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Markovian Image Models and their Applications in
Unsupervised Image Segmentation

Zoltan Kato

Abstract—In this report, we present the main results of our
work supported by the OTKA K-46805 grant during 2004—-2006:

1) We have proposed a monogrid MRF model which is able
to combine color and texture features in order to improve
the quality of segmentation results. We have also solved
the estimation of model parameters [1].

2) We have proposed a novel RIMCMC sampling method
which is able to identify multi-dimensional Gaussian mix-
tures. Using this technique, we have developed a fully Cliques:
automatic color image segmentation algorithm [2], [3]. )

3) A new multilayer MRF model has been proposed which is
able to segment an image based on multiple cues (such as o O2@)
color, texture, or motion) [4].

4) A new shape prior, called 'gas of circles’ has been intro-
duced and applied to tree crown segmentation using active
contour models [5], [6].

Fig. 1. First order neighborhood system with corresponding cliques [1]-[3].

|. UNSUPERVISEDSEGMENTATION: A PROBABILISTIC data. These are described B(w), the prior, which tells us how
APPROACH well any occurrencer satisfies these properties. For that purpase,

The simplest statistical model for an image consists of the prod&-modeled as a discrete random variable taking values in the set of
bilities of pixel classes. The knowledge of the dependencies betwdahelsA = {1,2,..., L}. The set of these labels = {ws,s € S}
nearby pixels can be modeled by a Markov random Field (MRA} a random field, called thabel processFurthermore, the observed
Such models are quite powerful even if it is not easy to determig@lor features are supposed to be a realizafidnrom another random
the values of the parameters which specify a MRF. If each pixBeld, which is a function of the label process Basically, theimage
class is represented by a different model then the observed ima&¥jecess’ represents the manifestation of the underlying label process
may be viewed as a sample from a realization of an underlyi@Ice the prior P(w) represents the simple fact that segmentations
label field. Unsupervised segmentation can therefore be treatedSBguId be locally homogeneous. Factoring the above distributions
an incomplete data problerwhere the pixel values are observedand applying the Bayes theorem gives us psterior distribution
the label field is missing and the associated class model parametétsy|7) o« P(F|w)P(w). Note that the constant factdr/P(F)
including the number of classeseed to be estimated. Due to thehas been dropped as we are only interested iwhich maximizes
difficulty of estimating the number of pixel classes (or clustersjhe posterior, i.e. the Maximum A Posteriori (MAP) estimate of the
unsupervised algorithms often assume that this parameteroiwn hidden fieldw:

a priori [1], [4]. When the number of pixel classes is also being ~
estimated, the unsupervised segmentation problem may be treated as W = argmax P(F | w)P(w)
a model selection probleraver a combined model space.

