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THE HOLONOMY GROUP OF PROJECTIVELY FLAT RANDERS

TWO-MANIFOLDS OF CONSTANT CURVATURE

BALÁZS HUBICSKA AND ZOLTÁN MUZSNAY

Abstract. In this paper, we investigate the holonomy structure of the most accessible and
demonstrative 2-dimensional Finsler surfaces, the Randers surfaces. Randers metrics can be
considered as the solutions of the Zermelo navigation problem. We give the classification of
the holonomy groups of locally projectively flat Randers two-manifolds of constant curvature. In
particular we prove that the holonomy group of a simply connected non-Riemannian projectively
flat Finsler two-manifold of constant non-zero flag curvature is maximal and isomorphic to the
orientation preserving diffeomorphism group of the circle.

1. Introduction

The holonomy group of a Riemann or Finsler manifold is a natural geometric object: it is the
transformation group generated by parallel translations along loops with respect to the associated
canonical (linear, resp. homogeneous) connection. The Riemannian holonomy groups have been
extensively studied during the second half of the last century but, maybe because of the computa-
tional difficulties, little attention was paid to the Finslerian case. Although there are similarities,
the holonomy properties of Finsler manifolds can be very different from the Riemannian ones, as
recent results show. Indeed, the fundamental result of Borel and Lichnerowicz [3] from 1952 claims
that the holonomy group of a simply connected Riemannian manifold is a (finite dimensional)
closed Lie subgroup of the special orthogonal group SO(n). In contrast with this, in [7] it has
been proven that the holonomy group of an at least three-dimensional non-Riemannian Finsler
manifold of nonzero constant curvature is not a compact Lie group. In [10] it has been shown that
there exist large families of projectively flat Finsler manifolds of constant curvature such that their
holonomy groups are not finite dimensional Lie groups. In [8] projective Finsler manifolds of con-
stant curvature having infinite dimensional holonomy group have been characterized. The proofs
in the above-mentioned papers [7, 8, 10] give estimates for the dimension of tangent Lie algebras
of the holonomy group but unfortunately, they do not give direct information on the structure of
the holonomy groups.

In contrast to the Riemannian case where the complete classification is already known, Finsler
holonomy groups are described only for few, very special classes of metrics: the holonomy of
Landsberg manifolds have been investigated in [6] and the holonomy of Berwald manifolds have
been characterized in [13]. First examples describing infinite dimensional Finslerian holonomy
groups can be found in [9]. To achieve further significant progress, it would be very important to
investigate systematically the holonomy structure of different classes of Finsler metrics.

In this article, we consider one of the most accessible and demonstrative examples for non-
Riemannian Finsler manifolds, the Randers manifolds [1, 11]. In the Randers case, the Finsler
function is a Riemann norm deformed by a 1-form. As it has been proven in [2], Randers metrics
describe the Zermelo navigation problem on Riemannian manifolds. This fact may suggest that
the holonomy structure of Randers manifolds are similar to that of Riemann manifolds but, on
the contrary: they can be very different, as the results of this paper show. We focus our attention
on the holonomy properties of simply connected, locally projectively flat Randers two-manifolds
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of constant flag curvature λ. This class of manifolds was already considered in [10] where it has
been proved that the holonomy group of such a manifold is finite dimensional if λ = 0 or the
metric is Riemannian, and infinite dimensional if λ 6= 0 and the metric is non-Riemannian. The
finite dimensional holonomy structures are already well known, but nothing was known about the
infinite dimensional case: the results reveal no information about the structure of the holonomy
group.

The goal of this paper is to complete the results of [10] by describing the infinite dimensional
holonomy structure of projectively flat Randers surfaces of non-zero constant curvature. The main
result (Theorem 3.) shows that the holonomy group of a such manifold is maximal and its closure
is isomorphic to Diff+(S

1), the orientation preserving diffeomorphism group of the circle S1. This
result is surprising because it shows that even in the case when the geodesic structure is simple
(the geodesics are straight lines), the holonomy group can still be a very large group. Finally, we
obtain the classification of the holonomy groups of projectively flat Randers surfaces (Corollary 4).

