general not integers (we have, e.g., Φ˚˚
6

pxq “ x3 ´ ηx2 ` ηx ` η,
where η “ p1 ` i

?
3q{2 and η “ p1 ´ i

?
3q{2).

1.4 Inclusion-exclusion and Kronecker polynomials

Let ρ “ tr1, r2, . . . , rsu be a set of increasing natural numbers satisfying ri ą 1 and pri, rjq “ 1
for i ‰ j, and put

n0 “
ź

i

ri, ni “ n0

ri
, nij “ n0

rirj
ri ‰ js, . . .

For each such ρ we define a function Qρ by

Qρpxq “
pxn0 ´ 1q ¨ ś

iăjpxnij ´ 1q ¨ ¨ ¨
ś

ipxni ´ 1q ¨ ś

iăjăkpxnijk ´ 1q ¨ ¨ ¨ . (10)

It can be shown that Qρpxq is a polynomial of degree n0

ś

ri|n0
p1 ´ 1{riq having integer coeffi-

cients. This class of polynomials was introduced by Bachman [2], who named them inclusion-
exclusion polynomials.

A Kronecker polynomial f P Zrxs is a monic polynomial having all its roots inside or on
the unit circle. It was proved by Kronecker, cf. [6], that such a polynomial is a product of a
monomial and cyclotomics and so we can write

fpxq “ xs
ź

d

Φdpxqed , (11)

with s, ed ě 0 and ed ě 1 for only finitely many d.
We will show how a unitary cyclotomic can be realized as an inclusion-exclusion cyclotomic.

As Qρpxq is monic and in Zrxs, it follows from (10) that it is Kronecker. Thus we have the
following inclusions:

tunitary cyclotomicsu Ă tinclusion-exclusion polynomialsu Ă tKronecker polynomialsu. (12)

The inclusion-exclusion polynomials that are unitary can be precisely identified (for the proof
see Section 6.1).

Theorem 1. The set of unitary polynomials Φ˚
npxq with n ě 2 equals the set of inclusion-

exclusion polynomials Qρpxq with ρ having prime power entries, with no base prime repeated.
More precisely there is a one-to-one map between these sets that sends n to ρ “ tpe1

1
, . . . , pess u,

where pe1
1

¨ ¨ ¨ pess with pe1
1

ă . . . ă pess is the prime factorization of n, resulting in

Φ˚
npxq “ Qtp

e1
1

,...,p
es
s upxq.
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This theorem shows that the first inclusion in (12) is strict, e.g., Qt5,6upxq is not a unitary
cyclotomic. By Theorem 2 (or Theorem 26) any Kronecker polynomial divisible by Φdpxq2 for
some d ě 1 cannot be an inclusion-exclusion polynomial, and so also the second inclusion is
strict. Even more, it is easy to see that for both inclusions the set theoretic differences are
infinite.

We would like to point out that in this paper, with the exception of Theorem 22, the
nomination “theorem” is not used to indicate a deep result, but rather a key fact.

2 Elementary properties of unitary cyclotomic polynomials

The polynomials Φ˚
npxq have integer coefficients. This follows by induction on n by taking

into account identity (8), similar to the case of classical cyclotomic polynomials. Indeed, various
of our arguments in this section closely mirror those for cyclotomic polynomials and can, in
somewhat more detail than we provided, be found in Thangadurai [24].

By the definition (7) and (1),

log Φ˚
npxq “

n
ÿ

j“1

pj,nq˚“1

log
`

x ´ ζjn
˘

“
n

ÿ

j“1

log
`

x ´ ζjn
˘

ÿ

d||pj,nq˚

µ˚pdq.

Note that d || pj, nq˚ holds if and only if d | j and d || n. Hence

log Φ˚
npxq “

ÿ

d||n

µ˚pdq
n{d
ÿ

k“1

log
´

x ´ ζkn{d

¯

“
ÿ

d||n

µ˚pdq log
´

xn{d ´ 1
¯

,

giving (9), which by unitary Möbius inversion is equivalent to (8).
The unitary divisors of prime powers pa (a ě 1) are 1 and pa. We deduce by (8) that

Φ˚
papxq “ xp

a ´ 1

x ´ 1
“

a
ź

j“1

Φpjpxq. (13)

From formula (9) we immediately see that the Taylor series of Φ˚
npxq around x “ 0 has

integer coefficients, showing again that the coefficients of Φ˚
npxq have to be integers.

