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ABSTRACT

We conduct a rigorous examination of the nearby red supergiant Betelgeuse by drawing on the

synthesis of new observational data and three different modeling techniques. Our observational results

include the release of new, processed photometric measurements collected with the space-based SMEI

instrument prior to Betelgeuse’s recent, unprecedented dimming event. We detect the first radial

overtone in the photometric data and report a period of 185 ± 13.5 d.

Our theoretical predictions include self-consistent results from multi-timescale evolutionary, oscil-

latory, and hydrodynamic simulations conducted with the Modules for Experiments in Stellar Astro-

physics (MESA) software suite. Significant outcomes of our modeling efforts include a precise prediction

for the star’s radius: 764+116
−62 R�. In concert with additional constraints, this allows us to derive a new,

independent distance estimate of 168+27
−15 pc and a parallax of π = 5.95+0.58

−0.85 mas, in good agreement

with Hipparcos but less so with recent radio measurements.

Seismic results from both perturbed hydrostatic and evolving hydrodynamic simulations constrain

the period and driving mechanisms of Betelgeuse’s dominant periodicities in new ways. Our analy-

ses converge to the conclusion that Betelgeuse’s ≈ 400 day period is the result of pulsation in the

fundamental mode, driven by the κ-mechanism. Grid-based hydrodynamic modeling reveals that the

behavior of the oscillating envelope is mass-dependent, and likewise suggests that the non-linear pul-

sation excitation time could serve as a mass constraint.

Our results place α Ori definitively in the early core helium-burning phase of the red supergiant

branch. We report a present-day mass of 16.5–19 M�—slightly lower than typical literature values.

Keywords: stellar evolution – red giants – stellar oscillations – numerical techniques

1. INTRODUCTION

Since November of 2019, the red supergiant

α Orionis—popularly known as Betelgeuse—has experi-

enced an unprecedented brightness drop of nearly 2 mag-
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nitudes in the V band. The severity of this decrease and

the deviation from its typical pattern of variability have

sparked much public speculation about the physics re-

sponsible and its likelihood of undergoing a cataclysmic

event.

To investigate these questions first requires an under-

standing of the short-timescale behavior of variable red

giants. Such stars are known to exhibit a complex spec-
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trum of variability, where cyclic variations with differ-

ent driving mechanisms occur over a range of timescales.

Though we can explain and fully capture some pulsation

physics in 1D stellar models (e.g., pressure and gravity

modes; see review by Aerts 2019), other mechanisms

are not well understood (Wood et al. 2004; Nicholls

et al. 2009a). In this latter class fall many of the varia-

tions we observe on human timescales, as such behavior

is, with rare exception, too rapid to be explained by

classical stellar evolution (Molnár et al. 2019). Mod-

eling such processes may require 3 dimensions, time-

dependent convection, or otherwise more sophisticated

physical formalisms that are beyond the scope of typical

1D stellar evolution programs. Nevertheless, 1D stellar

models are among the most powerful devices for gain-

ing insight on the sub-surface physics responsible for

observed changes in real stars (Demarque et al. 2004;

Pietrinferni et al. 2004; VandenBerg et al. 2006; Cordier

et al. 2007; Weiss & Schlattl 2008; Dotter et al. 2008;

Townsend & Teitler 2013; Paxton et al. 2018 and oth-

ers). When conducted on a range of timescales, their

calculations can be exploited to great effect.

In red supergiants, the κ-mechanism drives radial pul-

sations in the hydrogen ionization zone, and simula-

tions show the emergence of periods and growth rates

of the dominant fundamental pulsation mode—typically

on the order of years—both in linear and non-linear

models, as shown in e.g. Li & Gong (1994), Heger et al.

(1997), Yoon & Cantiello (2010), and Paxton et al.

(2013). In addition to these, previous modeling work

on α Ori and similar red supergiants (RSGs) includes

Dolan et al. (2016), Wheeler et al. (2017), Nance et al.

(2018), and Goldberg et al. (2020).

In both Yoon & Cantiello (2010) and Paxton et al.

(2013), models of rotating and non-rotating RSGs with

approximately solar metallicity and initial masses of

25M� were found to exhibit pulsations on the order 1–8

years. Obtaining frequencies of this magnitude required

lowering the evolutionary timestep to a fraction of a year

during helium burning. The limiting factor on these cal-

culations was the emergence of supersonic radial veloci-

ties in the envelope (see Section 6.6 in Paxton et al. 2013

for more details on their example).

A rigorous estimation of the model-derived fundamen-

tal parameters of α Ori was undertaken by Dolan et al.

(2016). In particular, their models find a best estimate

of 20+5
−3M� for the progenitor mass. They also attempt

to model the pulsation properties of α Ori, but find

they were unable to reproduce the fundamental mode

(FM) and first overtone (O1) frequencies with adiabatic

models alone. They suggest that interplay between non-

adiabatic pulsations and convection could be responsi-

ble for some variability, noting that 3D simulations of

similar red supergiants show the development of large-

scale granular convection that can itself drive pulsation

(Xiong et al. 1998; Jacobs et al. 1998; Freytag et al.

2002; Chiavassa et al. 2011; Freytag & Chiavassa 2013;

Dolan et al. 2016).

Recent 1D modeling efforts in “The Betelgeuse

Project” series and other works suggest that a past

merger may be required to explain the present-day sur-

face rotation of α Ori, which is more rapid than standard

stellar evolutionary calculations including rotation can

reproduce (Wheeler et al. 2017; Nance et al. 2018; Chat-

zopoulos et al. 2020). The Nance et al. (2018) study also

examines the star seismically, but the authors are pri-

marily focused on rapid waves in the convection zone

that might precede a cataclysmic event. This concept

was also addressed in depth by Goldberg et al. (2020),

who modeled the observable features of supernova events

as a function of the point of onset during the stellar pul-

sation.

In this paper, we use a range of tools to investigate

the variability of α Orionis. We use the Modules for

Experiments in Stellar Astrophysics (MESA, Paxton

et al. 2011, 2013, 2015, 2018, 2019) stellar evolution soft-

ware suite to generate both classical evolutionary tracks

and short timescale, hydrodynamic simulations of stars.

We likewise use the GYRE pulsation program to con-

struct complementary predictions of the pressure mode

(p-mode) oscillations in models of red giants (Townsend

& Teitler 2013).

This paper proceeds as follows: In Section 2, we dis-

cuss the current knowledge of α Ori’s classical con-

straints, including pulsation periods, evolutionary stage,

radius, temperature, and distance. We present a

lightcurve highlighting α Ori’s recent behavior, con-

structed from data collected from the American Asso-

ciation of Variable Star Observers (AAVSO) and newly

processed space-based photometry from the Solar Mass

Ejection Imager instrument. In Sections 3, 4, and 5,

we discuss our evolutionary, seismic, and hydrodynamic

models, respectively. Section 6 concludes our analysis

and presents best estimates of its fundamental param-

eters based on detailed photometric analysis and com-

prehensive, multi-timescale simulation.

2. OBSERVATIONAL CONSTRAINTS

α Ori is well studied interferometrically; together with

R Dor and IRC 10216, it is among the stars with the

largest angular diameters ever measured (Bedding et al.

1997; Menten et al. 2012; Stewart et al. 2016). In their

Table 3, Dolan et al. (2016) provide a clear summary of

previous measurements.
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Table 1. Processed SMEI photometry of α Ori. Observations
were corrected for systematics and averaged into 1-day bins.
Errors calculated as simple shot noise. V mag is the same
light curve, scaled to existing V -band data. The full data set
is available in the online journal

BJD– SMEI SMEI V V

2400000 (d) mag error mag error

52677.959995 0.3759 0.0037 0.5168 0.0037

52678.983194 0.3849 0.0039 0.5330 0.0039

52680.041678 0.3717 0.0043 0.5094 0.0043

52680.959028 0.3801 0.0039 0.5244 0.0039

52681.911649 0.3869 0.0035 0.5365 0.0035

52682.934838 0.3908 0.0036 0.5436 0.0036

52683.887465 0.3991 0.0035 0.5586 0.0035

52684.875377 0.4032 0.0035 0.5662 0.0035

52685.863269 0.4030 0.0035 0.5657 0.0035

52686.851169 0.4068 0.0035 0.5727 0.0035

52687.415625 0.4177 0.0093 0.5929 0.0094

52689.038675 0.4142 0.0042 0.5863 0.0042

. . .

The earliest interferometric measurement from

Michelson & Pease (1921) resulted in an angular di-

ameter of 47±5 mas at visible wavelengths, assuming a

uniformly illuminated disk model. In recent years, it was

realized that there were elevated layers of molecules and

dust above the photosphere (e.g., Perrin et al. 2004),

complicating the interpretation of diameter measure-

ments. In the context of the recent dimming event of

α Ori, Haubois et al. (2019) solved for the photospheric

diameter, dust shell diameter and optical depth. They

found a Uniform Disk diameter of 44.0±0.5 mas in their

1.04µm, bandpass, which had relatively little influence

from molecular bands. This would be equivalent to a

limb-darkened diameter of 46.0±0.6 mas using a linear

limb darkening coefficient of ∼0.5 (Claret & Bloemen

2011; Hanbury Brown et al. 1974). However, the rel-

atively simple dust model consisting of of a 64.7 mas

diameter thin shell scattering 4.4 % of the light means

that the statistical error from that work is not fully

representative of the model uncertainty.

We adopt as observational reference the diameter

from the recent work of Montargès et al. (2014) of

42.28±0.43 mas for the limb-darkened (i.e., physical

photospheric) diameter. Those authors resolved the

photosphere significantly past the first null in the visibil-

ity curve, so were insensitive to low optical depth shells,

unlike many of the other measurements. Additionally,

the relatively high spectral resolution observations in the

K band, away from main molecular absorption features,

mean that this measurement is relatively unaffected by

apparent molecular shells.

Radius estimates are further complicated by uncer-

tain parallax measurements, which are made difficult by

variability and known >2 au-scale asymmetries on the

surface of the star both at optical and radio wavelengths

(Young et al. 2000; Kervella et al. 2018). The revised

Hipparcos astrometric solution gave an optical-only dis-

tance of 153+22
−17 pc (van Leeuwen 2007). Combination

of the Hipparcos data with radio observations captured

by the Very Large Array (VLA) extended that distance

out to 197 ± 45 pc, which was also used by Dolan et al.

(2016).

The revised Hipparcos-only value is inconsistent at

the 1.7σ level with the most recent radio measurement

of 222+48
−34 pc (Harper et al. 2017), which took into ac-

count both VLA and Atacama Large Millimeter Array

(ALMA) observations but which was also significantly

affected by “cosmic noise”.1 The star is well beyond the

established brightness limit of Gaia, and data enabling

a future parallax measurement were not collected in the

first years of the mission. A parallax estimate of Betel-

geuse is therefore not included in Gaia Data Release 2

(Gaia Collaboration et al. 2016; Sahlmann et al. 2018).

Given the very long time-baselines needed to overcome

the effects of photospheric motions and variability, there

is unlikely to be a reliable direct parallax measurement

of Betelgeuse with < 10% uncertainty in the near term.

Estimates of Betelgeuse’s mass are derived from mod-

els and range from roughly 15–25M�, with previous

modeling work suggesting that α Ori is in the midst

of its core helium-burning giant branch phase (Neilson

et al. 2011; Dolan et al. 2016; Wheeler et al. 2017; Nance

et al. 2018). However, while Dolan et al. (2016) state

that its mass loss rate—the primary piece of evidence

supporting the claim that it is on the red supergiant
branch (RSB)—is “consistent with having recently be-

gun core helium burning,” they also note that a previous

interaction of Betelgeuse with a binary companion could

account for similar mass loss rates without necessitating

that Betelgeuse currently exist on the RSB. Since nearly

half of ∼ 20M� stars have a companion close enough to

induce mass loss, this is, in fact, ambiguous (de Mink

et al. 2014). It is demonstrated by Wheeler et al. (2017)

that rotating models of α Ori do not produce reasonable

1 “Cosmic noise” is an umbrella term used to describe the elevated
dispersion of the residuals of the astrometric solution compared
to the formal errors. It can include various physical effects such
as source size, unresolved companions, unresolved properties of
stars in the stellar models used for fitting, variability of the stellar
parameters, and instrumental effects such as excess noise due to
saturation.
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Table 2. Observational best values, estimated ranges, and model-derived constraints (where indicated) for α Ori. The tempera-
ture constraints reflect the spectroscopically derived temperature from α Ori at its brightness minimum, which is not necessarily
reflective of its mean temperature. However, even Levesque & Massey (2020)’s 100 K error bars accounting for decadal variations
are more restrictive than the theoretical uncertainty imposed by modeled variations in αMLT. Though we quote a “best” radius
and reference a wide range of values, in practice we do not impose any constraints on the radius when modeling. The range of
possible radii derived from the models is smaller than the uncertainties reported by many observers. We quote the initial and
present-day mass ranges preferred by our seismic models. Masses considered in the initial grid range from 10 to 26 M�.