2. Preliminaries

Throughout this article, M is a C∞ smooth manifold, X∞(M) denotes the Lie algebra of smooth
vector fields on M and Diff

∞(M) is the group of C∞-diffeomorphisms of M . The first and the
second tangent bundles of M are denoted by (TM, π,M) and (TTM, τ, TM), respectively.

2.1. Finsler manifolds.

A Finsler manifold is a pair (M,F), where the norm function F : TM → R+ is continuous, smooth

on T̂M :=TM\{0}, its restriction Fx = F|
TxM

is a positively homogeneous function of degree one
and the symmetric bilinear form

gx,y : (u, v) 7→ gij(x, y)u
ivj =

1

2

∂2F2
x(y + su+ tv)

∂s ∂t

∣

∣

∣

t=s=0

is positive definite at every y ∈ T̂xM .

Geodesics of (M,F) are determined by a system of 2nd order ordinary differential equation ẍi +
2Gi(x, ẋ) = 0, i = 1, . . . , n in a usual local coordinate system (xi, yi) of TM , where Gi(x, y) are
given by

(1) Gi(x, y) :=
1

4
gil(x, y)

(

2
∂gjl
∂xk

(x, y)−
∂gjk
∂xl

(x, y)
)

yjyk.

A vector field X(t) = X i(t) ∂
∂xi along a curve c(t) is said to be parallel with respect to the associated

homogeneous (nonlinear) connection if it satisfies

(2) DċX(t) :=
(dX i(t)

dt
+Gi

j(c(t), X(t))ċj(t)
) ∂

∂xi
= 0,

where Gi
j =

∂Gi

∂yj .

The horizontal Berwald covariant derivative ∇Xξ of ξ(x, y) = ξi(x, y) ∂
∂yi by the vector field X(x) =

X i(x) ∂
∂xi is expressed locally by

(3) ∇Xξ =

(

∂ξi(x, y)

∂xj
−Gk

j (x, y)
∂ξi(x, y)

∂yk
+Gi

jk(x, y)ξ
k(x, y)

)

Xj ∂

∂yi
,

where we denote Gi
jk(x, y) :=

∂Gi
j(x,y)

∂yk .
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2.1.1. Curvatures of Finsler manifolds.

The curvature tensor field R=Ri
jkdx

j⊗dxk⊗ ∂
∂yi has the expression

(4) Ri
jk =

∂Gi
j(x, y)

∂xk
−

∂Gi
k(x, y)

∂xj
+Gm

j (x, y)Gi
km(x, y)−Gm

k (x, y)Gi
jm(x, y).

The Riemannian curvature tensor is Ry := R(·, y), its components can be obtained as Ri
j = Ri

jky
k.

The Ricci curvature Ric(y) is defined to be the trace of Ry, Ric(y) := Rm
m(x, y). For a tangent

plane P = Span { y, u } ⊂ TxM , the flag curvature is defined as

K(P, y) =
gy(Ry(u), u)

gy(y, y)gy(u, u)− gy(y, u)2
.

If a manifold has constant flag curvature K = λ ∈ R, then the Ricci curvature is constant in the
sense that Ric(y) = (n− 1)λF 2 and the local expression of the coefficients of the curvature is

Ri
jk = λ

(

δikgjm(x, y)ym − δijgkm(x, y)ym
)

,

where δij is the Kronecker delta symbol. Assume that the Finsler manifold (M,F) is locally
projectively flat. Then for every point x ∈ M there exists an adapted local coordinate system,
that is a mapping (x1, . . . , xn) on a neighbourhood U of x into the Euclidean space Rn, such that
the straight lines of Rn correspond to the geodesics of (M,F). Then the geodesic coefficients are
of the form

(5) Gi=Pyi, Gi
k=

∂P

∂yk
yi+Pδik, Gi

kl=
∂2P

∂yk∂yl
yi+

∂P

∂yk
δil+

∂P

∂yl
δik

where P(x, y) is a 1-homogeneous function in y, called the projective factor of (M,F). According
to Lemma 8.2.1 in [4, p.155], if (M ⊂ R

n,F) is a projectively flat manifold, then its projective
factor can be computed using the formula

(6) P(x, y) =
1

2F

∂F

∂xi
yi.