Our approach [1]-[3] consists of building a Bayesian image model . .
using a first order MRF. The observed image is represented by Unsupervised Segmentation of Color Textured Images
a mixture of multivariate Gaussian distributions while inter-pixel The models of the above distributions depend also on certain
interaction favors similar labels at neighboring sites. In a Bayesi@arameters. Since neither these parametersurierknown, both has
framework, we are interested in thwosterior distributionof the to be inferred from the only observable entify. This is known in
unknowns given the observed image. The model assumes that stasistics as théncomplete datgroblem.
real world scene consists of a set of regions whose observed featureshe proposed segmentation model [1] consists of an MRF defined
F (such as color, texture, or motion) changes slowly, but acrosger a nearest neighborhood system (see Fig. 1) and pixel classes
the boundary between them, they change abruptly. What we wae represented by multivariate Gaussian distributions. This kind
to infer is alabeling w consisting of a simplified, abstract versionof modelization corresponds well to our features: Texture feature
of the input image: regions has a constant value (calledbal images (extracted by Gabor filters) are constructed in such a way
in our context) and the discontinuities between them form a curtleat similar textures map to similar intensities. Hence pixels with a
- the contour. Such a labeling specifies asegmentationTaking given texture will be assigned a well determined value with some
the probabilistic approach, one usually wants to come up withvariance. Furthermore, pixels with similar color map to their average
probability measureon the set) of all possible segmentations of color. Putting these feature distributions into one multivariate Normal
the input image and then select the one with the highest probabilitgixture, the modes will correspond to clusters of pixels which
Note that() is finite, although huge. A widely accepted standard, alsre homogeneous in both color and texture properties. Therefore
motivated by the human visual system, is to construct this probabilitggions will be formed where both features are homogeneous while
measure in a Bayesian framework. First, we have to quantify hdwundaries will be present where there is a discontinuity in either
well any occurrence af fits F. This is expressed by the probabilitycolor or texture. Applying these ideas, theage process” can be
distribution P(F|w) - theimaging modelSecond, we define a set offormalized as follows:P(f, | ws) follows a Normal distribution
properties that any segmentationrmust posses regardless the imagév (i, X), each pixel class\ € A = {1,2,...,L} is represented
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by its mean vectorzi, and covariance matriX32,. The whole parameters is simple:
posterior can now be expressed as a first order MRF by including the K
contribution of the likelihood term via the singletons (i.e. pixel sites PN = =2 (4)
s € 8). Indeed, the singleton energies directly reflect the probabilistic D b
modeling of labels without context, while doubleton clique potentials . 1 5=
express relationship between neighboring pixel labels. Thus the Bx = i Z P(A| di)d; ®)
energy function of the so defined MRF image segmentation model i=1
has the following form: 1 & oL oo
- . Sy o= g D PO di)(di— )" (di— i) (6)
> (mv/en =0+ 5(F. - B3 (F - )T =
s€8 where Ky = > P(\ | d;). Basically the posterior®( |
d;) are used as a weight of the data vectors. They express the
+8 Z 8(ws, wr) (@) contribution of a particular data poia; to the classh.

{sryec ® Go to Stepd until convergence. Each iteration is guaranteed

where > 0 is a weighting parameter controlling the importance to increase the likelihood of the estimates. The algorithm is
of the prior. As 3 increases, the resulting regions become more Stopped when the change of the log-likelihoddis less than
homogeneous. a predetermined threshold (our test cases u$ed).
.The proposed algorithm has been tested on a variety of color

The proposed segmentation model has the following parameters: - ;
images. We compared segmentation results using color-only, texture-

1) The weight of the prior term, only and combined (colartexture) features [1] and found in all

2) the number of pL)(eI classes, . . test-cases that segmentation based purely on texture gives fuzzy

3) the mean vectofi, and covariance matrii, of each class o nqaries but usually homogeneous regions, whereas segmentation
A €A based on color is more sensitive to local variations but provides

The automatic determination df will be addressed in Section I- sharp boundaries. As for the combined features, the advantages of
B. While L strongly depends on the input image dafais largely both color and texture based segmentation have been preserved: we
independent of it. Experimental evidence suggests that the modptained sharp boundaries and homogeneous regions. Results has also
is not sensitive to a particular setting ¢f [1]. We found that been compared to those obtained by the JSEG algorithm [7], a recent
setting3 > 2.0 gives satisfactory and stable segmentations. Unlikgnsupervised method for color textured image segmentation. Our
the first two parameters, the mean and covariance of the Gaussiaieghod clearly outperforms JSEG (see Fig. 2) but JSEG’s advantage
must be computed directly from the input image. Our solution tg that we do not have to specify the image dependent pararheter
this problem [1] adopts a general iterative algorithm, known as the
EM algorithm to compute the maximum likelihood estimates of th . . .
parameters of a mixture density. Basically, we will fit a Gaussiapﬁ' SeQme”ta“O” of Color Images via Reversible Jump MCMC
mixture of L components to the histogram of the image featureSampling
The observations consist of the histogram dét& = 1,..., D) of Our problem becomes much harder when the number of labels
the feature imaged) denotes the number of histogram points and thé is also unknown. We have addressed this problem in the context
dimension of a data point equals to the dimension of the combinefi color-based image segmentation [2], [3]. When this parameter is
color-texture feature space. Assuming there Arelasses, we want also being estimated, the unsupervised segmentation problem may
to estimate the mean valugs, and covariance matricés, for each be treated as anodel selectiorproblem over a combined model

pixel classA € A. space. From this point of view, becomes amodel indicatorand
The EM algorithmaims at finding parameter values which maxithe observationF is regarded as a three-variate Normmaixture
mize the normalized log-likelihood function: with L components corresponding to clusters of pixels which are

homogeneous in color.