Using (1), we see that, for n ą 1, we can rewrite (9) as

Φ˚
npxq “

ź

d||n

´

1 ´ xd
¯µ˚pn{dq

. (14)

From (14) and (9) it follows that for n ą 1

Φ˚
npxq “ xϕ

˚pnqΦ˚
np1{xq, (15)

in other words, unitary cyclotomics are self-reciprocal.
For odd n ą 1, we have

Φ˚
2npxq “ Φ˚

np´xq. (16)
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In order to prove this we invoke (14) and group the even and odd unitary divisors together.
This leads to

Φ˚
2npxq “

ź

2d||2n

p1 ´ x2dqµ˚pn{dq
ź

d||n

p1 ´ xdqµ˚p2n{dq;

“
ź

d||n

p1 ´ x2dqµ˚pn{dq
ź

d||n

p1 ´ xdq´µ˚pn{dq;

“
ź

d||n

p1 ` xdqµ˚pn{dq “ Φ˚
np´xq.

Let k ě 1 be an integer and p ∤ n a prime. The unitary divisors of pkn come in two flavors:
those of the form pkd with d || n, and those of the form d || n. On grouping these together we
obtain from (14) that

Φ˚
pkn

pxq “ Φ˚
npxpkq
Φ˚
npxq . (17)

Also,

Φ˚
pknpxq “

k´1
ź

j“0

Φ˚
pnpxpj q. (18)

To see this we write each of the terms appearing in right hand side as a quotient of two
unitaries given by (17). We so obtain a quotient of two unitaries, which equals the left hand
side of (18) by (17) again.

Let Φ˚
npxq “ xϕ

˚pnq ` b1x
ϕ˚pnq´1 ` ¨ ¨ ¨ ` bϕ˚pnq. It follows, similar to the classical case, that

b1 “ ´c˚
np1q “ ´µ˚pnq for every n P N.

3 Unitary cyclotomic polynomials as products of cyclotomic

polynomials

Recall that κpnq “ ś

p|n p is the square-free kernel of n.

Theorem 2. For any natural number n we have

Φ˚
npxq “

ź

d|n
κpdq“κpnq

Φdpxq. (19)

Proof. Combination of (9) with (5) yields

Φ˚
npxq “

ź

d||n

´

xd ´ 1
¯µ˚pn{dq

“
ź

d||n

´

ź

δ|d

Φδpxq
¯µ˚pn{dq

. (20)

We thus find that Φ˚
npxq “ ś

δ|n Φδpxqeδ , with

eδ “
ÿ

kδ||n

µ˚
´ n

kδ

¯

. (21)

6



The exponents eδ are integers that are to be determined. Given a divisor δ of n, we let d

be the smallest multiple of δ that is a block divisor of n. Note that if kδ || n, then there is an
integer m such that kδ “ md. The condition kδ || n is in general not equivalent with k || n{δ,
however the condition md || n is equivalent with m || n{d. Using these observations and (1) we
conclude that

eδ “
ÿ

kδ||n

µ˚
´ n

kδ

¯

“
ÿ

md||n

µ˚
´ n

md

¯

“
ÿ

m||n{d

µ˚
´ n

md

¯

“ ǫ
´n

d

¯

. (22)

It follows that eδ “ 0, except when n is the smallest multiple of δ that is a block divisor of n
(which occurs if and only if κpδq “ κpnq), in which case eδ “ 1.

Remark 3. An alternative form of (19) is

Φ˚
npxq “

ź

d| n
κpnq

Φκpnqpxdq, (23)

which is obtained on noting that

Φ˚
npxq “

ź

d|n
κpdq“κpnq

Φdpxq “
ź

dκpnq|n

Φdκpnqpxq “
ź

d| n
κpnq

Φκpnqpxdq,

where in the last step we used repeatedly that Φpnpxq “ Φnpxpq if p | n.
Remark 4. Theorem 1 says that Φ˚

npxq is an inclusion-exclusion polynomial associated to the
prime power factorization of n. A formula of Bachman giving the factorization of an inclusion-
exclusion polynomial in cyclotomic polynomials (Theorem 26), then leads to an alternative proof
of Theorem 2 (Section 6.1).

Remark 5. The convolution defined by

pf ˛ gqpnq “
ÿ

d|n
κpdq“κpnq

fpdqgpn{dq pn P Nq

was mentioned by Subbarao [23] and investigated by Thrimurthy [25]. It preserves the multi-
plicativity of functions, although it is noncommutative and nonassociative. However, as it is
easy to check, for any arithmetic functions f, g and h,

pf ˛ gq ˛ h “ f ˛ pg ˚ hq, (24)

where ˚ is the Dirichlet convolution. See also the review MR0480305 (58 # 478) of [25].