Property Value Source Comment

Teff 3600 ± 25 K Levesque & Massey (2020) range extended by σtheory to ±200 K

Angular Diameter 42.28±0.43 Montargès et al. (2014) Limb-darkened

Radius upper limit ∼ 1100R� Dolan et al. (2016) data collated from many sources

Radius lower limit 500R� Dolan et al. (2016) data collated from many sources

Distance 197 ± 45 pc Harper et al. (2008) parallax data adopted by Dolan et al. (2016)

Period of variability 388 ± 30 days Kiss et al. (2006) dominant, higher frequency; likely FM

Period of variability 2050 ± 460 days Kiss et al. (2006) lower frequency; likely LSP

Period of variability (FM) 416 ± 24 days this work SMEI+V data; mode ID from GYRE

Period of variability (O1) 185 ± 14 days this work SMEI+V data; mode ID from GYRE

Period ratio O1/FM 0.445 ± 0.041 this work SMEI+V data

Radius 764 + 116,−62R� this work 3σ range; seismic analysis

Initial Mass 18–21M� this work median range; seismic analysis

Present-day mass 16.5–19M� this work median range; seismic analysis

Distance 168.1 + 27.5,−14.9 pc this work 3σ range; seismic analysis

Parallax 5.95 + 0.58,−0.85 mas this work 3σ range; seismic analysis

evolutionary predictions (a finding consistent with our

present work), but they do not draw any specific con-

clusion about whether the star is core helium burning.

As it is impossible to measure either mass or evolu-

tionary status directly, and the evidence regarding its

phase is not definitive, we do not assume a particular

evolutionary phase a priori in our models. Instead, we

consider the relative probabilities that α Ori is in a par-

ticular evolutionary stage based on (1) the masses of

tracks that match the other observational constraints
and (2) the duration of the possible evolutionary stages.

The first-order, theoretical constraints on its mass

and age are provided by the linear pulsation calcula-

tions, which rule out any model in an evolutionary stage

earlier than the RSB. From an observational perspec-

tive, we note that Betelgeuse is far in the foreground

of the known <10 Myr age young associations in Orion

(Großschedl et al. 2018), and it is not known to have

kinematics consistent with ejection. In particular, its

radial velocity of +21.9±0.5 km s−1 is consistent with

the ∼+23 km s−1 of typical high mass stars in the Orion

OB1 association (Morrell & Levato 1991; Famaey et al.

2005), but would differ by ∼20 km s−1 if it had trav-

elled 200 pc in ∼20 Myr. The (U, V,W ) space motion of

Betelgeuse is (−22,−10, 12) km s−1 with respect to the

Sun, which is (−11, 2, 19) km s−1 with respect to the lo-

cal standard of rest (Famaey et al. 2005; Schönrich et al.

2010). The high W velocity in particular is of note, as

it is discrepant at 3σ from the kinematics of the young

disk (Robin et al. 2003). If this high W velocity were

due to ejection from a young association lying on the

Galactic disk, now falling back through the disk due to

vertical epicyclic motion, this would imply an origin of

∼50 Myr ago. With these proper motion estimates in

mind, we are left with a few possible scenarios of vary-

ing likelihood: (1) Betelgeuse was formed very recently

in a region where there is no star formation; (2) it is

&50 Myr old, or (3) it underwent some kind of binary

interaction that propelled its trajectory. Scenario (1)

is not reasonable, and scenario (2) would be consistent

with a mass below 10M�—a possibility that is readily

ruled out by our other constraints. We are thus left with

the third scenario, which is likewise supported by obser-

vations of Betelgeuse’s present-day surface rotation and

the inability of 1D, rotating models to reproduce it (see

subsequent discussion).

We construct an age-prior function that performs a

Monte Carlo interpolation over a grid of stellar tracks

with masses ranging from 16–26M� (other parameters

fixed; αMLT = 2.1) and a power law IMF. For two sets

of realizations, we adopt a minimum age constraint of 8

Myr and permit radii between 600 and 900R�. In the
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first statistical run, masses are heavily skewed towards

the head of the distribution, peaking at 16M�, and the

bulk of the trials fall from 16–18M�. This indicates

that the lower-mass regime is strongly statistically pre-

ferred, which is consistent with our understanding of the

prevalence of high-mass stars in general. In the second

statistical run, the distribution peaks a bit higher, at

18M�, and tapers off rapidly beyond 17.5 and 19.5 in

either direction. The number of trials that do not fall

somewhere on the core helium-burning RSG is negligi-

ble regardless of mass, though this is even more strongly

the case for trials with masses between 17 and 19M�.

As we will conduct estimates of the stellar mass,

and many other parameters, in several ways throughout

this analysis, we treat the above statistical experiment

strictly as sufficient evidence to assume that Betelgeuse

is core helium burning in subsequent modeling.

Recent spectral analysis of Betelgeuse presents an ef-

fective temperature of 3600 ± 25 K (e.g., Levesque &

Massey 2020; Guinan & Wasatonic 2020). Levesque

& Massey (2020) write that the difference between

the spectroscopically-derived temperature measured in

2004–5 and that measured during Betelgeuse’s bright-

ness minimum in 2020 is at most a decrease of 100K, and

at minimum, negligible. We note, however, that there is

some disagreement on the reliability of the method by

which Levesque & Massey (2020) derive their tempera-

ture, with, e.g., Ireland et al. (2008) and Davies et al.

(2013) suggesting it may be underestimated. We discuss

this in more detail in Section 3. Adopting the results of

Levesque & Massey (2020) essentially rules out convec-

tive turnover as an explanation for its recent dimming,

but surface temperature is less informative on other os-

cillation driving mechanisms.

Critically, the brightness of Betelgeuse varies in a sys-

tematic way on at least two different timescales, and

these periodicities were measured with good precision

by Kiss et al. (2006) (and later corroborated by Chatys

et al. 2019). The shorter occurs with a period of ∼ 388

days and the longer with a period of ∼ 5.6 years (2050

d). The period–luminosity relation depicted in Figure 6

of Kiss et al. (2006) provides some evidence that the 388

d brightness variation is caused by p-mode pulsation in

the fundamental mode. This is likewise supported by

various observational and theoretical considerations, in-

cluding the position of the star on the logP–MK dia-

gram, where the absolute K brightness provides the ob-

servational proxy for the stellar luminosity. T Kiss et al.

(2006) also found that the shorter periods fit the theoret-

ical calculations of Guo & Li (2002), forming an exten-

sion to sequences B and C of the supergiant variables

observed in the Magellanic Clouds that correspond to

the FM and the O1 pulsation modes, respectively (Wood

et al. 1999; Kiss & Bedding 2003; Soszynski et al. 2007).

This also suggests that these variations correspond to

p-mode pulsation.

The longer, ∼ 2050 d periodicity likely falls in a class

of signal known as “Long Secondary Periods,” or LSPs.

These have been observed in multiple semiregular and

red supergiant variables, but the cause of the LSP is

still debated (Wood 2000; Chatys et al. 2019). Pro-

posed mechanisms include rotational modulation caused

by spots or a nearby companion followed by a dust

cloud, among other possibilities (Wood 2000; Soszyński

& Udalski 2014). Such signals were observed in the LMC

supergiant population as “sequence D,” and the long pe-

riods found by Kiss et al. (2006) extend that sequence to

higher luminosities (Derekas et al. 2006). Among other

things, rotational modulation was proposed as a possible

mechanism for the LSP (Percy & Deibert 2016). How-

ever, the rotational period of α Ori has recently been

estimated at Prot = 31 ± 8 yr, which is considerably

longer than the LSP of the star (Kervella et al. 2018).

Models in this work shed more light on the questions of

mode classification and driving mechanism.

2.1. Photometric Observations

Both the ∼ 400 day and 5.6 yr (2050 d) periods are

visible in Figure 1, which shows the longitudinal bright-

ness variations of α Ori over the last 90 years. These

visual brightness estimates were collected in large part

by amateur observers and archived by the American As-

sociation of Variable Star Observers (AAVSO).

Examining Figure 1 more closely, we see that the am-

plitude of the brightness drops corresponding to the

∼ 400 day pulsation period are about 0.3–0.5 mag in

the V band. The difference between these and the 1

mag drop in 2019–20 is clear. We do note, however,

that Betelgeuse has undergone other periods of drastic

dimming a few times over the last 100 years. Dimming

events of comparable magnitude are visible in Figure 1,

for instance, in the mid to late 1980s and arguably in

the early 1950s. An argument could be made for the

existence of a 35–40 year dimming cycle, particularly if

we take into account that the sensitivity of instruments

has improved considerably in the last few decades. We

note that this 3–4 decade variation is of the same or-

der as the suggested rotational period. While this could

potentially be a manifestation of rotational modulation,

confirmation will require ongoing observation.

The low amplitude and scarcity of adequate compari-

son stars make visual estimates less sensitive to smaller

changes from one pulsation cycle to another. Digital

photometric observations exist for the last three decades,
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Figure 1. Lightcurve of α Ori assembled from publicly available data compiled by the AAVSO, from 1928 to present, and from
the SMEI observations. Horizontal axes are marked in both years (UPPER) and JD + 2400000 (LOWER). Grey points are
visual estimates, blue are V -band photometry, from AAVSO. Red points are the SMEI data.

but both the quality and quantity varied over time.

Most of the publicly available data have been archived

by the AAVSO and provide good coverage from the mid-

1980s to the early 2000s and from 2010 onward. To fill

in the gap, we supplement the AAVSO data set with the

observations taken with the SMEI (Solar Mass Ejection

Imager) instrument aboard the Coriolis satellite (Jack-

son et al. 2004).

2.1.1. SMEI photometry of Betelgeuse

SMEI was designed to follow Coronal Mass Ejections

(CMEs) from the Sun, and in order to do this, stellar

signals must be removed from its images. About 6000

stellar sources plus the brightest Solar System objects

were catalogued and then subtracted from the images.

It was soon realized, however, that the source subtrac-

tion procedure used by the mission can be processed

into time series photometry of the brightest stars in the

sky, essentially turning SMEI into one of the early space

photometry missions (Buffington et al. 2007; Hick et al.

2007). SMEI observed α Ori from early 2003 to late

2011 with a cadence of 104 mins. Each year, data collec-

tion was split between the three cameras whose outputs

needed to be rectified. Yearly systematics arise from

the changing thermal conditions in each of the cameras

(Tarrant et al. 2008). Slow degradation of the camera

sensitivity is also apparent in the data.

We could not remove the annually repeating instru-

mental signals directly, as the timescale is on the same

order as the variation of α Ori. Therefore, we relied on

the ensemble photometry of neighboring stars to derive

common instrumental characteristics. We inspected ten

nearby bright stars and selected γ Ori, ε Ori and 32 Ori

to generate a template for the instrumental signals. We

calculated a smoothed systematics curve by calculating

the medians of the combined relative intensity data of

these three stars in 4-day windows placed around every

time stamp of α Ori, and for each camera separately.

The rectified SMEI light curve of α Ori is the result of

scaling the raw data with the systematics curve and then

transforming it to magnitudes using mSMEI = 10.0 mag

as the magnitude zero point. However, the passband

of SMEI is not the V band, therefore requiring that we

scale and shift the light curve to match the AAVSO data.

To compute the appropriate scaling, we determined the

brightness difference for six other stars with M1-2 spec-

tral class in the SMEI catalog to be mV − mSMEI ≈
0.15 mag. We found that we needed to stretch the am-
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Figure 2. Detailed plot of the recent photometric data. Blue:
AAVSO V -band photometry. Red: rectified and scaled SMEI
photometry.

plitude by a factor of 1.8 to match the V data points.

We then averaged the raw photometry points into 1-

day bins. While the shape of the variation could also be

passband-dependent to some extent, the scarcity of over-

lapping V data prohibited us from performing a more

detailed comparison. The final light curve is plotted in

Fig. 2, along with the AAVSO V -band data. The SMEI

data confirm that the star did not dim excessively during

the LSP minimum occurring in 2007–08.

A sample table of the processed and binned SMEI pho-

tometry and the scaled V -band values can be found in

Table 1. Here, we provide formal errors calculated as

the shot noise from the number of electron counts.

The photometric light curve reveals a richer set of fea-

tures than the visual light curve. The SMEI observa-

tions, in particular, show both the slow variation from

the LSP along with additional smaller, more rapid varia-

tions. The SMEI data also put the severity of the recent

dimming event in perspective: the brightness of the star

did not drop below 1.1 mag in the V band during the
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Figure 3. Top: power spectrum of the photometric obser-
vations. The strongest LSP frequency and the position of a
yearly alias are indicated. The insert shows the spectral win-
dow function of the data with the prominent yearly aliases.
Second plot: spectrum after we removed the LSP signal.
Pulsation peaks and aliases indicated. Third plot: residual
spectrum after both the LSP and the pulsation frequency
removed: f1 marks the significant peak that remained. Bot-
tom plot: power spectrum with the LSP removed from the
data, in log space: we fitted the granulation noise component
with a 1/f function and the pulsation frequency region with
a Lorentzian profile.

last 40 years, whereas the dip commencing in November

of 2019 dimmed the star to 1.6 mag in that band. The

light curve also highlights some smaller variations on the

order of a few hundredths of a magnitude on timescales

of days to weeks. Similar variations are present in the

SMEI light curves of other nearby stars as well, so we

do not consider these to be an intrinsic feature of α Ori.

2.1.2. Frequency analysis of observations

We analyzed the frequency spectrum of the photomet-

ric light curve with Period04 (Lenz & Breger 2005). We

are able to identify the LSP and pulsation frequency re-
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gions easily, as shown in Fig. 3, but the identification

of individual frequency components intrinsic to the star

was hindered by the presence of yearly aliases. Most no-

tably, the −fLSP + 1/yr component coincides with the

pulsation frequency region. As the FM pulsation mode

itself is only slightly longer than one year, its harmonics

and/or overtones could coincide with yearly aliases.

We first apply a pre-whitening procedure to the data

with LSP components. Figure 3 shows that the LSP is

not strictly cyclic and that α Ori hovered in a bright

state throughout the 2010s. We test combinations

of multiple harmonics and subharmonics of the main

fLSP = 0.000423 d−1 frequency (PLSP = 2365 ± 10 d),

which is 15% longer than that determined by Kiss et al.