2.1.2. Projectively flat Randers manifolds with constant curvature.

Projectively flat Randers manifolds with constant flag curvature were classified by Z. Shen in
[12]. He proved that any projectively flat Randers manifold (M,F) with non-zero constant flag
curvature has negative curvature. These metrics can be normalized by a constant factor so that
the curvature is λ = −1/4. In this case (M,F) is isometric to the Finsler manifold defined by the
Finsler function

(7) Fa(x, y) =

√

|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
+ ǫ

(

〈x, y〉

1− |x|2
+

〈a, y〉

1 + 〈a, x〉

)

on the unit ball Dn ⊂ Rn, where a ∈ Rn is any constant vector with |a| < 1 and ǫ = ±1 ([12,
Theorem 1.1]). We note that the restriction of any orthogonal transformation φ ∈ O(n,Rn) on
Dn does not change the Finsler function (7), therefore one can assume that a ∈ Rn has the form
a = (a1, 0, . . . , 0). We can consider (Dn,Fa) as the standard model of projectively flat Randers
manifolds with non-zero constant flag curvature.

We remark that the computation of the coefficients of the associated connection is relatively
easy: according to Lemma 8.2.1 of [4, p.155], the projective factor P(x, y) can be computed by the
formula (6) which gives in the case (7)

(8) P(x, y) =
1

2

(

ǫ
√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

1− |x|2
−

〈a, y〉

1 + 〈a, x〉

)

.

The geodesic coefficients and the connection coefficients can be computed from (8) by using (5).
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2.2. Holonomy group and its tangent Lie algebras.

The holonomy group Holx(M) of the Finsler manifold (M,F) at a point x ∈ M is the subgroup of
the diffeomorphism group Diff

∞(TxM) generated by parallel translations along piece-wise differen-
tiable closed curves initiated and ended at the point x ∈ M . Since the canonical parallel translation
is homogeneous and preserves the Finsler function, the holonomy group can be considered on the
indicatrix Ix := { y ∈ TxM | F(y) = 1 } . That way Holx(M) is a subgroup of the diffeomorphism

group Diff
∞(Ix). The topological closure Holx(M) of the holonomy group in the Fréchet topology

of Diff∞(Ix) is called the closed holonomy group.

2.2.1. The curvature algebra.

A vector field ξ ∈ X(TM) is called a curvature vector field of (M,F) if it is in the image of the
curvature tensor, that is ξ = R(X,Y ) for some X,Y ∈ X(M). The curvature algebra R(M) is the
Lie algebra generated by curvature vector fields. Its restriction

Rx(M) := { ξ|Ix
| ξ ∈ R(M) }

is the curvature algebra at the point x ∈ M . Rx(M) is a Lie subalgebra of X∞(Ix).

2.2.2. The infinitesimal holonomy algebra.

The infinitesimal holonomy algebra, denoted by hol
∗(M) is the smallest Lie algebra generated by

curvature vector fields and by the horizontal Berwald covariant derivation. More precisely, hol∗(M)
is the smallest Lie algebra of vector fields on TM satisfying the following two conditions:

(1) for any curvature vector field ξ we have ξ ∈ hol∗(M),

(2) if ξ ∈ hol
∗(M) and X ∈ X∞(M) then ∇Xξ ∈ hol

∗(M).

By considering the restriction of hol∗(M) on the indicatrix Ix we obtain the infinitesimal holonomy
algebra at the point x ∈ M :

hol
∗

x(M) := { ξ|Ix
| ξ ∈ hol

∗(M) } .

We remark that if the manifold is two-dimensional, then the curvature algebra Rx(M) is at
most one-dimensional, but the infinitesimal holonomy algebra hol

∗

x(M) can be higher, even infinite
dimensional: hol∗x(M) is generated by the restriction of the curvature vector field and its covariant
derivatives. Using the notation ξ0 = R(∂x1

, ∂x2
)
∣

∣

Ix
and ∇i1,...,ikξ0 := (∇∂xi1

. . .∇∂xik

ξ)
∣

∣

Ix
we get

(9) hol∗x(M) =
〈

ξ0,∇1ξ0,∇2ξ0,∇11ξ0, . . .
〉

Lie

Property (Theorem 4, [7]): At any point x ∈ M the infinitesimal holonomy algebra hol
∗

x(M) is
tangent to the holonomy group Holx(M).