Our next theorem generalizes Theorem 2. Indeed, Theorem 2 follows from (25) on making
the choice gpnq “ log Φnpxq (hence fpnq “ logpxn ´ 1q) and g˚pnq “ log Φ˚

npxq. In addition,
with this choice (26) yields the identity

Φnpxq “
ź

d|n
κpdq“κpnq

Φ˚
dpxqµpn{dq pn P Nq,

expressing a cyclotomic in terms of unitary cyclotomics. Note that if d | n, then κpdq “ κpnq
holds iff κpnq | d iff κpn{dq | d.

7



Theorem 6. Let g, g˚ : N Ñ C be arbitrary functions. Put fpnq “ ř

d|n gpdq. Assume that

fpnq “
ÿ

d||n

g˚pdq pn P Nq.

Then
g˚pnq “

ÿ

d|n
κpdq“κpnq

gpdq pn P Nq (25)

and
gpnq “

ÿ

d|n
κpdq“κpnq

g˚pdqµpn{dq pn P Nq. (26)

Remark 7. In Theorem 6 the function g is multiplicative if and only if g˚ is multiplicative.

Proof of Theorem 6. By Möbius inversion we have

gpnq “
ÿ

d|n

fpdqµpn{dq (27)

and
g˚pnq “

ÿ

d||n

fpdqµ˚pn{dq. (28)

These identities show that given g, the function g˚ is uniquely determined and reversely. We
have

g˚pnq “
ÿ

d||n

µ˚pn{dq
ÿ

δ|d

gpδq “
ÿ

δ|n

gpδqeδ ,

where eδ is given by (21). The proof of (25) is now easily completed on invoking (22), cf. the
proof of Theorem 2.

Now we prove identity (26). Put f :“ g, g :“ 1 (constant 1 function), h :“ µ in identity
(24). This gives

pg ˛ 1q ˛ µ “ g ˛ p1 ˚ µq.
Here, g ˛ 1 “ g˚ by (25). Also, 1 ˚ µ “ ǫ, which is a basic property of the classical Möbius

function. Since the function ǫ is the identity for the ˛ operation, we conclude that

g˚ ˛ µ “ g,

completing the proof.

4 Further properties of unitary cyclotomic polynomials

4.1 Calculation of Φ˚
np˘1q

In this section we determine Φ˚
np˘1q. For completeness and comparison we mention the

analogous classical results for Φnp1q.
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Let Λ˚ denote the unitary analog of the von Mangoldt function Λ. It is given by

Λ˚pnq “
#

a log p if n “ pa is a prime power (a ě 1);

0 otherwise,
(29)

and satisfies
ř

d||nΛ
˚pdq “ log n (analogous to the classical identity

ř

d|n Λpdq “ log n).

Lemma 8. We have

Φnp1q “

$

’

&

’

%

0 if n “ 1;

p if n “ pe;

1 otherwise,

and Φ˚
np1q “

$

’

&

’

%

0 if n “ 1;

pe if n “ pe;

1 otherwise,

with p a prime number and e ě 1.

In terms of the (unitary) von Mangoldt function this can be reformulated as follows.

Lemma 9. We have Φ1p1q “ 0 and Φ˚
1p1q “ 0. For n ą 1 we have

Φnp1q “ eΛpnq and Φ˚
np1q “ eΛ

˚pnq.

Proof of Lemma 8. From (5) and (8) we obtain (respectively)

xn ´ 1

x ´ 1
“

ź

d|n, dą1

Φdpxq and
xn ´ 1

x ´ 1
“

ź

d||n, dą1

Φ˚
dpxq.

Thus (respectively)

n “
ź

d|n, dą1

Φdp1q and n “
ź

d||n, dą1

Φ˚
dp1q. (30)

By Möbius inversion the latter identities for all n ą 1 determine Φmp1q and Φ˚
mp1q uniquely for

all m ą 1. It is thus enough to verify that the formulae claimed for Φmp1q and Φ˚
mp1q verify

(30), which is evident.

Remark 10. It is possible to prove Lemma 9 with the (unitary) von Mangoldt function naturally
appearing in the proof. To do so one proceeds as in the proof of Lemma 8 and deduces (30) and
concludes that these equations uniquely determine Φmp1q and Φ˚

mp1q. It remains then (after
taking logarithms) to prove the well-known (trivial) identity log n “ ř

d|n, dą1
Λpdq “ ř

d|n Λpdq,
and likewise in the unitary case, log n “ ř

d||n, dą1
Λ˚pdq “ ř

d||nΛ
˚pdq.