(2006), but still within their uncertainty range. We

use the 0.5 and 2.5 fLSP components for the final fit,

which successfully reproduces the deep LSP minima in

1985/1989 and in 2001/2006–7. Non-sinusoidal features

in LSP light curves are common for smaller red giants

in the Magellanic Clouds: one half of the LSP cycle

shows an eclipse-like dip, and the other half resembles

a plateau. The model proposed by Soszyński & Udalski

(2014) to reproduce this shape assumes a nearby orbit-

ing companion and associated dense cloud. Currently,

there is no indication of a companion orbiting α Ori,

but some observations suggest that the recent dimming

was likely caused by excess dust2. (Levesque & Massey

2020; Safonov et al. 2020).

We detect two significant frequency components

(fpuls1 = 0.002469, fpuls2 = 0.002213 d−1) at the pul-

sation frequency peak, in agreement with the expected

short lifetime of the mode. We likewise detect the first

harmonic (2 fpuls) of the stronger pulsation component.

Since the pulsation signal is non-coherent, we fit it

with a Lorentzian profile as in Kiss et al. (2006), but in

combination with a 1/f component to account for the

red noise component of the convective motions (bottom

panel of Fig. 3). We calculate a pulsation frequency of

fpuls = 0.00240 ± 0.00014 d−1 from the peak of the pro-

file, corresponding to a period of Ppuls = 416±24 d. We

can also use the the full width at half maximum (Γ) of

the profile to estimate a mode lifetime of τ = 1/πΓ =

1174 d, or ≈ 3 pulsation cycles. The mode lifetime

matches the value calculated by Kiss et al. (2006); the

pulsation period, however, is 7.2% longer, though still

within their uncertainty range. We note that Dupree

et al. (1987) determined a similar, 420 d period, but

2 We note that this view is not held uniformly, however; e.g. Dhar-
mawardena et al. 2020 do not agree)

this was based on only three years of photometric obser-

vations.

Apparent changes to the period likely arise from (1)

the non-coherent nature and short lifetime of the mode

and (2) interference with photometric variations caused

by convective motions and the evolution of hot spots.

Differences of up to 15% among apparent periods calcu-

lated from shorter and longer data sets have been found

for other RSGs as well (Chatys et al. 2019). Presently,

we report a new period for the photometric data covering

only the last three decades; disentangling the temporal

evolution of the pulsation is beyond the scope of this

work.

2.1.3. Detection of the first overtone

After pre-whitening the data using these frequen-

cies, one significant peak remained at f1 = 0.005392 ±
0.000002 d−1 (P1 = 185.5 ± 0.1 d)3. Neither this com-

ponent nor the harmonic was described by Kiss et al.

(2006), nor is it present in the power spectrum of the

complete visual light curve. However, f1 can be iden-

tified in some segments. This peak could suggest the

presence of the first overtone with a period ratio of

P1/P0 = 0.445 ± 0.014 (using the Lorentzian fit to P0)

in α Ori. Overall, we expect the P1/P0 period ratio to

be ∼ 0.5 for red giant and supergiant variables, though

model predictions typically focus on lower mass ranges

(Fox & Wood 1982; Kiss et al. 1999). We discuss period

ratios derived from our own models in Section 4.2.

Multi-periodicity is not uncommon among red giants

and supergiants. Kiss et al. (1999) detected more than

one periodicity in 60% of 93 well-observed, semiregular

variable stars. Although some of these were a combi-

nation of pulsation and LSP signals, 30% of the stars

clearly pulsated in the fundamental mode and first over-

tone simultaneously. We therefore consider it likely that

α Ori also pulsates in more than one mode, though we

cannot conclusively exclude the possibility that the f1

signal detected in our analysis corresponds to a yearly

alias or a harmonic of the non-coherent pulsation signal

that the photometric data do not resolve properly.

It would be informative to collect photometric obser-

vations of α Ori throughout the year for as long as pos-

sible in order to minimize the gaps in the data and di-

minish such aliasing in the frequency domain.

2.2. Timing of minima

3 Uncertainties for f1 were calculated with the assumption of a
single coherent Fourier component: more data will be needed to
assess the validity of this assumption.
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A standard means of identifying deviations from an

assumed periodic signal is the O–C method.4 Here we

attempted to identify and time the various larger and

smaller minima in the light curve. The light curve data

appear to alternate between two states: one defined

by deep minima exceeding 0.5 mag (e.g., at JD 49800,

52750, 54000, 54400, 58500 and the dip itself at 58800),

the other by shallower and more frequent meandering

(e.g., around JD 51500, 53200, 55000 to 57000). How-

ever, the annual gaps make it difficult to identify enough

minima accurately, and it is thus possible that we simply

miss one type during certain intervals. Time spans be-

tween consecutive shallow minima can be as short as 60–

100 days—much shorter than the FM pulsation period.

We see no indication of discrete frequency components

corresponding to these intervals in the power spectrum

of the star, which suggests they are not high-degree pul-

sation modes. The timescales and low amplitudes, how-

ever, do match the convective turnover times of giant

convection cells: our photometric results agree with pre-

dictions of timescales from 3D radiative hydrodynamic

models and the time-resolved results of spectropolari-

metric observations of the surface of the star (Freytag

et al. 2002; López Ariste et al. 2018). We therefore

attribute these short-timescale, stochastic variations to

the photometric effects of convective cell turnover on the

surface of α Ori.

The critical observational features of Betelgeuse are

summarized in Table 2. We add a final note that obser-

vations released since the presentation of the lightcurve

in this work show a new brightness minimum occurring

less than half a pulsation period later, but at a regular

depth of V ∼ 1.0 mag (??). These observations are con-

sistent with behavior seen in our longitudinal data, par-

ticularly those periods in which the short-lifetime mode

shifts in phase abruptly. It is likewise consistent with

the photometric effects of changing convective cells. Our

results thus demonstrate that these two phenomena are

sufficient to explain the subsequent, short-term semireg-

ular variability of α Ori without invoking explanations

such as multiple, opaque dust clouds orbiting the star.

3. CLASSICAL EVOLUTIONARY MODELS

Having carefully collated the set of observational cri-

teria described in Table 2, we proceed in modeling the

system. Our numerical efforts include three types of

simulation: (1) classical evolutionary tracks; (2) linear

pulsation models; and (3) short-timescale, 1D, implicit

4 O–C refers to the observed minus calculated method, where we
measure the time differences between observed events (e.g., cycle
minima or maxima) and a periodic ephemeris.

hydrodynamical evolution. We discuss results from each

in this order.

We compute evolutionary tracks for stellar models

with initial masses of 10–26 M�,i. Calculations are car-

ried out from the pre-main sequence to the termination

of the helium-burning giant branch, with the terminat-

ing condition set by the amount of helium remaining in

the core of the star (M(4He) ∼ 10−8 M�). Models in

an evolutionary phase more advanced than core helium

burning are less favored probabilistically, as the star will

spend considerably less time in such phases. As shown

above, they are also unlikely to be consistent with the ex-

isting array of observational constraints, especially since

these constraints prove to be discriminating even within

the set of strictly core helium-burning models. As such,

we do not consider post-core helium-burning models in

further detail.

Figure 4 shows a set of evolutionary tracks evolved

from the zero-age main sequence (ZAMS) to the end of

core helium burning. Masses indicated refer to the initial

mass. In subsequent discussion, we refer to models by

their initial masses, though typically the mass of the star

will be between 2–3 M� smaller at the termination of

its evolution (and onset of its hydrodynamic evolution)

due to mass loss during its prior stages.

Our initial grid of models does not invoke rotation and

has fixed, solar metallicity represented by a heavy metal

fraction of Zin = 0.02. We consider multiple values of

the convective mixing length αMLT, ranging from 1.8

to 2.5. As massive stars are quite sensitive to the pre-

scriptions used for convective boundaries and convec-

tive overshoot, we adopt convective overshoot settings

of fovs = 0.010Hp
5 surrounding hydrogen- and helium-

burning zones (Herwig 2000; Paxton et al. 2018). We

set convective boundaries according to the Schwarzschild

criterion, and we do not include semi-convection6. We
use the Cox prescription of the mixing length formalism

(Cox & Giuli 1968). We do not use the MLT++ op-

tion in the calculation of our evolutionary models. Our

surface boundary conditions are set by a simple pho-

tosphere model, whose implementation is described in

Paxton et al. (2011).

We account for mass loss in the evolutionary cal-

culations via MESA’s implementation of the “Dutch”

wind schemes, a composite of prescriptions summa-

rized in Reimers (1975); de Jager et al. (1988); Bloecker

(1995) and van Loon et al. (2005). We model the low-

5 Multiples of the pressure scale height, d lnP/d lnT .
6 only available when the Ledoux criterion (i.e. composition gra-

dient) is used to set convective boundaries
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Figure 4.
(UPPER) A set of classical evolutionary tracks for 10–25M�
computed with MESA. Initial mass per track as indicated.
All models shown are computed until the end of helium burn-
ing and shown from ZAMS. All tracks adopt a mixing length
of αMLT = 2.1. (LOWER) Same as above, but rescaled to
highlight the evolutionary region consistent with the tem-
perature constraints provided by Levesque & Massey (2020),
shown in pink. The extended temperature regime permitted
by the mixing length degeneracy is shown in blue.

temperature mass loss via the prescription of de Jager

et al. (1988), adopting a wind coefficient of η = 0.8 as

default.

We test a range of η values and find that while the

choice of η does impact the terminal mass of the evolu-

tionary model, our results are predominantly sensitive

to the radius. The relationship between an evolutionary

model’s terminal radius and its input controls—mass,

metallicity, mixing length, convective overshoot, mass

loss coefficient, etc.—is complex, and we do not gain

much insight on this interplay by varying η. We do

not use mass loss or rotation during the hydrodynamic

evolution itself, as the impact of these processes on a

timescale of several decades is negligible.

A critical component of our classical modeling objec-

tive involves reproducing the recently observed temper-

ature of α Ori. However, given limited a priori informa-

tion on the star’s mass and evolutionary phase, there is

a strong degeneracy between choice of αMLT and pre-

dicted temperature. While this issue emerges even for

well-constrained systems (Joyce & Chaboyer 2018a,b),

the magnitude of the degeneracy is exacerbated as ob-

servational constraints loosen and the structural com-

plexity of the stellar models increases. Hence, even if we

assume that the atmospheric models used by Levesque

& Massey (2020) can determine the temperature cor-

responding to the observed line profile with high accu-

racy and precision, the underlying evolutionary models

themselves may shift by about ±200 K. This introduces,

at minimum, the same uncertainty on the evolutionary

stage at which the star crosses the observed tempera-

ture. It is likewise prudent to extend the uncertainties

on our temperature measurements anyway, as RSG tem-

peratures are notoriously difficult to infer. In particular,

Davies et al. (2013) note that an SED fitting approach

would give a higher temperature for Betelgeuse than

the one we adopt here, and these authors raise concerns

about the validity of the TiO-band fitting method use

by Levesque & Massey (2020). Likewise, Ireland et al.

(2008) find that fits based on TiO and made under the

assumption of LTE can give temperatures that are much

too low; based on these findings, Betelgeuse could easily

have an effective temperature that is hotter by 200 K.

A looser interpretation of the temperature constraints

is implemented in practice by extending the observa-

tional boundaries by a theoretical uncertainty of appro-

priate order. This is done by measuring the shift in

temperature a track of fixed mass undergoes when its

mixing length is adjusted to extremal values. In the

case of our grid, this shift is calculated for αMLT = 1.8

vs αMLT = 2.5 and corresponds to a shift in mod-

eled temperature, in the relevant part of the HR dia-

gram, of roughly 0.1 dex for a track with middling mass

17 M�. We likewise note that the mixing length is not

the only parameter that contributes to uncertainties in

the derivation of RSG temperatures; others include con-

vective overshoot and semi-convection, both of which

also affect the appropriate choice of mixing length itself.

We do not account for variations in either in this study,

but refer to Chun et al. (2018) for a detailed analysis of

the impact of theoretical assumptions on RSG temper-

atures.

We choose to account, approximately, for variations

among temperature estimates caused by differences in

observational inference methods and theoretical param-

eter choices as follows: We expand the observational

temperature constraints by an amount equal to the shift

in modeled temperature for two otherwise identical stel-

lar tracks that adopt minimal and maximal values, re-

spectively, of αMLT. This adjusted temperature bound-
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ary is indicated by the blue strip in Figure 4. The ef-

fective temperature constraints of Levesque & Massey

(2020) alone are shown in the much more restrictive pink

band. The observational constraints on luminosity are

not strong and do not themselves rule out any of the

models shown in Figure 4.

Attempts to reproduce Betelgeuse’s present-day rota-

tion of ∼ 5 km s−1 (v sin i = 5.47 ± 0.25 km s−1, Uiten-

broek et al. 1998; Kervella et al. 2018) with single-star

evolutionary models are unsuccessful. To this end, we

compute tracks that use an initial surface rotation of up

to Ω = 0.65Ωcrit, or roughly 200 km/s on the ZAMS, in

accordance with Wheeler et al. (2017). In cases where

the models do not fail outright, the results are not con-

sistent with even the most generous interpretation of the

observational constraints. Among tracks that converge,

even those with the highest values for Ωi still fail to pre-

dict a present-day rotation rate in the vicinity of the

observed value.

In particular, tracks with initial rotations approach-

ing breakup velocity (Ω/Ωcrit ∼ 0.7) fail to intersect

the (extended) effective temperature regime with large

enough present-day surface rotations. The highest val-

ues attained by our grid only just reach 1 km/s, and

these correspond to models with initial masses as low as

6–10 M�. Such low-mass models are easily ruled out by

other constraints, especially period.