3. Holonomy of projectively flat Randers two-manifolds of non-zero constant

curvature

Our aim is to describe the holonomy structure of projectively flat non-Riemannian Randers
two-manifolds with non-zero constant flag curvature. As a first step, we investigate the holonomy
of the standard model described in Subsection 2.1.2.

Let (D2,Fa) be the Finsler two-manifold where D2 is the unit ball in R2 and Fa is the Finsler
function given by (7) where a = (a1, 0) ∈ R2 is a nonzero constant vector with |a1| < 1. We have
the following

Proposition 1. The holonomy group of (D2,Fa) is maximal and Holx(M) is diffeomorphic to
Diff

∞

+ (S1).
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Proof. We consider the case when ǫ = +1 in the expression (7) of Fa. The computation
when ǫ = −1 is analogous. The projective factor P and the geodesic coefficients Gi

j can be easily

computed by formula (8) and (5). The expression of the curvature vector field ξ = R (∂x1
, ∂x2

) at
the point 0 ∈ R

2 is

(10) ξ = R

(

∂

∂x1
,

∂

∂x2

)

=
1

4

y2 (a1y1 + ‖y‖)

‖y‖

∂

∂y1
−

1

4

(

y1 + y1a
2
1 + 2 a1 ‖y‖

) ∂

∂y2
.

Since the Minkowski norm at 0 ∈ D2 is Fa(0, y) = ‖y‖ + 〈a, y〉, the indicatrix I0 ⊂ T0M at 0 is

defined by the equation
√

y21 + y22 +a1y1 = 1. Using polar coordinates (r, t) on T0R
2, the equation

of the indicatrix I0 is r(1 + a1 cos t) = 1. A parametrization of I0 is given by

(11) φ(t) =
(

(y1(t), y2(t)
)

=

(

cos t

1 + a1 cos t
,

sin t

1 + a1 cos t

)

,

in terms of the parameter t. Using this parametrisation the coordinate expression of the restriction
ξ0 := ξ

∣

∣

I0

of the curvature vector field (10) on the indicatrix I0 is

(12) ξ0 := ω(t)
d

dt

where

(13) ω(t) := − 1
4 (1 + a1 cos t)

2.

Let us introduce the notation

(14) Σn := SpanR

{

ξl,m0 | l +m ≤ n
}

,

where

(15) ξl,m0 := (sinl t cosm t) · ξ0 ∈ X(I0)

are vector fields on the indicatrix I0 defined as functional multiples of (12). We have the following

Lemma 1. For any n ∈ N we have Σn ⊂ hol
∗

0(D
2).

Remark 2. Using the the Pythagorean trigonometric identity sin2 t + cos2 t = 1, every elements
of Σn can be expressed as a linear combination of the elements ξ0,m0 = cosm tξ0 and ξ1,m−1

0 =
sin t cosm−1 t ξ0, 0 ≤ m ≤ n, that is

(16) Σn = SpanR

{

ξ0,m0 , ξ1,m−1
0 | 0 ≤ m ≤ n

}

.

Proof of the Lemma. Taking into account Remark 2 we prove the lemma by mathematical induc-
tion by showing that the generating elements (16) of Σn are elements of hol∗0(D

2).
• First step. From the definition of the infinitesimal holonomy algebra (see subsection 2.2.2) we

know that ξ0,00 =ξ0 given by (12) is an element of hol∗0(D
2). Moreover, as (9) shows, the restriction

of successive covariant derivatives of the curvature vector field (10) on I0 are also elements of
hol∗0(D

2). They can be expressed in terms of multiples of (12). Computing the first covariant
derivatives we find that

(∇1ξ)
∣

∣

I0

= − 3
2 (a1 − cos t) ξ0,(17a)

(∇2ξ)
∣

∣

I0

= 3
2 sin t ξ0,(17b)