1 D R The goal of our analysis is inference about the numbeof
L= EZIOg ZP(A | di) (2)  Gaussian mixture components (each one corresponds to a label),
i=1 AEA the component paramete® = {O, = (fi,,2x) | A € A},

. . ) the component weights, summing to 1, the inter-pixel interaction
The underlying_model is that thgomplete datancludes no.t qnly strengthg, and the segmentatian. A broadly used tool to sample
the observabled; but also thehidden datalabels £; _specifying fom the posterior distribution is the Metropolis-Hastings method.
which Gaussian process generated the dataictually, £; is also @ - Cjassical methods, however, can not be used due to the changing
vector of dimensionL and¢; = 1 if d; belongs to class\ and 0 dimensionality of the parameter space. To overcome this limitation, a
otherwise. The idea is that if labels were known, the estimation pfomising approach, called Reversible Jump MCMC (RIMCMC), has
model parameters would be equivalent to the supervised case. Helmeen adopted [2], [3]. When we have multiple parameter subspaces of
the following algorithm is alternating two steps: The estimation different dimensionality, it is necessary to devise differmave types
a tentative labeling of the data followed by updating the parameteetween the subspaces. These will be combined in a so ¢ajlad
values based on the tentatively labeled data. sampler For the color image segmentation model, the following move

Algorithm 1 (EM for Gaussian mixture identification): types are needed [2], [3]:

@ [Estimation] Replacef; with its conditional expectation based on 1) sampling the labels (i.e. re-segment the image);

the current parameter estimates. Since the labels may only take) sampling Gaussian paramet®s= {(ji,, >x)};
values 0 or 1, the expectation is basically equivalent to the 3) sampling the mixture weightsy () € A);

posterior probability: 4) sampling the MRF hyperparametgy
R 5) sampling the number of classds (splitting one mixture
PO | d)) = P(d; |3\)P(>\) ( component into two, or combining two into one).
D e Pdi] A)P(A)’ The only randomness in scanning these move types is the random
choice between splitting and merging in move (5). One iteration of
where P(\) denotes the component weight. the hybrid sampler, also calledsaveep consists of a complete pass

@ [Maximization] Then, using the current expectation of the labelsver these moves. The first four move types are conventional in the
£; as the current labeling of the data, the estimation of theense that they do not alter the dimension of the parameter space.
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a)

c)

d) t .
Original Proposed [1] JSEG [7]

Fig. 2. Segmentation results on synthetic color textured images, each with 5 classes [1].

+ dimensional random vector } /ly\ as a function of these Gaussian mixture parameters:
d+r dimensional subspace
(OO

\_/_X’ (6+,p+) = ¢(@,p, u) (7)
LIJ—l

d dimensional subspace

X [T

where the superscript denotes parameter vectors after incrementing
L. u is a set of random variables having as many elements as the
degree of freedom of joint variation of the current paramet€rsp)

and the proposa(©*,p™). Note that this definition satisfies the
Fig. 3. 4 is a diffeomorphismwhich transforms back and forth betweendimension matchingonstraint (see Fig. 3), which guarantees that one
parameter subspaces of different dimensionality [2], [8inension matching can jump back and forth between different parameter sub-spaces [2],
can be implemented by generating a random veetsuch that the dimensions [3]. This is heeded to ensure the convergence of simulated annealing
of (X, u) and X" are equal. towards a global optimum. The new parametershefand ). are
assigned by matching th@", 1¢*, 2t* moments of the component
being split to those of a combination of the two new components [2],