Our results from this exercise are thus similar to those

of Wheeler et al. (2017), who find that “models at the

tip of the RSB typically rotate at only ∼ 0.1 km/s, in-

dependent of any reasonable choice of initial rotation.”

Though Wheeler et al. (2017) are able to create rotat-

ing models consistent with 3σ uncertainties on their ob-

servational constraints at the time, our constraints pri-

oritize the fundamental mode frequency and include a

much tighter range on effective temperature. More so-

phisticated modeling of the rotational aspects of α Ori’s

evolution are beyond the scope of this paper.

The terminal models from the evolutionary run pro-

vide both the structural input for calculations with the

linear pulsation program (next section) and the initial

conditions for the hydrodynamic study (Section 5).

4. SEISMIC MODELS

Used in conjunction with classical parameters, syn-

thetic frequencies are an extremely powerful tool for dis-

criminating among possible models of a star. The case

of α Ori is no exception.

4.1. Linear perturbations

We use GYRE to solve the linearized pulsation equa-

tions for high-resolution structural models produced
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Figure 5. Adiabatic p-modes are calculated with GYRE
for all relevant evolutionary tracks. Periods, in days, of all
models consistent with the observed temperature constraints
are shown, coded by color for mass and by marker style for
mixing length, as indicated. (UPPER) Masses range from
10–24M� at a resolution of 1.0M� and mixing lengths range
from 1.8 to 2.5 at a resolution of 0.1. (LOWER) Masses
range from 10–24M� at a resolution of 1.0, M� and αMLT

is fixed at 2.1. Here, the observed temperature constraints
adjusted to account for the theoretical uncertainty in αMLT.
All models shown adopt η = 0.8 and Z = 0.02. The observed
seismic constraints from Kiss et al. (2006) are indicated with
blue horizontal lines.

during the RSG phase (Townsend & Teitler 2013). The

GYRE program is based on a Magnus Multiple Shooting

(MMS) scheme and provides both adiabatic and non-

adiabatic calculations. We consider only adiabatic re-

sults in this analysis. Figures 5 through 8 show results

from these calculations.

As a track that intersects the observational require-

ments will typically do so at multiple evolutionary

timesteps, we can produce several pulsation profiles per

track. Where the models are compatible, we generate

synthetic frequency spectra at short intervals. In our

frequency modeling, we do not restrict to a search for
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Figure 6. Same as Figure 5, but for the first overtone, O1.
Uncertainties have been scaled by the O1/FM ratio, yielding
±13.5 days, shown with red horizontal lines.

FMs (npg = 17, l = 0,m = 0) alone; rather, we note

the modes and values of any frequencies in the vicinity

of Betelgeuse’s two dominant periodicities. However,

it is immediately clear from our calculations that peri-

ods constituting the primary decaying sequences in both

panels of Figure 5 are fundamental mode periods.

To account for the theoretical uncertainty on Teff, we

consider two metrics by which an evolutionary track is

compatible with the observations. In the upper panel

of Figure 5, we show the periods of adiabatic p-modes

versus termination age for a collection of models with

a range of initial masses and mixing lengths; here, the

structural models used in the seismic analysis have ef-

fective temperatures strictly within 3600±25 (Levesque

& Massey 2020).

In the lower panel of Figure 5, all models use αMLT =

2.1, but are checked for consistency against the ex-

tended, theoretical temperature constraints described in

Figure 4. In both panels of Figure 5, all masses refer to

7 The lowest radial order for pressure modes, as defined by GYRE
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Figure 7. Additional parameters, including present-day ra-
dius and mass, are shown as a function of period. Period
constraints are shown as green, vertical lines. Models in the
middle and lower panels of each graph are emphasized if they
are also compatible with the radial bounds set by the inter-
section in the corresponding radius vs period graph. (UP-
PER) A random sample of models spanning initial mass,
mixing length, mass loss parameter, and degree of helium
exhaustion, not pre-selected for agreement with any temper-
ature constraints. (LOWER) All models with αMLT = 2.1,
η = 0.8, and terminal conditions determined by agreement
with effective temperature, including theoretical uncertain-
ties.

the initial mass of the model and the 416± 24 day peri-

odicity is denoted by a blue horizontal band.

In the upper panel of Figure 5, the period–age se-

quence is tighter and more well-defined, but the results

between the upper and lower panels are largely consis-

tent. We note that sub-sequences comprising stars of
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Figure 8. Same as Figure 7, but derived according to seismic
agreement with the first overtone, O1.

particular mass are more apparent in the fixed αMLT

case. This visualization more clearly suggests that, at

least for masses in the 15–20 M� range, there will nec-

essarily be some point along the helium-burning branch

during which the star will pass through the appropriate

frequency band. However, the temporal window during

which this occurs is quite small in the context of evo-

lutionary timescales–on the order of 0.5–1.0 Myr. The

requirement that this time frame align with a particular

observed temperature ends up being quite restrictive.

Collectively, these results suggest a median, model-

derived mass range of 16–21 M� (with some outliers

as high as 24M�), at a resolution of 1 M�. This is

broadly consistent with other modellers’ results, though

our results are more accommodating at the lower-mass

end.

We repeat this analysis using as a period constraint

the probable overtone observed in our photometry (Sec-

tion 2.1.2) and confirmed in our synthetic frequency

spectra: an O1 mode oscillating with a period of 185d.

In lieu of an independent value, we scale the uncertainty

of the fundamental mode to derive an uncertainty on

the overtone of 13.5d, yielding P1 = 185 ± 13.5. This is

shown in the red, horizontal bars of Figure 6. Though

suggested by our photometric analysis, confirmation of

the detection of this mode and its classification required

supporting evidence from theoretical spectra. This ar-

gument is detailed further in Section 4.2.

Figure 7 shows other fundamental parameters as a

function of period. The FM and its uncertainties are

defined by green, vertical bars in all panels. An ana-

log using the O1 period and its uncertainties, defined by

dark red vertical lines, is shown in Figure 8.

Models in the upper panels of Figures 5 and 6 span the

full range of masses and mixing lengths considered in our

grid and additionally vary in the prescribed mass loss co-

efficient (η = 0.2–1.0), but they are not pre-restricted by

agreement with temperature constraints. Instead, these

evolutionary tracks are terminated at arbitrary intervals

along the helium-burning branch, with spacing set by

the degree of helium exhaustion in the core. This is done

to produce a more well-populated sequence that incorpo-

rates additional sources of uncertainty in the modeling

assumptions. Despite this added theoretical noise, the

range of possible radii across all models remains heavily

restricted by the observational period constraints.

All models in the lower panels of Figures 5 and 6 inter-

sect the theoretically extended temperature uncertain-

ties (which essentially sets their termination ages) and

adopt αMLT = 2.1 and η = 0.8.

In the uppermost panel of Graph 1 in Figure 7 and

Graph 3 in Figure 8, we show radius as a function of

FM and O1 period, respectively. Though there is some

scatter in the synthetic data, the radial span of the

period–compatible models is very narrow in both cases,

especially compared to the range of radial estimates col-

lated in Dolan et al. (2016). We recall from earlier dis-

cussion that literature estimates of Betelgeuse’s radius

range from ∼ 500R� to nearly 1300 R�, whereas the

results presented here suggest little possibility outside

700 − 900 R�. If we interpret the FM period mea-

surements as hard limits, our results suggest a radius

for α Ori of 764 R�, with 1σ uncertainties of roughly

30 R� and non-symmetric limits of Rmax = 880 R� and

Rmin = 702 R�. Figure 8 suggests consistent but even

tighter limits of approximately 700 − 800R� We thus

report a 3σ, model-derived radius of 764+116
−62 R�.
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Figure 9. The ratio of the first overtone to fundamental
mode periods computed with GYRE is shown for the same
models and temperature definition used in the upper panel
of Fig. 5 (variable αMLT). The range indicated by horizontal,
green lines is P1/P0 = 0.44 ± 0.04.

In the middle and lower panels of each graph, we show

the models’ initial masses and terminal masses, respec-

tively, as a function of period. In these plots, we em-

phasize those models that also have radii within our 3σ

uncertainty bounds with larger, darker markers. Con-

sidering all possible observational constraints, we report

model-derived estimates for the initial and present-day

masses of Betelgeuse as approximately 18–21 M� and

16.5–19 M�, respectively. Though best mass ranges dif-

fer slightly among them, these represent median values

collated from the four variants of this test (Figures 7

and 8), encompassing two interpretations of the mix-

ing length–temperature degeneracy for each of P0, P1.

The lower rows of Table 2 summarize these findings.

Taking into account the likelihood of a previous merger

event, which would significantly complicate any infer-

ences about the state of Betelgeuse at birth, it is our
present-day mass estimates that are most pertinent.

4.2. The first overtone

In Sect. 2.1.2 we presented observational evidence of a

new frequency component, f1, that corresponds to a pe-

riodicity of P1 = 185 d. While strong aliasing caused by

annual gaps in the data makes this detection somewhat

uncertain, the ratio of this mode to the fundamental sug-

gests that it is the first overtone. Because the literature

on seismic models of RSGs is sparse (with most works

focusing instead on the low- to medium mass regime;

c.f. Trabucchi et al. 2019), we supplement the photo-

metric analysis with theoretical results from GYRE. To

test whether the seismic models agree with the observed

period ratio we inspect GYRE’s prediction for the fre-

quency of the P1 (np = 2, l = 0,m = 0) mode. With the

uncertainties propagated from each period, the relevant

range is P1/P0 = 0.445 ± 0.041.

We find that GYRE’s prediction for P1 is strongly con-

sistent with 185 d and that the observed period ratio

gives mass and age predictions that are self-consistent

with the mass and age ranges constrained by the funda-

mental mode, as demonstrated in Figure 9. When mix-

ing length is varied and temperature is fixed, the age

and initial mass ranges inferred from the period ratio

are 7–11 Myr and 16–23 M�, respectively.

If we consider the progression of the models, we find

that the period ratio drops in even younger, higher-mass

models, with P1/P0 as small as 0.30–0.36 at around

5 Myr. Older, lower-mass models reach the 0.50-0.55

range, in agreement with period ratios observed in

semiregular and Mira variables (Kiss et al. 1999; Molnár

et al. 2019). We thus conclude that the signal detected

in our photometric data is indeed consistent with the

first overtone, making Betelgeuse a double-mode star.

Observing multiple modes in a pulsating star can pro-

vide stringent constraints on its physical parameters:

this is the main principle behind asteroseismology (Aerts

2019). The Fourier analysis in Sect. 2.1.2 only provided

us with a formal error for the single detected frequency

peak, but we expect the overtone to have a limited mode

lifetime, just like the fundamental mode. As Figures 6

and 8 show, and as is discussed in Section 4.1, the first

overtone prefers largely the same models as the funda-

mental mode.

4.3. Seismic parallax and luminosity

With the radius of α Ori heavily constrained by the

seismic models, we can calculate the distance to the

star based on the measured angular diameter. Us-

ing an angular diameter of 42.28 ± 0.43 mas and the
3σ uncertainty range of the seismic radius estimate,

764+116
−62 R�, we calculate 168+27

−15 pc for the distance and

π = 6.06+0.58
−0.85 mas for the parallax. Our values are in

agreement with the parallaxes derived entirely or in large

part from the Hipparcos measurements (see van Leeuwen

2007 and Harper et al. 2008), and place α Ori nearer to

us. It is, however, somewhat in tension with the more

recent results based on radio observations, with disagree-

ment at the 1–2σ level (Harper et al. 2017). Figure 10

shows our results in context.

This discrepancy could stem from various observa-

tional or theoretical shortcomings. One possibility is

that the period shift is caused by large-amplitude, non-

linear pulsation. Stellar structure adjusts dynamically

to the changes caused by coherent pulsation, which may

cause a shift in the eigenfrequencies of the structure.

Therefore even if the physical parameters of a linear seis-
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Figure 10. A summary of recent literature distances to α Ori.
The gray bar represents the seismically-derived values re-
ported in this work.

mic model agree with those of the star, the calculated

and observed periods may not. In the case of p-modes,

the radius relates to the pulsation period as R ∼ P 2/3

for a given mass. From this alone, we estimate that the

linear period of Betelgeuse should be 500 ± 40 d if its

radius is 887 R�, as adopted by Dolan et al. (2016).

This means that a ∼ 20% non-linear decrease would

be required to reproduce the observed 416 ± 24 d pul-

sation period. Given that we cannot yet evolve RSG

hydrodynamic models to full-amplitude pulsation, we

cannot infer the period shift directly. For comparison,

studies show that pulsating Mira models produce pe-

riod shifts of up to –23% and +15%, which is of the

appropriate order (see, e.g., Lebzelter & Wood 2005;

Ireland et al. 2011). However, non-linear period shifts

scale with the pulsation amplitude. As such, the rela-

tively low-amplitude, short-lifetime mode seen in α Ori

makes such a large shift implausible. Thus, non-linear

pulsation could be, at best, only partially responsible for

the discrepancy we observe.

Another possibility is that the true Rosseland angular

diameter of the star is smaller than the 41.8 mas value

adopted in the present analysis, and thus the diameter of

the photosphere could be as small as 36 mas. However,

this would suggest that none of the direct imaging and

interferometric observations, including the multi-band

models created by Perrin et al. (2004) and Montargès

et al. (2014), were capturing the photosphere itself, but,

rather, only two separate layers in the extended atmo-

sphere. We consider this very unlikely.

On the other hand, consistency between our parallax

estimate and the Hipparcos value could indicate that

the astrometric cosmic noise has been underestimated in

previous studies, or that it is correlated over the times-

pan of the astrometric observations.