It is not much more difficult to evaluate Φ˚
np´1q.

Lemma 11. We have

Φ˚
np´1q “

$

’

’

’

’

&

’

’

’

’

%

´2 if n “ 1;

0 if n “ 2a;

pb if n “ 2apb;

1 otherwise,

with p an odd prime and a, b ě 1.
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Proof. Follows from the identity (23), Lemma 8 and the well-known result

Φnp´1q “

$

’

’

’

’

&

’

’

’

’

%

´2 if n “ 1;

0 if n “ 2;

p if n “ 2pe;

1 otherwise,

(31)

with p ě 2 a prime number and e ě 1.
Assume that Φ˚

np´1q ‰ 1. By (23) it follows that Φ˚
np´1q “ Φκpnqp´1qeΦκpnqp1qf , for some

integers e, f ě 0. The formulas for Φnp˘1q then show that κpnq|2p, with p an odd prime, and
so n “ 2apb, a, b ě 0. In case a, b ě 1, we have Φ˚

np´1q “ Φ2pp´1qbΦ2pp1qab´b “ Φ2pp´1qb “ pb,

by, respectively, (23), Lemma 8 and (31). The remaining cases are left to the reader.

Using identity (23) one can likewise immediately evaluate Φ˚
np1q from Φnp1q.

4.1.1 Some products involving the cos and sin functions

It is known that for any n ě 2,

n
ź

j“1

pj,nq“1

sin
πj

n
“ Φnp1q

2ϕpnq
,

n
ź

j“1

pj,nq“1

cos
πj

n
“ Φnp´1q

p´4qϕpnq{2
, (32)

proved in [7] (for (32) in case n is odd only) and [28] (for any n ě 2) by two different methods,
see also [13]. Here we provide the unitary analogs of these products, which in combination with
the results of the previous section allow one to explicitly evaluate them.

Theorem 12. For any n ě 2,
n

ź

j“1

pj,nq˚“1

sin
πj

n
“ Φ˚

np1q
2ϕ

˚pnq
, (33)

n
ź

j“1

pj,nq˚“1

cos
πj

n
“ Φ˚

np´1q
p´4qϕ˚pnq{2

. (34)

Proof. We adapt the approach in [28] to the unitary case. We need the simple formula

S˚pnq :“
n

ÿ

j“1

pj,nq˚“1

j “ nϕ˚pnq
2

pn ě 2q, (35)

which can be shown similarly to the usual case. We will only prove (34), the proof of (33) being
similar. The product in the left hand side of (34) we denote by P ˚pnq.
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If n “ 2a, a ě 1, then we note that p2a´1, 2aq˚ “ 1 and so the product in (34) is zero. By
Lemma 11 it follows that also Φ˚

np´1q is zero and thus in this case (34) holds. Therefore we
may assume that n has an odd prime factor, which implies that ϕ˚pnq is even. By (7) and (35)
we then see that

Φ˚
np´1q “

ź

pj,nq˚“1

`

´1 ´ ζjn
˘

“
ź

pj,nq˚“1

´

´ζj{2
n

¯ ´

ζj{2
n ` ζ´j{2

n

¯

“ 2ϕ
˚pnqP ˚pnq

ź

pj,nq˚“1

´

´ζj{2
n

¯

“ p´2qϕ˚pnqζS
˚pnq{2

n P ˚pnq

“ p´2qϕ˚pnqζnϕ
˚pnq{4

n P ˚pnq “ p´2iqϕ˚pnqP ˚pnq,
“ p´4qϕ˚pnq{2P ˚pnq,

completing the proof of (34).

Remark 13. A completely similar argument leads to a proof of (32). The argument in that
case is even easier, as ϕpnq is even for n ě 3 and it is not necessary to deal with the powers of
two separately.

4.1.2 Calculation of Φ˚
n at other roots of unity

It is known how to explicitly evaluate Φnpζmq for m P t3, 4, 5, 6, 8, 10, 12u, see [3]. This in
combination with identity (23) then allows one to evaluate Φ˚

npζmq for these values of m.

4.2 Unitary version of Schramm’s identity

In this section x will be a real variable. It was proved by Schramm [19] that

Φnpxq “
n

ź

j“1

´

xpj,nq ´ 1
¯cosp2πj{nq

px ą 1, n P Nq.

We will prove the following unitary analog.