[3]:

Hereafter, we will focus on move (5), which requires the use of the o = bl o+pf @8)
reversible jump mechanism. This move type involves chandirixy - il o 2 T
1 and making necessary corresponding changes, ® and p. PAMy = Dy My, T Pr, My, ©)
The split proposal beg;ns by randomly choosing a claaswith pa(frfis +3)) = pi’l (ﬁ}“lﬁ}fr + 2;’1)
. AP split _ S — —
a uniform probability P’% " (A\) = 1/L. Then L is increased byl +pi, (“L“LT +3h) (10)

and X is split into A1 and A2. In doing so, a new set of parameters
need to be generated. Altering changes the dimensionality of theThere are 10 degrees of freedom in splittingsince covariance
variables® and p. Thus we shall define a deterministic functign matrices are symmetric. Therefore, we need to generate a random
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F-MEASURE AND CPUTIME COMPARISON[3]

Fig. 4. Segmentation of imagese41[2], [3].

Fig. 6. Precision-recall curve for JSEG and RIMCMC [3].

[ Method [[ F-measure] CPU ftime |
Human segmentation 0.79 —
RIJMCMC 0.57 15 min is sampled via the corresponding move-type while all the other
JSEG 0.56 2 min parameter values are set to their current estimate.

® Goto Step®@ with k = k + 1 and Tk, until £ < K.
As usual, an exponential annealing scheddlg( = 0.987},

variable u1, a random vecton2 and a symmetric random matrix =~ Lo = 6.0) was chosen so that the algorithm would converge
u3. We can now define the diffeomorphisfmwhich transforms the after a reasonable number of iterations. In our experiments, the
old parameters®, p) to the new(©™, p™) using the above moment _2lgorithm was stopped aft@00 iterations {200 & 0.1).

equations and the random numbers 42, andu3 [2], [3]: The proposed algorithm has been tested [2], [3] on a variety of
real color images and results have also been compared to those

p;’] = pul (11) produced by JSEG [7]. In Fig. 5, we show a couple of results
pi = pa(l—ul) 12) obtained on the_ Berkele_y_Segmentation Dataset, and in Fig. 6, we plot
A2 the corresponding precision-recall curves. Note that RIMCMC has a

+ 1—ut slightly higher F-measure(see Table 1) which ranks it over JSEG.

Paye = B+ u2 EM‘J’T 13) However, it is fair to say that both method perform equally well
but behave differently: while JSEG tends to smooth out fine details

u:\‘r = i — u2iy S ul (14) (hence it has a higher precision but lower recall value), RIMCMC
25 ’ 1 — ul prefers to keep fine details at the price of producing more edges (i.e.

5 1 o its recall values are higher at a lower precision value).
udii (1—u2”)Sxii—  ifi=j
st - ul (15)
SR u3i,; x5/ (1 — u2:?) II. MULTILAYER MRF MODELIZATION
><\/(1 —u2;?)udius;; i i The human visual system is not treating different features se-
(1 —u3:4) (1 — ugﬁ) quentially. Instead, multiple cues are perceived simultaneously and
o then they are integrated by our visual system in order to explain the
n XBxiio— ifi=j observations. Therefore different image features has to be handled in
Yoy = (1 —u845) Xxi (16) a parallel fashion. In this project, we attempt to develop such a model
X \/(1 —u2:%) (1 — u2;?) in a Markovian framework based on our earlier work on color-texture
% \/(1 " w3 (1—u3;,) i segmentation [8]. We propose a new MRF image segmentation model

which aims at combining color and motion features for video object
The random variables are chosen from the intervé), 1]. In order segmentation [4], [9]. The model has a multi-layer structure (see
to favor splitting a class into roughly equal portions, W&th 1.1) Fig. 7): Each feature has its own layer, calliediture layer where
distributions are used. The next step is the reallocation of those sitges MRF model is defined using only the corresponding feature. A
s wherew, = A. This reallocation is based on the new parametespecial layer is assigned to the combined MRF model. This layer
and has to be completed in such a way as to ensure the resulimgracts with each feature layer and provides the segmentation based
labelingw™ is drawn from the posterior distribution with = ©%, on the combination of different features. Unlike previous methods,

p=p~andL =L+ 1. our approach doesn’t assume motion boundaries being part of spatial
Merging of a pair(Ai, A2) is basically the inverse of the split ones. The uniqueness of the proposed method is the ability to detect
operation [2], [3]. boundaries that are visible only in the motion feature as well as those