Harper et al. (2017) illustrates that the addition of

a large cosmic noise term to the radio data would be

required to bring the combined Hipparcos+radio par-

allax value close to 6.0 mas. Nevertheless, this could

be an indication that various effects, such as photo-

center displacements and non-axisymmetric stellar disk

shapes caused by convective hot spots, have been previ-

ously underestimated. A resolved image obtained from

ALMA shows a large hot spot towards the disk limb

with a temperature contrast of ∆T ≈ 1000 K, which co-

incides with the rotational axis but provides no context

for the temporal evolution of the photocenter displace-

ments (O’Gorman et al. 2017). Kervella et al. (2018)

proposed that this hot spot corresponds to a rogue con-

vection cell that might also be magnetically connected to

ongoing mass ejection from the polar region of the star.

Presence of one or more persistent spots could mean

that the cosmic noise level of the star is higher than re-

ported by Harper et al. (2017), and/or that it needs to be

modeled as a correlated noise source. Confirming or rul-

ing out this possibility would require either a sustained,

multi-year interferometric observational campaign or the

development of accurate 3D physical simulations of su-

pergiant stellar atmospheres that can handle the evolu-

tion of hot spots. Finding new ways for Gaia to process

heavily saturated stars and thus allowing us to obtain

better parallaxes and possibly astrometry of individual

hot spots is yet another avenue forward (Sahlmann et al.

2018). However, any of these endeavors would require

substantial investment from the respective experts.

Finally, with a seismic parallax in hand, we can esti-

mate a tighter luminosity range based on the Stefan-

Boltzmann law. Adopting the strict Teff uncertainty

range reported by Levesque & Massey (2020), we re-

port the luminosity constraints of α Ori to be log10 L =

4.94+0.06
−0.04, where L is in units of L�. The effective tem-

perature range permitted by taking into account the-

oretical uncertainties extends this range to log10 L =

4.94+0.10
−0.06. We note that if we were to superimpose this

range on Figure 4, it would intersect the RSB at the

appropriate temperatures for tracks with initial masses

between 16–21 M�. This range is self-consistent with

our other means of estimating mass; however, as mass

is a derived quantity, we do not use it to restrict the

domain of our seismic grid.

5. HYDRODYNAMIC ANALYSIS

The third component of our modeling relies on

MESA’s implicit hydrodynamics solver, which we use to

explore the non-linear oscillatory behavior of the mod-

els’ envelopes on decadal timescales. Though the term

“non-linear” can accurately be used to describe any use
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of the Euler equation, which is non-linear by nature, or

to describe any models that make full use of the stellar

structure and evolution equations as opposed to pertur-

bation analysis, we apply this term only to particular hy-

drodynamic behavior. We use the term “linear” in the

hydrodynamic context to describe any oscillation that

does not excite other modes or cause the development

of shocks.

5.1. Method

We use MESA (version 8118—Paxton et al. 2015) to

solve the stellar structure and evolution equations by

means of an implicit hydrodynamics scheme in the La-

grangian formalism. Critically, this means that velocity

becomes a dynamical variable similar to density, lumi-

nosity, and other physical quantities.

To capture the shock propagation, artificial viscosity

q is included in MESA’s hydrodynamical scheme (Richt-

myer & Morton 1967). However, in our calculations, the

global motion of the H-envelope remains subsonic (∼ 0.5

km s−1) until the end of the simulation. Since this is

lower than the typical speed of sound in the atmosphere

(∼ 10 km s−1), capturing shocks is not integral to our

work, and hence q acts only as a safeguard to prevent

numerical instabilities.

Furthermore, the code uses the energy-conserving,

time-discretization scheme of Grott et al. (2005), which

ensures that the models at two consecutive timesteps are

consistent with each other. We describe the precise con-

figuration for our simulations in more detail in Appendix

A, and provide the inlists necessary for reproduction8.

It is important to note that MESA’s implicit hydrody-

namics scheme does not include the equations of stellar

pulsation directly; rather, MESA has a dedicated mod-

ule, RSP (Radial Stellar Pulsations; Smolec 2016), for

calculating non-linear pulsating models. However, RSP

is not suitable for stars with the luminosity-to-mass ra-

tios (L/M) of giants such as α Ori (Paxton et al. 2019).

Previous work has shown that the pulsation modes of

stars with L/M ratios similar to that of Betelgeuse have

high enough growth rates to induce shocks even if the

implicit solver is employed (Heger et al. 1997; Paxton

et al. 2013; Smolec 2016; Yoon & Cantiello 2010; Gold-

berg et al. 2020).

5.2. Period–Radius estimates from hydrodynamic runs

While the main goal of incorporating hydrodynamic

simulations into our analysis is to study a canonical

model of Betelgeuse’s envelope rigorously, non-tailored

8 We will publicly release the inlist files on Zenodo at the conclusion
of the refereeing process.
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Figure 11. We show the short-timescale, hydrodynamic
evolution for two MESA models with observationally consis-
tent features at the termination of their evolution in terms
of normalized luminosity (UPPER) and normalized radius
(LOWER) versus time. From these simulations, we can ex-
tract cycle lengths as a secondary means of estimating oscil-
lation periods.

hydrodynamic simulations also provide a second method

of calculating short-order pulsation modes, and thus a

means of independently verifying the linear calculations.

From a small grid of cursory hydrodynamic runs of vary-

ing mass, we can estimate theoretical pulsation cycle

lengths directly.

We first conduct an exploratory investigation of the

hydrodynamic evolution for a small subset of the models

in our grid, restricting to those with initial masses be-

tween 17–23M�. We require that the timestep does not

exceed some fixed, small value—typically 5000–10,000

seconds—and compute the temporal evolution for sev-

eral decades.

Figure 11 demonstrates the oscillatory behavior of
two hydrodynamic models with slightly different ini-

tial masses. If not handled correctly, the hydrodynamic

models will rapidly expand from their evolutionary ini-

tial conditions—in most cases, to nearly double our ra-

dial limits—before stable pulsations emerge. This is

caused by a discrepancy between the luminosity of the

inner boundary of the simulated stellar envelope and

the actual stellar luminosity. Thus, over time, the star

deposits its energy near the surface, making the star

expand. This can be mitigated by applying relaxation

procedures to the initial hydrostatic model (Wood et al.

2004; Nicholls et al. 2009b; Ireland et al. 2011; Saio et al.

2015).

However, it is still possible to derive the pulsation pe-

riods and average radii of these models based upon se-

lected cycles before shocks and/or numerical failure oc-
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Figure 12. The left panel shows the sequence of stellar radii against pulsation periods, extending from RR Lyrae and Cepheid stars
to Miras and RSGs. The right panel highlights the region containing observations of other variable red giants and measurements
extracted from the hydrodynamic simulations, demonstrating that Betelgeuse’s 416 day, rather than 2050 day, periodicity lines
up better with the modeled sequence. In both panels, gray dots correspond to observations of lower-mass pulsators. Variable
red giants in particular are shown in open red circles, with Betelgeuse’s two modes represented by closed red circles. Points
derived from models are colored, with the colorbar indicating their mass.

cur, thus providing a cursory but independent validation

of the pulsation periods computed with GYRE.

The modeled data are produced by estimating the in-

stantaneous period and radius values from the hydrody-

namical models using a combination of quadratic and

a sine functions fit to short segments of the radial evo-

lution. In this way, we can extract multiple theoretical

R,P estimates from one hydrodynamic model. We com-

pare these to a set of direct and inferred observations

of pulsation periods and radii of variable stars. The

bulk of these data come from the collection of Szatmáry

(2004),9 which contains a variety of variable stars in-

cluding RR Lyrae, Cepheids, and Miras. In addition,

we collate period and radius estimates for a number

of other supergiants from available literature: CE Tau,
TV Gem, α Sco, V766 Gem, AH Sco, UY Sct, V602 Car,

VY CMa and KW Sgr (Wasatonic & Guinan 1998;

Levesque et al. 2005; Kiss et al. 2006; Ohnaka et al.

2013; Wasatonic et al. 2015; Wittkowski et al. 2017).

Of these, pulsation and LSP period measurements are

available for α Ori and TV Gem, and KW Sgr has two

distinct radii published—these have dashed lines con-

necting their measurements.

Figure 12 shows a set of synthetic periods and radii de-

rived from the hydrodynamic grid. Also shown in Figure

12 are (1) the P -R sequence constructed from observa-

tions of pulsators across a wide mass range (gray dots);

(2) the observed FM and LSP periodicities for the small

9 http://astro.u-szeged.hu/P-R relation/pr poster.html

number of red giants listed above (red, open circles);

and (3) the 416 and 2050 day periodicities of Betelgeuse

(red, closed circles). Masses of the synthetic stars are

indicated via the color bar.

It is well-known that acoustic modes scale with the

average density of the star, which itself largely depends

on the radius. We should therefore expect a clear corre-

lation between radius and period, as seen both here and

in the linear seismic analysis (Figure 7).

As is clear in the left panel of Figure 12, there is a

well-defined P,R sequence spanning RR Lyrae up to

synthetic supergiants. The periods and radii extracted

from the hydrodynamic models extend the established

sequence of pulsating stars to higher radii in a system-

atic and continuous way, indicating that our models ex-

perience p-mode pulsation until our simulations are ter-

minated or the numerics break down. A track of given

mass can produce multiple data points by sampling at

different times, and hence different degrees of radial ex-

pansion, during the hydrodynamic calculation.

In turn, the right panel hints at certain mode clas-

sifications for some of the observations. The periods

for a number of stars with measured radii fall cleanly

on the model sequence, and some fall above: the latter

could suggest either pulsations in an overtone or that

their radii have been overestimated. Given the compli-

cated circumstellar environment surrounding many su-

pergiants, and our own findings on the radius of α Ori,

the latter is a plausible explanation. Finally, the LSP

signals are clearly separate from the model sequence,

http://astro.u-szeged.hu/P-R_relation/pr_poster.html
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confirming once again that the 2050 day periodicity is

not driven by acoustic variations.

Even before more careful modeling of the hydrody-

namic evolution, it is evident that pulsation periods

emerging naturally in the simulations are of the same

order as Betelgeuse’s 416 day periodicity. The linear

and hydrodynamic seismic analyses both demonstrate

that this is α Ori’s fundamental mode, a fact which,

when combined with other classical observations, places

particularly strong constraints on the star’s radius.

5.3. Possibility of self-excitation due to non-linear

effects

As stars evolve across the HRD, they may undergo

mode transitions when a new pulsation mode becomes

unstable. At this point, the star can switch to the new

mode—a phenomenon observed directly in RR Lyrae

stars—or transition to a multimode pulsator.

Mode growth rates have various definitions. In the

linear framework, they usually represent the natural

timescale of changes in the pulsation energy of the star

(Catelan & Smith 2015). Growth rates are sometimes

calculated directly from the change in amplitude be-

tween successive cycles, but one must keep in mind that

in non-linear calculations, amplitudes do not grow indef-

initely. Hence, non-linear growth rates only agree with

the linear values initially, eventually fading back to zero

(Yoon & Cantiello 2010). Normalized growth rates are

thus scaled with the pulsation frequencies. In the case

of, e.g., OGLE–BLG–RRLYR–12245, this mode transi-

tion lasted for hundreds of cycles, as is consistent with

the small growth rates of the modes (Soszyński et al.

2014). But, in contrast to classical pulsators, semireg-

ular stars have very large growth rates that can lead

to strong mode interactions, some of which may even

become chaotic (Buchler et al. 1996). As such, it is

theoretically possible that Betelgeuse has recently ex-

perienced a rapid mode transition, or a rapid increase

in amplitude of an overtone mode already present, and

that the superposition of the resulting modes created

the unusually low brightness minimum seen in Novem-

ber of 2019. It is thus worth investigating whether such

a situation can be simulated; however, modeling multi-

mode pulsation in the non-linear regime is notoriously

difficult; at present, this is only reliably reproducible for

stars with much lower L/M ratios (Kolláth et al. 2002;

Smolec 2016). It is thus beyond the scope of the cur-

rent paper to investigate such a situation, though this

scenario is one we hope to address in a subsequent in-

vestigation.

5.4. Analysis of Canonical Hydrodynamic Model

We consider the evolution of a canonical hydrody-

namic model whose initial and terminal evolutionary

conditions are consistent (as best as possible) with the

parameters reported in Section 4. We construct a star

with initial mass 21 M� and terminal mass of 19.54

M� during core He-burning. In order to force the stabi-

lized radius to be consistent with our reported values, we

must inflate the mixing length parameter to αMLT = 3.0.

However, we still require that our hydrodynamic model

intersect the theoretical temperature uncertainties de-

scribed above, 3600 ± 200 K, during its oscillations.

Following the general methodology outlined in Gold-

berg et al. (2020), we cease tracing the evolution of the

innermost 6.0M�, representing the core, at the conclu-

sion of the classical evolutionary run. At this point (of-

ten called“core removal”or, more accurately,“core freez-

ing”), a typical timestep in the code is still 100 - 1000

years. As a numerical test, we run an evolutionary (non-

hydrodynamic) model of a 20M� star and find that after

He exhaustion, it takes approximately 50,000 years for

the luminosity to change by 0.05, whereas our hydro-

dynamic models show luminosity variations of similar

scale over the course of 40 years. Hence, the core can

be considered unchanged to good approximation over

the duration of the hydrodynamical simulations. It is

thus valid to adopt constant inner boundary conditions

set by rcut such that M(rcut) = 6.0M�, L = L(rcut)

throughout our calculations of the short-timescale, dy-

namical evolution of the envelope. The value of 6.0M�
is chosen so that 1.0 M� of the outer He-layer remains

along with the entire H-envelope. The He layer, which

sets the base of the hydrodynamical simulation, forms

a core-envelope structure with the H-envelope, and the

higher density core ensures that the oscillation of the

envelope does not interact directly with the mass gap.