Theorem 14. We have

Φ˚
npxq “

n
ź

j“1

´

xpj,nq˚ ´ 1
¯cosp2πj{nq

px ą 1, n P Nq.

This is, in fact, a corollary of a more general identity concerning the discrete Fourier trans-
form (DFT)

F ˚
f pm,nq :“

n
ÿ

k“1

fppk, nq˚qζkmn (36)

of functions involving the quantity pk, nq˚.
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Theorem 15. Let f be an arbitrary arithmetic function. For every m,n ě 1,

F ˚
f pm,nq “

ÿ

d|pm,nq˚

d pµ˚ ˆ fqpn{dq. (37)

Furthermore, we have
F ˚
f pm,nq “

ÿ

d||n

fpdqc˚
n{dpmq. (38)

Proof. We have by using that d || pk, nq˚ if and only if d | k and d || n,

F ˚
f pm,nq “

n
ÿ

k“1

ζkmn

ÿ

d||pk,nq˚

pµ˚ ˆ fqpdq

“
ÿ

d||n

pµ˚ ˆ fqpdq
n{d
ÿ

j“1

ζ
jm
n{d “

ÿ

d||n
pn{dq|m

pµ˚ ˆ fqpdqn
d
,

which proves (37).
By grouping the terms according to the values of pk, nq˚ “ d, we have

F ˚
f pm,nq “

ÿ

d||n

fpdq
r“n{d

ÿ

r“1
pr,n{dq˚“1

ζrmn{d “
ÿ

d|n

fpdqc˚
n{dpmq,

which proves (38),

Remark 16. By (2) and (3) the unitary Ramanujan sum satisfies c˚
.

pmq “ ̺
.

pmq ˆ µ˚. Thus,
the sum in (37) equals p̺

.
pmq ˆµ˚ ˆ fqpnq “ pc˚

.

pmq ˆ fqpnq, leading to another proof of (38).

Remark 17. Identity (37) shows that if f is a real valued function, then so is F ˚
f pm,nq and

hence in this case the factor ζkmn in (36) can be replaced by cosp2πkm{nq. More exactly, if f is
a real valued function, then

n
ÿ

k“1

fppk, nq˚q cosp2πkm{nq “
ÿ

d|pm,nq˚

d pµ˚ ˆ fqpn{dq, (39)

n
ÿ

k“1

fppk, nq˚q sinp2πkm{nq “ 0.

In the special case fpnq “ n (n P N) and m “ 1 we obtain the following identities:

n
ÿ

k“1

pk, nq˚ cosp2πk{nq “ n
ÿ

d||n

µ˚pdq
d

“ ϕ˚pnq and
n

ÿ

k“1

pk, nq˚ sinp2πk{nq “ 0.

In the classical case where pk, nq˚ is replaced by pk, nq and ϕ˚pnq is replaced by ϕpnq, these were
pointed out by Schramm [18, 19].

12



Proof of Theorem 14. By taking fpnq “ logpxn ´ 1q we have by (9) that

pµ˚ ˆ fqpnq “
ÿ

d||n

µ˚pdq logpxn{d ´ 1q “ log Φ˚
npxq.

The assumption that x ą 1 ensures that f is real. It then follows from (39) that

n
ź

j“1

´

xpj,nq˚ ´ 1
¯cosp2πjm{nq

“
ź

d||pm,nq˚

Φ˚
n{dpxqd pm,n P Nq.

The proof is completed on putting m “ 1.

5 The coefficients of unitary cyclotomic polynomials

We write

Φ˚
npxq “

8
ÿ

j“0

a˚
npjqxj . (40)

This notation looks perhaps strange to the reader, but implicitly defines the coefficients for every
j, which serves our purposes. In [11] the following result is proven.

Theorem 18. Let m ě 1 be fixed. We have ta˚
mnpjq : n ě 1, j ě 0u “ Z.

Given any polynomial f, its height hpfq is defined as its maximum coefficient in absolute
value.

Conjecture 19. For any given natural number m there is a cyclotomic polynomial having height
m.

This conjecture was put forward by Kosyak et al. [12]. Here we propose the following con-
jecture.

Conjecture 20. For any given natural number m there is a unitary cyclotomic polynomial
having height m.

These two conjectures are closely connected.

Proposition 21. If Conjecture 19 is true, then so is Conjecture 20.

Proof. Suppose that hpΦnq “ m. Then, by elementary properties of cyclotomic polynomials,
hpΦκpnqq “ m. Now note that hpΦ˚

κpnqq “ hpΦκpnqq (since Φ˚
κpnq “ Φκpnq).

The best result available to date regarding these two conjectures is the following.