Finally, the split or merge proposal is accepted with a probabilityisible only in the color one.
relative to the probability ratio of the current and the proposed states.Perceptually uniform color values and precomputed optical flow
The segmentation and parameter estimation is then obtained agata is used as features for the segmentation. The proposed model
MAP estimation implemented via simulated annealing: consists of 3 layers. At each layer, we use a first order neighborhood
Algorithm 2 (RIMCMC Segmentation): system and extra inter-layer cliques (Fig. 7). The image features are
@ Setk = 0. Initialize 8°, L°, p°, ©°, and the initial temperatur&. represented by multivariate Gaussian distributions. For example, on
@ A sample(@*, L*,p*, 3*,©%) is drawn from the posterior distri- the color layer, the observed image& = {f.|s € S} consists of
bution using thenybrid sampleroutlined earlier. Each sub-chainthree spectral component values (.v*) at each pixek denoted by
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Human
segmentation
Fig. 5. Benchmark results on images from the Berkeley Segmentation Dataset [3]

Original image JSEG [7] RJIJMCMC [3]

the vectorfi. The class label assigned to a siten the color layer color and motion labels such that= (n°,n™), wheren® € A° and
is denoted byy,. The energy functior/ (¢, F¢) of the so defined n™ € A™. The set of labels is denoted by* = A° x A™ and the

MRF layer has the following form: number of classed.” = L°L™. Obviously, not all of these labels
e are valid for a given image. Therefore the combined layer model also
Z G (fsrtbs)+ 8 Z (s, ¥r) + Z V< (ihs, ms) estimates the number of classes and chose those pairs of motion and
sese {s,r}ec sese color labels which are actually present in a given image. The energy

Se ) function U (n) is of the following form:
whereG¢(f ., 1s) denotes the Gaussian energy term. The last term
(Ve(¥s,m5)) is the inter-layer clique potential. The motion layer Z (Va(ns) + V(ths,ms) + V™ (¢, m5")) + Z 6(ns,mr)
adopts a similar energy function with some obvious substitutions. et (srjec

The combined layer only uses the motion and color features ’
indirectly, through inter-layer cliques. A label consists of a pair ofvhere V;(ns) denotes singleton energiesV“(ys,ns) (resp.
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Fig. 7. Multi-layer MRF model [4], [9].

Fa

V™(¢s,ms*) denotes inter-layer cligue potentials. The last term NI\
corresponds to second order intra-layer cliques which ensures ho- Color only
mogeneity of the combined layexr has the same role as in the .
color layer model and(ns,n,) = —1 if ns = n,, 0 if ns # n, and
1if s =ny and 0 # 0" orns # 0y and n* = n,". The idea
is that region boundaries present at both color and motion layers are
preferred over edges that are found only at one of the feature layers.
At any sites, we have 5 inter-layer interactions between two layers:
Site s interacts with the corresponding site on the other layer as well
as with the 4 neighboring sites two steps away (see Fig. 7). This
potential is based on the difference of the first order potentials at the
corresponding feature layers. Clearly, the difference is 0 if and only
if both the feature layer and the combined layer has the same label. If
the labels are different then it is proportional to the energy difference
between the two labels. Finally, the singleton energy controls the
number of classes at the combined layer by penalizing small classes. Multilayer