In order to maintain a stable configuration after ceas-

ing to evolve the core, we allow the model to settle into a

hydrostatic approximation before turning on the hydro-

dynamic solver. To capture the short timescale motion

to adequate resolution, we limit the timestep of the hy-

drodynamical evolution to a maximum of 104 s. A larger

timestep of only ∼ 105 s can already result in the era-

sure of modes with a sub-annual period; this is due to

the implicit nature of the hydrodynamical solver. We

note that an implicit hydrodynamic scheme is necessary

in order to follow the global motion of the star because

the relative distances among mass shells near the surface

are small. In terms of the Courant timescale, it is ∼ 106

larger than that required by explicit time discretization

(∼ 0.5 s). Thus, in order to track the motion of the

surface with sufficient temporal resolution, implicit hy-

drodynamics must be employed.
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Our canonical model is evolved for a total of ∼ 10,000

steps from the initiation of hydrodynamics until the

point at which stellar expansion begins to disturb the

pulsation frequency. We find that beyond ∼ 30 years,

the motion in the star becomes large enough to interact

with the convective layer, causing the timestep to drop

as low as 1 × 102 s before the code is unable to evolve

the model forward in time. At this point, we stop the

simulation.

5.4.1. Global Features

We first discuss the temporal evolution of the critical

observables in the canonical model. In the four panels of

Figure 13, we plot the luminosity, effective temperature,

radius and surface velocity of the star.

The system enters into a state of pulsation with steady

but growing cycles a few years after the hydrodynamic

solver is switched on. Early in the evolution, quasi-

annual oscillatory behavior is present in the luminosity

and effective temperature, and the stellar radius exhibits

a consistent periodic motion on top of a steady expo-

nential expansion. In this work, we will consider the

stellar pulsation only when the motion remains linear;

we note that once the behavior becomes non-linear, the

timestep becomes too small to follow the pulsation effec-

tively. Moreover, non-linear pulsations greatly disturb

the profile of the stellar envelope, particularly in terms

of opacity and free electron fraction, which makes direct

comparison difficult.

In Figure 13, four vertical, dotted lines indicate mo-

ments at which we compare the instantaneous values of

the four quantities. The red and green lines correspond

to timesteps where the luminosity is at a local maximum

and minimum, respectively. The blue and purple lines

correspond to timesteps where the surface velocity is at

a local minimum and maximum, respectively.

When the star reaches its brightest point in the pul-

sation cycle, the effective temperature also reaches its

maximum. Concurrently, the star is in its most con-

tracted state (radial minimum) and displays a nearly

zero surface velocity. This is consistent with the be-

havior of a classical harmonic oscillator where the dis-

placement is largest during one cycle. Conversely, the

luminosity and effective temperature are minimal when

the star is most radially extended, and when the star

is maximal in surface velocity, the luminosity, effective

temperature, and radius are near their average values.

We then observe that as the star continues to expand,

a wobble in its motion emerges. As indicated in the hy-

drodynamic evolutionary tracks of Figure 11, the star

will eventually approach a state in which it is capable

of developing a hydrodynamical instability in the outer

envelope—the exact pulsation properties are themselves

a function of evolutionary stage and mass, as shown

in Yoon & Cantiello (2010). The evolutionary time at

which we launch our hydrodynamic simulations is chosen

so as best to reproduce the constraints on the classical

parameters found in the previous analysis. We adopt

a uniform starting point at which the He mass fraction

in the core is 10−4. Though this is somewhat late in

the helium burning phase and thus does not correspond

to the evolutionary phase statistically preferred by our

classical models, this starting condition lends itself to

more stable hydrodynamic models. We find that when

the simulations are initiated at earlier or later burning

phases, it is difficult to produce stable, suitable stellar

models that fit the radius and luminosity constraints

derived in previous sections. As our main priority is

to match these parameters, we do not further investi-

gate the effects of evolutionary starting condition. We

require only that our hydrodynamical initial conditions

yield models that reproduce the radius, luminosity, and

mass of the evolutionarily preferred models, as these are

the features relevant for studying pressure-driven pulsa-

tion in the envelope.

The expansion of the outer radius gradually affects the

P–R relation, as the sound speed travel time increases

with increasing distance. Analysis of the radius is addi-

tionally complicated by (1) how the outermost bound-

ary of the star is defined and (2) radiation pressure out-

side the photosphere. A rigorous treatment of radiative

transport is necessary in the photosphere regime, and so

we stop the simulation to analyze the motion only when

the radius is beneath this threshold.

The effective temperature Teff and luminosity L be-

have similarly to radius in the simulations. In the for-

mer case, this is because MESA calculates the effective

temperature directly from the luminosity and radius via

T 4
eff = (L/4πσBR

2), where σB is the Stefan–Boltzmann

constant. Given the slow change of the radius, Teff pri-

marily mirrors the fast-evolving L.

Regarding the evolution of luminosity, we note that

from year 15 onward, the star exhibits periodic motion

in its brightness. The early motion is highly regular:

as in the preliminary grid of hydrodynamic models (see

Figure 11), we observe a quasi-annual rise and fall—

the correct timescale for the FM. Near the end of the

simulation, the large oscillation begins to trigger non-

oscillatory motion in all quantities, and this is responsi-

ble for the rapid drop in luminosity.

In Figure 14, we plot the structural profiles of six

quantities at points indicated by black circles in Fig-

ure 13. The global features of the density and temper-

ature profiles show that outermost 10% of the stellar
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Figure 13. (UPPER) The temporal evolution of the luminosity (L), effective temperature (Teff), radius (R) and surface velocity
(vsurf) for the characteristic model. The red, green, blue and purple vertical dashed lines are added for comparing the four
quantities at the same time slices. The black dots are the time moments where the stellar profiles are plotted in Figure 14.

mass has a relatively low density, sitting between 10−9–

10−7 g cm−3, while the temperature lies between 103.5–

105 K. A small density bump appears at log10(1 − q) =

log10(1 −M(r)/M) = −3, which is accompanied by a

sharp fall in temperature. This occurs in order to main-

tain hydrostatic equilibrium. We note that a density

inversion can occur only when convective mixing is in-

efficient.

It should be noted that a density inversion, in gen-

eral, cannot exist when there is convection: the mixing

will smooth out the density difference. The efficiency

of this process depends on the ratio of the timescale of

photon diffusion to the dynamical time, as discussed in

Jiang et al. (2015). A slow photon diffusion time, as

applicable to the stellar interior, implies efficient con-

vection. Hence the density discontinuity is an evanes-

cent phenomenon. However, near the surface where the

photon diffusion timescale is much shorter—similar to

what we have observed—inefficient convective mixing

cannot remove the density inversion. As described in

Jiang et al. (2015), this density inversion can form and

be destroyed repeatedly in the optically thin regions.

Numerical schemes, such as the inclusion of a photon

“porosity” by modifying the photon acceleration terms,

can suppress this phenomenon in optically thick regions

(Paczyński 1969).

When convection is less efficient and has a timescale

comparable with the dynamical timescale, the density

and pressure gradients can change signs, creating a

Rayleigh-Taylor instability. Through mixing, the ex-

cess density can gradually reduce via diffusion. How-

ever, modeling this phenomenon would require a de-

tailed, time-dependent convective scheme, which is not

included in this work. For our case, the density in-
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Figure 14. Analysis of model star’s structure at three points selected during the pulsation, indicated by black markers in Figure
13. LEFT: The density (top panel), temperature (middle panel) and velocity (lower panel) profiles for the moments at the
luminosity minimum (black solid line), midpoint (red dotted line), and maximum (green dashed line). RIGHT: Same as the left
panel, but for the luminosity, opacity and free e− fraction. In both panels, m represents the enclosed mass, M(r).

version plays a less important role in the luminosity

evolution, given that this quantity remains steady from

log10(1 − q) = −1 upward (see subsequent discussion).

The free electron fraction shows that up to log10(1 −
q) = −3, the matter is partially ionized. Beyond that,

the low temperature causes the nuclei to recombine with

the free electrons. The opacity profile is richer; rather

than falling monotonically like the free electron fraction,

we see two major opacity bumps near log10(1−q) = −1.2

and −2.5. These correspond to the partial ionization

zones of H-HeI and HeII, respectively (Cox et al. 1973;

Kiriakidis et al. 1992).

The velocity and the luminosity vary dynamically dur-

ing the pulsation. When the stellar luminosity is mid-

phase, the whole envelope is contracting with a constant

velocity of ∼ 0.7 km s−1. The whole star contracts more

slowly when it is close to its luminosity maximum or

minimum. Meanwhile, the luminosity profiles show that

when the star is at its local minimum, the luminosity

near the interior of the envelope is lower. The oppo-

site applies during its local maximum. We note further

that the motion vanishes approaching the core-envelope

interface. This suggests that the observed pulsation is

a collective motion of the envelope without interaction

with the core.

To further quantify changes in the stellar profile dur-

ing pulsation, we plot in Figure 15 the ratio of the adi-

abatic temperature gradients for the profiles at lumi-

nosity minimum and medium with respect to luminos-

ity maximum. In Figure 15, we observe a sinusoidal-

like variation of the profile with about 7 nodes, located

at log10 q ≈ −1,−1.5,−1.9,−2.2,−2.3,−2.9 and −3.5.

The star at luminosity maximum shows the highest tem-

perature gradient near the surface at log10 q ≈ −2.2 and

−3.1. These correspond to the minima in the temper-

ature ratio profile and the extrema in the opacity ratio

profiles.
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Figure 16. Kinetic energy as a function of time for the hy-
drodynamical model. The blue line is an exponential fit of
the form 1.2 × 1040 exp(0.2t), with time in years.

These trends are indicative of the κ-mechanism, and

thus explain why the pulsation gradually grows over

many periods. In particular, during contraction, the

higher opacity prevents the heat from being stored in

the deeper layers, which in turn prevents unstable en-

ergy extraction by ionization.

From this collection of profiles, we can deduce that the

∼ 1 year variation is driven by the collective expansion

and contraction of the recombined hydrogen layer. We

thus conclude that it is this κ-related interaction driving

the fundamental pulsation mode in Betelgeuse.

5.4.2. Literature Comparison

To examine the growth of the oscillation further, we

plot the total kinetic energy of the system against time

in Figure 16. The kinetic energy, which is dominated

mostly by the motion of the atmosphere, is much smaller

than both the total energy and the total gravitational

energy, which are, on average, −6 × 1049 and −1 × 1051

ergs, respectively. These are several orders of magnitude

larger than the kinetic energy, which is 1042–43 erg, in

agreement with earlier results (see Cox 1980). We note

that it is the outermost q = 0.1 − 1 that contributes to

the atmospheric behavior, including the pulsation. This

corresponds to ∼ 2×1047 erg when this matter is moving

at a speed comparable to the escape velocity.

We provide an exponential fit in blue on Figure 16

to characterize the rate of growth of the kinetic en-

ergy. A function of Ekin = A exp(btyear) with param-

eters A = 1.2 × 1040 erg and b = 0.2 provide a good

fit to the hydrodynamic component of the simulation.

Naively, this suggests that when the oscillation begins

to grow, we should expect that the outermost layers of

material will be expelled by the pulsations within a time

of ∼ 83 years. In reality, however, we see this rate level

off—see, for example, Cox et al. (1966), who showed

this in some early pulsation models. This is because vis-

cous and turbulent dissipation limit the maximum am-

plitude of the star in the non-linear regime. Historically,

the level of dissipation in 1D pulsation models has been

tuned to match the observed amplitudes of RR Lyrae

and Cepheid stars and to reproduce double-mode pulsa-

tion in the models. This dissipation was first applied via

the “artificial viscosity” term and later through the eddy

viscosity and other α parameters of time-dependent, tur-

bulent convection (see, e.g., Buchler 1990; Takeuti et al.

1998; Kolláth et al. 1998; Smolec & Moskalik 2008).

We note that the models in Fig. 17 stop at about ±2%

luminosity variation or less, whereas Betelgeuse itself

varies by ±10–30% in V and about ±20–30% in near-IR

(the latter being more closely representative of Betel-

geuse’s bolometric variation). As such, there is plenty
time remaining for the kinetic energy and amplitude to

grow and eventually saturate at that level, but this is be-

yond what can be achieved with hydrodynamics today

before encountering a numerical runaway episode.

We note that when the oscillation becomes strong,

heat deposition effects near the surface, where there is

a sharp density gradient, become important. The extra

heat can change the opacity of the matter by increasing

the ionization fraction, resulting in stronger amplifica-

tion of the pulsation and in turn accelerating the pre-

dicted timescale from the first pulsation until mass ejec-

tion. Concurrently, however, shock dissipation can con-

vert the kinetic energy of the envelope into heat, while

mass loss can also efficiently remove kinetic energy from

the star. Heat deposition, shock dissipation, and mass
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loss interact in complicated ways to form the full dy-

namical picture of the envelope in the later phases.

Similar ejections of the outer layers in models of lumi-

nous Cepheid models, however, are known to be related

to numerics rather than physics; see Smolec (2016). Re-

gardless, we do not follow the code until this phase be-

cause the timestep becomes prohibitively small (∼ 100

s). In particular, numerical difficulties arise in the

Newton-Raphson iterations, during which the code fails

to resolve the formation of convection zones around the

shock front. Due to shock compression, the extra heat-

ing also invalidates the equilibrium assumptions of the

mixing length theory (Vitense 1953). To prevent non-

physical convective behavior from developing near the

surface, we set a ceiling for the relative convective ve-

locity with respect to local velocity and the speed of

sound in the simulations (see also the Appendix for re-

lated setting in MESA). To limit the steepness of shock-

waves and distribute them over multiple zones, explicit

pulsation codes like RSP include either artificial viscos-

ity or eddy viscosity terms (or both), but this is only

effective up to certain L/M ratios (Stellingwerf 1975;

Smolec 2016).