Theorem 22. Almost all positive integers occur as the height of an (unitary) cyclotomic poly-
nomial. Specifically, for any fixed ǫ ą 0, the number of positive integers ď x that do not occur
as a height is !ǫ x

3{5`ǫ. Under the Lindelöf Hypothesis this number is !ǫ x
1{2`ǫ.

Proof. The result is actually a corollary of [12, Theorem 4]. In that theorem only certain special
cyclotomic polynomials of the form Φpqr, with p ă q ă r primes, feature. As Φ˚

pqr “ Φpqr, we
are done.

13



This theorem is deep, as it relies on deep results from analytic number theory on gaps
between consecutive primes.

Let k be a squarefree integer. Consider the set

Bpkq :“ thpΦ˚
nq : κpnq “ ku. (41)

Note that if we replace hpΦ˚
nq by hpΦnq this set will be thpΦkqu.

Lemma 23. Let k be a squarefree integer. Suppose that k has at most two distinct prime factors.
Then Bpkq “ t1u.

Proof. If k is a prime power, the conclusion follows from (13). If k has precisely two distinct
prime factors, say p and q, we can write Φ˚

npxq “ Qtpe,qfupxq by Theorem 1. The polynomial
Qtpe,qfupxq can be interpreted as the semigroup polynomial associated to the numerical semi-

group xpe, qf y and as such will have height 1 (see Jones et al. [11] or Moree [16]). A shorter, but
less conceptual, proof is obtained on merely invoking Lemma 4 of [8].

Remark 24. By the above proof and (16) we also have hpΦ˚
2peqf

q “ 1. However, it is not always

true that hpΦ˚
4peqf

q “ 1 (for example hpΦ˚
60

q “ 2).

Computer work by Bin Zhang suggests that Bpkq will be large if k has at least three prime
factors. This suggests that perhaps there is hope of proving a stronger result on heights assumed
by unitary cyclotomic polynomials than is provided by Theorem 22.

Question 25. Suppose that k has at least three odd prime factors. Is Bpkq unbounded?

If k has four or more prime factors, we would not be surprised if Bpkq is unbounded. If it
has precisely three factors, the situation is not so clear. For example,

maxthpΦ˚
nq : n “ 2a3b5c, a ą 0, b ą 0, c ą 0, 1 ă n ă 107u “ 15.

6 More on inclusion-exclusion polynomials

The following result gives the factorization of an inclusion-exclusion polynomial Qρpxq into
cyclotomics.

Theorem 26 (Bachman, [2]). Let ρ “ tr1, r2, . . . , rsu be a set of increasing natural numbers
satisfying ri ą 1 and pri, rjq “ 1 for i ‰ j. Put

Dρ “ td : d|
s

ź

i“1

ri and pd, riq ą 1 for all iu.

Then Qρpxq “ ś

dPDρ
Φdpxq.

Our proof of Theorem 1 makes use of the following basic property of inclusion-exclusion
polynomials.

Theorem 27. Suppose that Qρ1pxq “ Qρ2pxq, then ρ1 “ ρ2.

14



Its proof rests on the following easy lemma.

Lemma 28. A Kronecker polynomial can be written as

fpxq “ xs
ź

dPD

pxd ´ 1qed , (42)

where D is a unique finite set of integers and s ě 0 and the ed ‰ 0 are unique integers.

First proof. From (11) and (6) we deduce that fpxq can be written as claimed. It remains
to show the uniqueness. The integer s ě 0 is merely the order of fpxq in x “ 0. We start
by taking D to be the empty set. We now consider fpxq{xs around x “ 0. Either fpxq “ 1
and we are done, or for some ǫ1 P t´1, 1u we have ǫ1fpxq “ ´1 ` axd1 ` Opxd1`1q with
a ‰ 0 an integer. In case a is odd we have pxd1 ´ 1qa “ ´1 ` axd1 ` Opxd1`1q, in case a

is even we have pxd1 ´ 1qa “ 1 ´ axd1 ` Opxd1`1q. We add d1 to D and put ed1 “ a. Put
gpxq :“ fpxqpxd1 ´ 1q´a. Note that either gpxq “ 1 or for an appropriate ǫ2 P t´1, 1u the
identity ǫ2gpxq “ ´1` bxd2 `Opxd2`1q, with d2 ą d1 and b ‰ 0 holds. We now add d2 to D and
put ed2 “ b. We continue in this way until we arrive at the polynomial 1 (and this will happen
as we know a priori that D is finite).