The proposed algorithm has been tested on real video se-
quences [4], [9]. We also compare the results to motion only al
color only segmentation (basically a monogrid model similar to the
one defined for the feature layers but without inter-layer cliques).
The mean vectors and covariance matrices were computed over
representative regions selected by the user. The number of motion
and color classes is known a priori but classes on the combined layer
are estimated during the segmentation process. Fig. 8 shows some
segmentation results. Note that the head of the men on this image
can only be separated from the background using motion features.
Clearly, the multi-layer model provides significantly better results
compared to color only and motion only segmentations. See Fig. 9
to compare the performance of the proposed method with the one
from [10] on theMother and Daughtestandard sequence. Note that
some of the contours are lost by [10] (the sofa, for example) while
our method successfully identifies region boundaries. In particular,
our method is able to separate the hand of the mother from the face
of the daughter in spite of their similar color. This demonstrates again
that the proposed method is quite powerful in combining motion and
color features in order to detect boundaries visible only in one of the
features.

. 8. Segmentation results [4], [9].

: ik
Original frame

Ill. SHAPE PRIORS FORSEGMENTATION

The aim of this work is to introduce prior shape knowledge into
existing image segmentation models. To accomplish we extended the
recently introduced higher-order active contour framework for region
and image modeling by introducing a model for a ‘gas of circles’, the Multilayer [4], [9] Khan & Shah [10]
ensemble of regions in the image domain consisting of an unknown

number of circles, with approximately fixed radius and short ranggg. 9. Comparison of the segmentation results obtained by the
of interactions. We applied the developed models of current interggbposed method [4], [9] and those produced by the algorithm of

in remote sensing image processing: the extraction of tree crowR#ian & Shah [10].
Forestry services are interested in various quantities associated with

forests and plantations, such as the density of trees, the mean crown

area and diameter, etc.
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Fig. 11. Results on real aerial images, first column: original, second: results with [5], [11] model, last column: results using @]. IFN

To include more complex prior knowledge, longer-range integeneralizations are quadratic energies, which contains double inte-
actions are needed. There is a large body of work that does thimls. There are several forms that such multiple integrals can take,
implicitly, via a template region or regions to which the segmentedepending on whether or not they take into account contour direction
region R is compared. However, such energies effectively liRit at the interacting points. The Euclidean invariant version of one of
to a bounded subset of region space close to the template(s), wtitobse forms is
excludesijnter alia, cases like tree crown extraction in whi¢hhas 5
an unknown number of connected components. ‘Higher-order activ| — _Z () / /
contours’ (HOACs) provide a complementary approach. HOACsEg(W) ALY + ad() 2 //T(p) (@)Y (Ip.p)dpdp,
generalize classical active contours to include multiple integrals ) . .
over the contour. Thus HOAC energies explicitly model long-rangéhere is the contour, parameterized by L is the length of the
interactions between boundary points without using a template. TRtour; A is the areailp,p’| = [y(p) — y(p')|; 7 = 7 is the
allows the inclusion of complex prior knowledge while permittin%unnqrmahzed) tangent vector to the contour; ands an interaction
the region to have an arbitrary number of connected componerit§)ction that determines the geometric content of the model. With
which furthermore may interact amongst themselves. The approg¥happropriate choice of interaction functi@n the quadratic term
is very general: classical energies are linear functionals on the spgE@ates a repulsion between antiparallel tangent vectors. This has
of regions; HOACs include all polynomial functionals. two effects. First, for particular ranges of 3, anddmin (A = 1
this ‘gas of circles’ model, collections of mutually repelling circleyyalues, are stable to perturbations of their boundary. Second, such
of given radiusr, are local minima of the geometric energy. Thesircles repel one another if they approach closer thépi,.. Regions
model has many potential applications in varied domains, but GPnsisting of collections of circles of radnmg s_eparated by distances
suffers from a drawback: such local minima can trap the gradiegfieater thared,,., are thus local energy minima. We [5], [11] called
descent algorithm used to minimize the energy, thus produciffys the ‘gas of circles’ model.
phantom circles even with no supporting data. The model as suchVia a stability analysis, we [5], [11] found the ranges of parameter
is not at fault: an algorithm capable of finding the global minimurifalues rendering circles of a given radius stable as functions of the
would not produce phantom circles. This Suggests two approacmired radius. Stablllty, hOWeVer, created its own problems, as circles
to tackling the difficulty. One is to find a better algorithm. Thesometimes formed in places where there was no supportive data. To
other is to compromise with the existing algorithm by changing tH@vercome this problem, in [6], the criterion that circles of a given
model to avoid the creation of local minima, while keeping intadidius be local energy minima was replaced by the criterion that they
the prior knowledge contained in the model. We solved the probleg points of inflexion. As well as curing the problem of ‘phantom’
of phantom circles in [5], [11]'s model by calculating, via a Tay|o|CirC|eS, this revised criterion allowed the fixing of the parameters
expansion of the energy, parameter values that make the circfes@nddmin as functions of the desired circle radius, leaving only
into inflection points rather than minima. In addition, we find thathe overall strength of the prior term, unknown. For energy-based
this constraint halves the number of model parameters, and sevefégdels, parameter adjustment is a problem, so this is a welcome
constrains one of the two that remain, while improving the empiricadvance.
success of the model [6]. To illustrate the behavior of the prior model, figure 10 shows