Also at this stage, non-linear effects become dominant,

causing sub-annual features to appear gradually on top

of the linear pulsation. As observations of Betelgeuse

do not show periodicities on sub-annual timescales, we

do not consider this phase of pulsation further, though

a study of non-linear pulsation with the dynamical cou-

pling of opacity and ionization will be interesting future

work.

By comparing the general features of our hydrody-

namical model with the pulsation patterns of Betelgeuse,

it becomes clear that the quasi-annual variation is in-

deed caused solely by the contraction and expansion of

the star. It is interesting to note that in this linear os-

cillation phase, we do not see any evidence of longer

timescale variations, such as the 6-year and 35-year pe-

riodicities. In fact, the hydrodynamic simulations never

reproduce any of the observed variations besides the cur-

rently presented quasi-annual pulsation, even when the

initial mass is varied. This implies that these periodici-

ties are driven by some mechanism outside the scope of

what 1D hydrodynamic simulations can reproduce, i.e.,

not the κ-mechanism. It would be interesting to conduct

further dynamical studies on how the star relaxes when

the opacity effects becomes important; however, work

in this domain will require an algorithm to suppress the

development of the κ-mechanism so that the pulsation

can be sustained without triggering excessive mass loss.

There are similar works in the literature that focus on

the pulsational features of massive stellar envelopes us-

ing the stellar evolution code described in Langer et al.

(1988). In particular, Heger et al. (1997) present the

dynamical evolution of massive stars from 10–20 M�
and analyze their linear stability. In Figure 18, we plot

the phase diagram of our canonical model’s log10(L/L�)

against log10 Teff during the hydrodynamic evolution as

a means of comparing directly with Figure 5 in Heger

et al. (1997). In their work, the 11 M� Red Supergiant

model is followed for about 75 periods of oscillation,

whereas ours capture the first 45 periods. Beyond the

45th, our models show numerical instability where the

expansion and compression interact with the convective

mixing zone, which largely suppresses the timestep and

creates non-linear behaviour.

Heger et al. (1997) show an approximately circular tra-

jectory that spirals outwards from log10 Teff(K) ≈ 3.52

and log10(L/L�) = 4.90, whereas our model shows an

elliptical trajectory, vacillating between high L and high

Teff on one side and low L and low Teff on the other.

The outward spiraling in our work and theirs demon-

strates that both stars are undergoing dynamical insta-

bility with a growing amplitude. As expected, Heger

et al. (1997)’s model has a lower period because it is a

lower-mass model. This implies a more compact enve-

lope, which allows all 75 periods of oscillations to happen

within 30 years—this is only half the time of our model.

Both models show a clockwise trajectory. Since the

radius, temperature, and luminosity are related by the

blackbody radiation formula L = 4πσBR
2T 4

eff , this

means that when the stellar models resume their ini-

tial luminosities, the models achieve a higher maximum

Teff (i.e., smaller R) and a lower minimum Teff (i.e.,

larger R). These features suggest that Teff , L and

R achieve their local extrema simultaneously in Heger

et al. (1997)’s model, but in our case, this relationship

is slightly lagged. As shown in Figure 13, our model

approaches its local extrema with a non-zero velocity;

thus, the stellar radius, which affects Teff , reaches its

local maximum and minimum later than L. Our cal-

culations therefore reproduce the phase lag between the

luminosity and the velocity that has been observed in

many other, smaller pulsators before (Castor 1968; Sz-

abó et al. 2007).

In Yoon & Cantiello (2010), the hydrodynami-

cal features of a 20 M� star with a luminosity of

log10(L/L�) = 5.05 and temperature of Teff = 3198

K are analyzed. Their stellar parameters are similar to

ours, where our hydrodynamical model assumes a 21

M� star with a slightly lower initial hydrostatic lumi-

nosity at log10(L/L�) = 5.01 and Teff = 4000 K. They

model about 50 years of the stellar pulsation; Figure 2

in their work shows the surface velocity and is compa-
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rable to Figure 13 in this work. Approximately 20 pul-

sation cycles are followed in their work, where a higher

period of ∼ 1000 days is observed. Compared to our

∼ 400 day period, this indicates that their envelope is

more relaxed and expanded. Both Yoon & Cantiello

(2010) and our work show a consistent growth of the

surface velocity. It takes about 5 cycles for the surface

velocity to reach a ten-fold of amplification, while our

model takes much longer—almost 20 cycles. This sug-

gests that the κ-mechanism is less efficient in our model,

where the star exhibits behavior closer to adiabatic os-

cillations than driven oscillations. From the growth of

kinetic energy of the system, we can estimate that it

takes a further ∼ 10 years for the pulsation to grow

to a surface velocity comparable with Yoon & Cantiello

(2010). This would correspond to another 11–15 cy-

cles in our case. Despite this, the robust exponential

growth of the pulsation energy (see Figure 16) in both

works implies that the pulsation could remove the out-

ermost layers of the H-envelope from the star. However,

this is not consistent with observational evidence; the

RSGs we have observed pulsate with limited amplitude

for several decades. The mass loss rate of the Betelgeuse

is observed to be roughly ∼ 10−6 M� yr−1 (Dolan et al.

2016). We may speculate that driven pulsation is par-

tially responsible for this driven mass loss, but the pul-

sational growth rate is limited by the constant energy

dissipation through shock heating and mass ejection. It

is also true that the typical pulsation amplitude is not

as large as would be expected for a driven wind (Fox &

Wood 1982; Wood 2000; Wood et al. 2004).

Whether or not mass loss can be driven depends on

the degree of saturation in the pulsation of the surface

layers (King et al. 1966). When the mode is permitted

to develop, this process can be influential in the forma-

tion of circumstellar matter in Type-IIn supernovae for

massive stars close to ∼ 20 M� (e.g., Smith 2017). How-

ever, given the regulated oscillation amplitude observed

in a number of RSGs empirically, additional mechanisms

not modeled in this work must become dominant in reg-

ulating the growth of these oscillation patterns.

The most recent analysis of this kind can be found in

Goldberg et al. (2020). The pulsation of a red super-

giant with 16.3 M� is computed using MESA with the

GYRE extension (version 11701). In contrast to the ap-

proaches discussed above, their hydrodynamic models

involve an initial perturbation to the density distribu-

tion to trigger direct pulsation of not only the funda-

mental mode, but also the first overtone. They obtain

a star of log10(L/L�) = 5.2 and 880R�, which is about

10% larger than our model. As a result, their pulsation

shows a fundamental mode with a longer period—about

600 days—and first overtone of ∼ 300 days. We reiterate

that since we do not perturb the density profile at the

onset of hydrodynamic evolution, and we assume that

all pulsation is triggered by numerical perturbations, it

is consistent that we do not see higher order excited

modes alongside the fundamental mode. However, the

strength of the quasi-annual variation of Betelgeuse but

absence of clear, shorter-timescale periods suggests that

we should not be concerned by a lack of overtone activity

in our hydrodynamic modeling. The results in Goldberg

et al. (2020) demonstrate that an overtone in our model

would give rise to significant sub-annual motion, which

is not observed in Betelgeuse. Furthermore, the growth

rate depends in part on the L/M ratio, and this fac-

tor may not be high enough in our models to excite an

overtone.

Goldberg et al. (2020)’s density perturbation approach

can also cause the star to pulsate with a much larger

amplitude initially, which is not achieved in our work

nor in the two analyses presented above (Heger et al.

1997; Yoon & Cantiello 2010). Therefore, it is unclear if

their work shows a similar exponential growth as in the

literature and in our model.

5.5. Impact of Initial Mass on Pulsation

Thus far, we have presented one model with an initial

mass of 21 M�. Now, we consider a series of hydrody-

namic models of different initial mass and discuss how

the progenitor mass affects the pulsation pattern.

We repeat the simulations by varying the progenitor

mass, while fixing the mixing length parameter (see Sec-

tion A for details on the exact configuration) so that we

can compare consistently among models. In Table 3,

we tabulate the global parameters and pulsation statis-

tics of these models. The data present the following

trends: when the progenitor mass increases, the present

day mass Mfin, helium core mass MHe, the radius at the

end of He-burning R, and its corresponding luminosity

L all increase. There is a weak decreasing trend for

the effective temperature Teff . Meanwhile, the time re-

quired for the non-linear pulsation to emerge decreases.

We note a severe drop between models of 20.2 and 20.5

M� during which the associated number of pulsations

also decreases sharply. Below M = 19 M�, the oscilla-

tion does not amplify significantly within 300 years, at

which point we terminate the simulation.

We note in particular two entries in Table 3 showing

simulations with initial (evolutionary) masses of 20M�:

one with αMLT=3.0 and one with αMLT=2.5. In the

latter case, the non-linear excitation time drops consid-

erably. This data point disrupts an otherwise monoton-

ically decreasing trend in pulse number with increasing
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Table 3. The global properties and pulsation statistics of the
hydrodynamical models studied in this work. M , Mfin and
MHe are the initial, final and He-core masses of the star in
units of M�, respectively. R, log10 L and Teff are the initial
radius in units of R�, luminosity in units of L� and the
effective temperature in units of K at the beginning of the
hydrodynamical phase, respectively. α is the mixing length
parameter. trun is the time the pulsation of the star becomes
non-linear, where we stop the simulations, in years. “Pulse”is
the number of pulsation cycles experienced by the star before
the onset of non-linear pulsations. No number is available
when trun is larger than 300 years. All hydrodynamic models
are launched from the evolutionary point at which the helium
mass fraction in the core is 10−4. Though this does not
correspond to the evolutionary phase statistically preferred
by our classical models, this starting condition lends itself to
more stable hydrodynamic models and allows us to explore
the appropriate radius, luminosity, and mass regimes.

M α Mfin MHe R log10 L Teff trun Pulse

18 3 17.12 5.57 550 4.92 4160 >300 N/A

19 3 17.90 6.06 624 5.00 4115 >300 N/A

20 3 18.80 6.47 655 5.04 4117 166.2 ∼ 230

20.2 3 18.95 6.60 659 5.05 4120 141.8 ∼ 200

20.5 3 19.17 6.75 707 5.10 4081 31.5 43

21 3 19.54 7.00 721 5.11 4083 27.0 40

22 3 20.30 7.46 787 5.18 4053 21.0 24

23 3 20.92 8.04 875 5.25 4008 16.7 18

19 2.5 17.78 6.07 724 5.01 3832 102.8 122

20 2.5 18.57 6.59 794 5.08 3801 41.1 37

present-day mass (above 19M�), demonstrating that the

relationship between pulse number, trun, and present-

day mass is not totally straightforward. It is well-known,

however, that below a certain level of precision, the im-

pact on global parameters caused by changes in the

mixing length are indistinguishable from variations in

mass and metallicity in models of low to intermediate

mass stars with convective envelopes (Joyce & Chaboyer

2018a). Further, the late stage evolution of high mass

stars is especially sensitive to convective parameters; in

practice, αMLT is often tuned arbitrarily until the model

converges or behaves as desired. We include the last

row of Table 3 to highlight this degeneracy and caution

against over-interpretation.

In Figure 17, we present the time evolution of the

pulsation pattern for models with the progenitor mass

from 19 to 22 M�. We choose these masses as their

timescales are more relevant to that of Betelgeuse. Be-

fore non-linearity disturbs the simulation, all models be-

have similarly in both luminosity and radius.

Despite the fact that the excitation time apparently

depends on the progenitor mass and mixing length pa-

rameter, the the means by which the star becomes

excited—i.e. the pulsation driving mechanism itself—is

less sensitive to these choices. The dynamical pulsation

always concludes with a significant drop in the stellar

luminosity, and the peak luminosity and maximum ra-

dius are similar among all models near the end of the

simulation.

To further outline the similarity, we plot in Figure 18

the phase diagram of representative models from 19–

23 M�. Clear similarity can be seen for models above

19 M�. In particular, for M = 20 M�, the model

has a highly extended trun of ∼ 166 year. All models

have an elliptical structure, which is actually a clock-

wise outward-going spiral. They show once again that

all stars evolve toward a high L and a high Teff state si-

multaneously, or the converse. This suggests that the

driving mechanism in all of these models is qualita-

tively the same, too. A higher progenitor mass gives

rise to a sparser trajectory; however, we notice that for

M = 19 M�, there is no regularity in the trajectory.

This suggests that the κ-mechanism fails to stimulate

residual numerical noise into periodic motions.

To further characterize the runaway time of the M =

20 M� model, we compare the amount of time needed

for the star to develop non-linear pulsation (trun) after

using the hydrodynamical prescription. For progenitor

masses above 20.5 M�, trun decreases slowly with time.

As shown in Figure 17, nonlinear activation timescales

for masses of this range are between 15–40 years. How-

ever, below 20.5 M�, there is a sudden jump in trun,

and the star requires more than roughly > 150 in or-

der for non-linearity to become significant. The sudden

jump could signify some qualitative changes in the stel-

lar profile, namely that the κ-mechanism becomes much

less effective in amplifying the acoustic wave inside the

star; a detailed comparison to and analysis of the means
of formation for the κ-mechanism will be an interesting

future project, but is beyond the scope of the present

work. Crucially, this mass-sensitive timescale bifurca-

tion suggests that the time required for the star to de-

velop non-linear pulsation could be a highly discerning

attribute among models of Betelgeuse.

As an order of magnitude estimation, the typical lu-

minosity of our model star is 105 L�. The amount of

energy dissipated is then ∼ 1046 erg per year, but the

kinetic energy is only on the order of 1041–43 erg. This is

because radiation acts as a damping force through pho-

ton emission, and without a consistent driving force for

the pulsation, the oscillation would quickly dissipate.