Second proof. By (11) we can write fpxq “ xspx ´ 1qe1gpxq, with gpxq “ ś

dě2
Φdpxqed . As gpxq

is the product of cyclotomic Φd with d ě 2, it is selfreciprocal and satisfies gp0q “ 1. Note
that s and e1 are the order of fpxq in x “ 0, respectively x “ 1, and therefore unique. Thus,
w.l.o.g., we may assume that fpxq is selfreciprocal and satisfies fp0q “ 1. Around x “ 0 we
either have fpxq “ 1 or fpxq “ 1´ axd1 `Opxd1`1q with a ‰ 0 an integer and d1 ě 1. Note that
fpxq “ p1´xd1qa `Opxd1`1q. We start with setting D to be the empty set. We add d1 to D and
put ed1 “ a. Put gpxq :“ fpxqp1´xd1q´a. Note that either gpxq “ 1 or gpxq “ 1´bxd2 `Opxd2`1q
with d2 ą d1 and b ‰ 0. We now add d2 to D and put ed2 “ b. We continue in this way until
we arrive at the polynomial 1 (and this will happen as we know a priori that D is finite). We
obtain

fpxq “
ź

dPD

p1 ´ xdqed “
ź

dPD

pxd ´ 1qed ,

with D and the ed unique.

Remark 29. By a similar reasoning one can show that if fpxq P Zrrxss satisfies fpxq ” 1 pmod xq,
there exist unique integers e1, e2, . . . such that in Zrrxss

fpxq “
8

ź

n“1

p1 ´ xnqen .

This is the so-called Witt expansion which arises in many areas of mathematics, see for example
Moree [15] for more information.

Proof of Theorem 27. Given an inclusion-exclusion polynomial fpxq in the standard form fpxq “
ř

i aix
i, we give a procedure leading to a unique ρ “ tr1, . . . , rmu such that fpxq “ Qρpxq. As

fpxq is a Kronecker polynomial satisfying fp0q “ 1, by Lemma 28 we can write

fpxq “
ź

dPD

pxd ´ 1qed ,
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where D and the ed ‰ 0 are unique and computable. Comparison with (10) then shows that
D “ tn0, ni, nij , nijk, . . .u. The question is know which ρ correspond to the set D. We know for
example, that whatever ρ is, the product of its ri is certainly unique and equals n0 “ maxD.

The numbers ri themselves, also turn out to be unique. We order the elements in D in such a
way that d1 ă d2 ă . . . . We put r1 “ d1. If d2 is coprime with r1 we put r2 “ d2, if not we
consider d3. If an di is coprime to every r1, . . . , rg we have at a certain point, we put rg`1 “ di.

If rm is the last r number so found, we have fpxq “ Qρpxq with ρ “ tr1, . . . , rmu uniquely
determined.

6.1 Unitary cyclotomics as inclusion-exclusion polynomials

Armed with Theorem 27 we are now ready to prove Theorem 1.

Proof of Theorem 1. Let n ě 2 be an integer and
śs

i“1
peii its canonical factorization with pe1

1
ă

pe2
2

ă . . . ă pess . On comparing formula (9) with (10) it follows that Φ˚
npxq “ Qtp

e1
1

,...,p
es
s upxq. Re-

versely, given any ascending sequence of prime powers pe1
1

ă . . . ă pess with distinct base primes
p1, . . . , ps, the polynomial Qtp

e1
1

,..., p
es
s upxq is seen to correspond to Φ˚

npxq with n “ śs
i“1

peii . The
one-to-one part of the claim is a consequence of Theorem 27.

Theorem 1 together with Theorem 26 can be used to reprove Theorem 2:

Alternative proof of Theorem 2. For n “ 1 the result is obviously true. Now let n ě 2 be
an integer and

śs
i“1

peii its canonical factorization with pe1
1

ă pe2
2

ă . . . ă pess . Put ρ “
tpe1

1
, . . . , pess u. Then by Theorem 1, respectively Theorem 26,

Φ˚
npxq “ Qρpxq “

ź

dPDρ

Φdpxq,

with Dρ “ td : d | n, p1 ¨ ¨ ¨ ps | du “ td : d | n, kpdq “ kpnqu.

7 Applications of Theorem 6

By selecting gpnq “ cnpkq, g˚pnq “ c˚
npkq (Ramanujan, resp. unitary Ramanujan sums),

where fpnq “ ̺npkq, we deduce from Theorem 6 the following identities.