the result of gradient descent starting from the region on the left.
. . , Note that there is no data term. The parameter values in these
A. The ‘gas of circles’ model experiments render the circles involved stable. With the parameter

HOAC energies generalize classical active contour energies ¥siues calculated in [6], they would disappear. Figure 11 illustrates

including multiple integrals over the contour. The simplest suatesults using the published models.
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IV. DISSEMINATION AND FUTURE WORK

Our results have been published in

The

two top tier peer-reviewed international conference proceed-
ings [2], [S],

two LNCS book series of Springer [4], [6] (7]
two peer-reviewed international journals [1], [3],

two peer-reviewed [9], [12] and four non-refereed national
conference proceedings [13]-[16],

one INRIA Research Report [11].

project’s achievements have also been presented at leading

(8]

international conferences

2004 British Machine Vision Conference.

9]

2006 Asian Conference on Computer Vision, International Con-

and

ference on Pattern Recognition, Indian Conference on Com-
puter Vision, Graphics and Image Processing.

national conferences: [10]

2004,2007 Conference of the Hungarian Association for Image

Analysis and Pattern Recognition.

2005 Joint Hungarian-Austrian Conference on Image Processifid]

and Pattern Recognition.

| also gave the following invited talks about the project’s results at

leading international research institutes:

[12]

2005 Reversible Jump Markov Chain Monte Carlo for Unsu-

pervised MRF Color Image Segmentati@&b April 2005,
INRIA Sophia Antipolis, France.

2006 Energy Minimization Methods in Image Segmentatidh

2007 Multilayer Markovian Models 17 April 2007,

January 2006, [IT Bombay, India. 13]
INRIA

Sophia Antipolis, France.

Although the project officially finished by the end of 2006,
there are some ongoing works as well as submitted and planned

publications. A journal paper about the results presented in Sectionlfif

has been submitted fBattern Recognitiorf17]. Another application
of the multilayer MRF model in Section Il has been submitted to

IEEE International Conference on Image Processjhg]. [
There is an ongoing bilateral (Hungarian-French) PhD work by

Mr. Peter Horvath which is strongly related to Section Ill. French
co-supervisors are lan Jermyn and Josiane Zerubia from the Ariana
Group of INRIA Sophia Antipolis, France. Defense expected in 2007.
A software licence agreement is currently being signed by 6]
Hungarian Forest ServiceUniversity of Szegedand INRIA Sophia
Antipolis, France This will allow the Hungarian Forest Servicéo
use our program outlined in Section Il in exchange for aerial images.
The importance of this contract is two-fold: First, these images arey)
needed for further research. Second, the use of our program in a

real

industrial applications.

environment will help to improve it and potentially find other
(18]
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