In the previous text, we have shown that there are

multiple periodicities in Betelgeuse’s lightcurve. These

include a quasi-annual mode, a 6-year mode, a 30-year
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Figure 17. The temporal evolution of the luminosity and stellar radius, scaled by their initial values, is shown for models with
different progenitor masses studied in this work. Time 0 marks the transition from hydrostatic stellar evolutionary calculations
to the hydrodynamical prescription. See also Appendix A for the exact numerical treatment.

modulation, and, potentially, an overtone mode with

185 day period. In the hydrodynamic models, we re-

cover only the 416 day period. These results are largely

self-consistent, as the 416 d mode is driven by the κ

mechanism, the LSP is not, and the 30 year modula-

tion is most likely caused by rotation, which is not an

internally driven form of variability. In the case of the

overtone, however, we must address the question of how

multiple modes may appear in the first place.

One possibility is by non-linear mode excitation, as

touched upon in Section 5.3. Through large amplitude

oscillations, the outer layers can accumulate sufficient

energy and momentum to compress matter beneath the

stellar surface. This results in compression heating,

which in turn raises the local temperature. This may im-

pact the convective structure in the near-surface regions,

thus presenting an additional source of energy that al-

ters the net energy flow inside the star. Capturing this

scenario numerically is particularly challenging because

it involves modeling the dynamics of mixing behaviour

in the convection zone. Meanwhile, the standard mixing

length theory adopted in our work assumes the convec-

tive mixing is in equilibrium (Vitense 1953). Modeling

this phase properly would require a more sophisticated

approach to time-dependent mixing and a robust solv-

ing mechanism. We reiterate that the development of

the overtone mode can also be sensitive to the numeri-

cal setting. In particular, the implicit nature of the hy-

drodynamics tends to suppress acoustic waves naturally,

regardless of the use of artificial viscosity. Therefore,

the current non-detection can be attributed to numerics

alone. Future exploration using, for example, an explicit

hydrodynamical scheme would shed light on this matter

but is beyond the scope of this study.

We observe that in our hydrodynamical grid, models

with M > 21 M� develop non-linear pulsation much

more quickly than the lower mass models, as shown in

Figure 17. We emphasize that our results only suggest

that the star is developing non-linear pulsation and/or

near-surface shocks; how strong the final shock is re-
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Figure 18. The phase diagrams for the model with a progenitor mass 19 (top left), 20 (top right), 20.5 (middle left), 21 (middle
right), 22 (bottom left), 23 (bottom right) M� respectively. The trajectory is cut when the non-linearity begins to disturb the
elliptical pattern in each figure.
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mains unclear. Because we do not follow our hydrody-

namical simulations far enough to investigate rigorously

the various energy dissipation channels discussed in sec-

tion 5.4, it remains to be studied whether α Orionis’s

strong pulsations eventually reach a new equilibrium or

behave in some other way.

Another possible excitation mechanism is wave-driven

pulsation, as described in Shiode & Quataert (2014);

Fuller (2017); Fuller & Ro (2018). This mechanism

proposes that a convective wave in the star can par-

tially penetrate through the evanescent regions10 and

approach the stellar surface. Although wave-driven pul-

sation was described in the context of very late phases

of stellar evolution in those works (i.e., Neon–Oxygen

burning, rather than He), the theory suggests that as

long as convection is activated, energy can be trans-

ferred from the interior convection zone to regions near

the surface, where it can then excite surface motion.

However, depending on the convective luminosity, such

a mechanism would provide a heavily condensed energy

deposition near the surface, in turn triggering enormous

losses in mass of 0.01–1 M� yr−1. Mass loss of this order

is not observed in Betelgeuse.

6. CONCLUSIONS

We have presented a detailed observational and theo-

retical analysis of α Orionis, including the presentation

of new photometry and three different types of numer-

ical predictions from classical evolutionary, linear seis-

mic, and hydrodynamic simulations. Our critical results

are summarized as follows.

We present a new set of processed, space-based pho-

tometric data from the SMEI instrument, filling a gap

in precise, publicly available photometry during the

late 2000s. These data reveal variation on monthly

timescales, which is likely the signature of convective

cell turnover. In combination with longitudinal data

collected by the AAVSO, the photometry confirms the

presence of several key periodicities and contextualizes

the recent dimming behavior of α Orionis in the long-

term.

We determine that the fundamental mode and the

LSP are longer according to the SMEI and ground-based

V -band photometric data than according to the long-

term visual results of Kiss et al. (2006): P0 = 416±24 d

and PLSP = 2365±10 d in our work versus P0 = 388±30

d and PLSP ∼ 2050 d in theirs. We conclude that the

semiregular variability of the star—except the primary

dimming event of 2019-2020—can be explained by phase

changes in a short-lifetime pulsation mode and the pho-

10 Zones dominated by thermal radiation.

tometric effects of giant convective cells. We also detect

a new component with 185 ± 13.5 d period. We iden-

tify this as the first overtone, thus classifying α Ori a

double-mode pulsator.

We conduct a grid-based analysis of evolutionary

tracks to estimate the fundamental, model-derived pa-

rameters of α Ori. Supported by previous studies,

we take special account of the theoretical uncertainty

imparted by an ad hoc choice of the mixing length

parameter, αMLT, and reconsider the uncertainties on

Betelgeuse’s effective temperature accordingly (Joyce &

Chaboyer 2018a,b; Levesque & Massey 2020). We per-

form a probabilistic age prior analysis and find good

agreement between our estimates of Betelgeuse’s cur-

rent evolutionary stage (RSB core helium burning) and

present-day mass range (16.5–19 M�) with previous

modeling initiatives (Neilson et al. 2011; Dolan et al.

2016; Wheeler et al. 2017; Nance et al. 2018). Our

seismic analysis prefers a median initial mass range of

18−21M�. However, we find that the observed, present-

day rotational velocity of αOri cannot be reproduced us-

ing single-star evolution; a merger or some other source

of spin-up is required, in agreement with Wheeler et al.

(2017); Chatzopoulos et al. (2020). The likelihood of a

previous interaction is also supported by our kinematic

argument in Section 2.

Linear seismic analysis with GYRE heavily constrains

the radius of Betelgeuse, for which we report a value of

764+116
−62 R�. Combining this result with existing angu-

lar diameter and temperature data, we obtain a parallax

value of π = 5.95+0.58
−0.85 mas for α Orionis based on seis-

mic constraints, resulting in a precise and independent

distance estimate of 168+27
−15 pc. Our results are con-

sistent with reprocessed Hipparcos measurements but

in disagreement with recent radio parallax observations

(van Leeuwen 2007; Harper et al. 2017), highlighting

the difficulty of estimating cosmic noise when deriving

the geometric parallax of this star. To the best of our

knowledge, this is the first time that a seismic parallax

has been obtained for Betelgeuse.

Deeper analysis of emergent periodicities in both hy-

drostatic seismic and hydrodynamic models, in conjunc-

tion with existing observational data on variable stars

across the mass spectrum, unambiguously demonstrate

that the 416 d period derived in this work is due to

pulsation in the fundamental p-mode.

Finally, using hydrodynamic models with six differ-

ent masses, we investigate the physics of these oscilla-

tions. All hydrodynamic models in the prescribed mass

range manifest similar quasi-annual behavior as the fun-

damental mode, in agreement with similar studies. Our
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hydrodynamical simulations thus confirm that the 416

day pulsation is driven by the κ-mechanism.

We find that stars with an initial mass below ∼ 20 M�
take much longer for the pulsation to excite other oscil-

lation modes; in particular, a 19 M� model can take

as long as 150 years to build up to non-linearity. The

similarity among models suggests that the exact param-

eters of the model play a less important role in repro-

ducing the fundamental mode of the star. Importantly,

if non-linear excitation is assumed to be correlated to

the κ-mechanism’s triggering of overtone modes, and if

the observed mass loss in Betelgeuse is not pulsationally

driven, our hydrodynamic simulations constrain against

progenitor masses above ∼ 20 M�. On the contrary,

if the large amplitude pulsation fails to reach an equi-

librium and instead triggers shock waves and consecu-

tive mass loss, it would strongly suggest that Betelgeuse

has a mass greater than 19M�. As we do not evolve

our simulations far enough to characterize the late-stage

pulsational behavior, we cannot infer mass constraints

definitively from these simulations.

It is unclear whether the excited fundamental mode

can be modulated by other radiative mechanisms or lead

to observable mass loss. If mass loss can be triggered,

the short runaway time from the appearance of the first

wave until mass ejection suggests that the star can lose

a considerable amount of its H-envelope during its post-

main-sequence evolution. If the observed mass loss in

Betelgeuse can be connected to the instability observed

in this work, we could potentially make additional infer-

ences about the initial mass of Betelgeuse based on the

timescale of non-linear excitation.

The sudden bifurcation in excitation time as a

function of mass in our hydrodynamical models pro-

vides some constraint on Betelgeuse’s upcoming, pre-

supernova evolution. For models with an initial mass

above ∼ 20 M� (present-day mass 18.8 M�), the κ-

mechanism driven pulsation and the mass loss it incites

could partially remove the H-envelope prior to the final

explosion. This would give rise to a Type-IIp, Type-IIL

and then Type-IIn supernova. Meanwhile, for models

with initial masses below this break-off point, the very

long excitation time of the κ-mechanism means that the

star would retain most of its H-envelope. In this case,

an alternative mass loss channel would be required for

the formation of a circumstellar medium.

Conclusively determining which of these two possi-

ble evolutionary channels α Ori will take would require

disentangling the degeneracy between mass and mixing

length in the simulations, but our work here suggests

that a predictive investigation in this vein is possible.
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APPENDIX

A. MESA CONFIGURATIONS

In this section, we detail the configuration profile for the evolutionary and hydrodynamical portions of the simulations.

The evolutionary phase inherits settings from the massive_star_defaults inlist. Additionally, we set the “Dutch”

mass loss prescription with a parameter 0.8, namely:

hot_wind_scheme = ’Dutch’

Dutch_scaling_factor = 0.8

hot_wind_full_on_T = 1d0

hot_wind_full_off_T = 0d0

In order to construct a star that maintains the proper radius for hydrodynamic evolution, we must adjust the mixing

length parameter:

mixing_length_alpha = 3

MLT_opion = ’Henyey’

We notice that a larger mixing length parameter results in a smaller radius at the end of the He-burning. The mass of

the star is selected such that the luminosity is within the expected range (∼ 4.8–5.1) and a radius between 700–800R�
for consistency with the seismic parameters.

A requirement of our configuration is that the star should exhibit an observable amount of pulsation within a

reasonable amount of time (∼ 100 years). A small progenitor mass results in a very long quiescent time. Meanwhile,

a higher mass can trigger observable pulsation quickly, but its luminosity and radius can be too high. As a result,

for the hydrodynamics, we pick the high mass end M = 21 M� with a large mixing length parameter α = 3. This is

slightly higher than what is used in the evolutionary calculations (α ≤ 2.5), but our model gives the correct radius at

720 R� and a luminosity ∼ 105.1 L�. The final mass (present-day mass) is 19.5 M� and the helium core is 7.00M�
As we require that the stellar profile transition smoothly from the evolutionary phase to the hydrodynamical phase,

we use identical settings in the dynamical phase.

T_mix_limit = 0

min_T_for_acceleration_limited_conv_velocity = 0

okay_to_reduce_gradT_excess = .false.

In the hydrodynamical phase, we patch extra settings onto this configuration such that the hydrostatic equilibrium

constructed in the previous phase can be well maintained. However, one qualitative change is included, where the

mass loss is suspended.

Dutch_scaling_factor = 0.0d0

This is a reasonable approximation given that we are simulating a short period of time: ∼ 100 years.

To trigger the hydrodynamics, we use the standard settings as provided by the test_suite test case ccsn in MESA

version 8118. This includes

use_ODE_var_eqn_pairing = .true.

use_dvdt_form_of_momentum_eqn = .true.

use_dPrad_dm_form_of_T_gradient_eqn = .true.

use_dedt_form_of_energy_eqn = .true.

use_momentum_outer_BC = .true.

use_ODE_form_of_density_eqn = .true.

These settings have been used in our previous work modeling the dynamical pulsation in pulsation pair-instability

supernovae. See Leung et al. (2019, 2020) for the application of these setting to the more massive star counterpart.

Furthermore, to ensure the code captures the early oscillation when the simulation has begun, we impose a maximum

evolutionary timestep of 105 s.
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max_timestep = 100000

We also remove the temperature limitation in which the hydrodynamics is solved. This means the Euler equations are

solved throughout the star, without assuming the envelope is in hydrostatic equilibrium:

velocity_logT_lower_bound = 0

To prevent supersonic convection from occurring in the simulation and invalidating the assumptions of the mixing

length theory, we impose a cap on the convective speed via

mlt_accel_g_theta = 1

max_v_div_cs_for_convection = 1.0d-1

max_conv_vel_div_csound = 1.0d0,

ensuring that the convective behavior remains physical.

At last, we turn on the artificial viscosity so that all potential shocks can be resolved by the simulation. This

happens, in particular, near the surface where the density gradient is the highest.

use_artificial_viscosity = .true.

shock_spread_linear = 0

shock_spread_quadratic = 2d-2

We find that a higher artificial viscosity parameter can result in the code crashing earlier in the simulation, whereas a

value too small can result in too strong of a shock when the global pulsation amplitude is still weak.

A simulation of ∼ 30 years requires approximately 10000 timesteps.
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Kiss, L. L., Szatmáry, K., Cadmus, R. R., J., & Mattei,

J. A. 1999, A&A, 346, 542
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