Corollary 30. For any n, k P N we have

c˚
npkq “

ÿ

d|n
κpdq“κpnq

cdpkq (43)

and
cnpkq “

ÿ

d|n
κpdq“κpnq

c˚
dpkqµpn{dq.

Let idspnq “ ns (s P R). In the case gpnq “ Jspnq :“ pµ ˚ idsqpnq (Jordan function of order
s), g˚pnq “ J˚

s pnq :“ pµ˚ ˆ idsqpnq, the unitary Jordan function of order s, where fpnq “ ns, we
deduce the following corollary of Theorem 6.
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Corollary 31. For every n P N, s P R we have

J˚
s pnq “

ÿ

d|n
κpdq“κpnq

Jspdq (44)

and
Jspnq “

ÿ

d|n
κpdq“κpnq

J˚
s pdqµpn{dq.

Identity (43) was deduced by McCarthy [14, Ch. 4], while (44) was obtained by Cohen [5,
Lemma 3.1] using different reasonings. If s “ 1, then J1pnq “ ϕpnq, J˚

1 pnq “ ϕ˚pnq and we
deduce the following corollary.

Corollary 32. We have
ϕ˚pnq “

ÿ

d|n
κpdq“κpnq

ϕpdq pn P Nq.

This result also follows by setting k “ n in Corollary 30, or by comparing the degrees of the
polynomials in (19).

We remark that Cohen [5, Lemma 4.1] also showed that the identity

κspnq “
ÿ

d|n
κpdq“κpnq

dsµ2pdq pn P Nq

holds for any s.
Putting k “ 1 in Corollary 30 and noting that κpnq is the only squarefree divisor d of n

satisfying κpdq “ κpnq, we obtain the following corollary.

Corollary 33. We have

µ˚pnq “
ÿ

d|n
κpdq“κpnq

µpdq “ µpκpnqq pn P Nq.

On taking gpnq “ Λpnq, g˚pnq “ Λ˚pnq and by the well-known identity
ř

d|n Λpdq “ log n,
we see that fpnq “ log n and obtain the final corollary.

Corollary 34. We have
Λ˚pnq “

ÿ

d|n
κpdq“κpnq

Λpdq pn P Nq.

From it we deduce the truth of (29).
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8 Connection with unitary Ramanujan sums

Certain formulas concerning the unitary cyclotomic polynomials and unitary Ramanujan
sums can be easily deduced from their classical analogues, by using the above identities. For
example, we have

Corollary 35. For any n ą 1 and x P C, |x| ă 1,

Φ˚
npxq “ exp

˜

´
8
ÿ

k“1

c˚
npkq
k

xk

¸

. (45)

Proof. It is known that for any n ą 1 and |x| ă 1,

Φnpxq “ exp

˜

´
8
ÿ

k“1

cnpkq
k

xk

¸

, (46)

see Nicol [17, Cor. 3.2], Tóth [27, Th. 1] or Herrera-Poyatos and Moree [9]. By Theorem 2 and
the identity (43) we then obtain

Φ˚
npxq “

ź

d|n
κpdq“κpnq

Φdpxq “ exp

¨

˚

˚

˝

´
8
ÿ

k“1

xk

k

ÿ

d|n
κpdq“κpnq

cdpkq

˛

‹

‹

‚

“ exp

˜

´
8
ÿ

k“1

c˚
npkq
k

xk

¸

,

completing the proof.

For any n ą 1 the series
ř8

k“1
cnpkq{k converges, see, e.g., Hölder [10]. Therefore, Lemma 9

in combination with (46) gives

log Φnp1q “ Λpnq “ ´
8
ÿ

k“1

cnpkq
k

pn ą 1q. (47)

The second identity was first discovered by Ramanujan and expresses an arithmetic function
as an infinite series involving Ramanujan sums (for a different proof see Sivaramakrishnan [21,
Theorem 87]). Such expressions are now called Ramanujan expansions, see, e.g., Schwarz and
Spilker [20, Chapter VIII].

The convergence of
ř8

k“1
cnpkq{k for n ą 1 in combination with (43) shows that also

ř8
k“1

c˚
npkq{k converges for any n ą 1. Thus, by Lemma 9 again,

log Φ˚
np1q “ Λ˚pnq “ ´

8
ÿ

k“1

c˚
npkq
k

pn ą 1q. (48)

The second identity in (48) was obtained by Subbarao [22], without referring to unitary
cyclotomic polynomials and with an incomplete proof, namely without showing that the corre-
sponding series converges.
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[28] M. Ţena, Roots of unity (in Romanian), Bibl. Soc. Şt. Mat. Romania, 2005, 164 pp.
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