Using a linear combination of (17a) and (17b) we get that ξ1,00 = sin t ξ0 and ξ0,10 = cos t ξ0 are
element of hol∗0(D

2). Therefore we have

(18) Σ1 = { ξ0, sin t ξ0, cos t ξ0 } ⊂ hol
∗

x0
(D2),

that is the statement of the Lemma is correct for n = 1.
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• Second step. By definition, the second covariant derivatives of the curvature vector field are
also elements of the infinitesimal holonomy algebra. Computing them we can find that

(∇1∇1ξ)
∣

∣

I0

= 3
4

(

5a21 − a1 cos
3 t− 5a1 cos t+ 3 cos2 t+ 1

)

ξ0,(19a)

(∇1∇2ξ)
∣

∣

I0

= − 3
4

(

a1 cos
2 t− 3a1 − 4 cos t

)

sin t ξ0,(19b)

(∇2∇2ξ)
∣

∣

I0

= 3
4

(

a1 cos
3 t+ 5− 4 cos2 t

)

ξ0.(19c)

Using linear combinations of the elements (18) of Σ1 and (19a)–(19c) we get that
{

cos2 t ξ0, sin t cos t ξ0
}

⊂

hol
∗

x0
(D2). Completing this set with the elements of (18) we get that

Σ2 ⊂ hol
∗

0(D
2).

• Third step. Let us suppose that the statement of the lemma is true for some n ∈ N, that
is Σn ⊂ hol

∗

0(D
2). We will show that Σn+1 ⊂ hol

∗

0(D
2) too. According to the Remark, Σn+1 is

generated by the elements

(20)
{

ξ0,m0 , ξ1,m−1
0 | 0 ≤ m ≤ n

}

∪
{

ξ0,n+1
0 , ξ1,n0

}

One can observe that the vector fields of the first set are elements of Σn, and by the inductive
hypotheses, they are elements of hol∗0(D

2). Hence, to prove the lemma we have to show that ξ0,n+1
0

and ξ1,n0 are elements of hol∗0(D
2). We have

[

ξ0, ξ
0,n−1
0

]

=
[

ξ0, cos
n−1 t ξ0

]

=
(

Lξ0(cos
n−1 t)

)

ξ0

= −(n− 1)ω(t)(sin t cosn−2 t) ξ0
(13)
=

= n−1
4 (1 + 2a1 cos t+ a21 cos

2 t)(sin t cosn−2 t) ξ0

= n−1
4 ξ1,n−2

0 + a1(n−1)
2 ξ1,n−1

0 +
a2

1
(n−1)
4 ξ1,n0 .

By the inductive hypothesis, the Lie bracket on the left hand side and the first two terms in the
last line are elements of hol∗0(D

2). Consequently the last one must be also an element of hol∗0(D
2).

Moreover, the coefficients of ξ1,n0 is a nonzero constant, therefore we get that ξ1,n0 ∈ hol
∗

0(D
2).

Similarly, computing the Lie bracket of the elements ξ0 and ξ1,n−2
0 of the Lie algebra hol

∗

0(D
2)

we get
[

ξ0,ξ
1,n−2
0

]

=
[

ξ0, sin t cos
n−2 t ξ0

]

= Lξ0(sin t cos
n−2 t) ξ0

= ω(t)(cos t cosn−2 t− (n− 2) sin2 t cosn−3 t) ξ0
(13)
=

= n−3
4 ξ0,n−3

0 + a1(n−2)
2 ξ0,n−2

0 +
a2

1
(n−2)−(n−1)

4 ξ0,n−1
0 − a1(n−1)

2 ξ0,n−1
0 −

a2

1
(n−1)
4 ξ0,n+1

0

From the inductive hypothesis we know that the Lie bracket on the left hand side and the first
four terms in the last line on the right hand side are elements of hol

∗

0(D
2), therefore the last

one must be also an element of hol∗0(D
2). Since the coefficient of ξ0,n+1

0 is nonzero we get that

ξ0,n+1
0 ∈ hol

∗

0(D
2). Consequently, the vector fields (20) generating Σn+1 are all elements of hol∗0(D

2)
and Σn+1 ⊂ hol

∗

0(D
2). �

Proof of Proposition 1. From the multiple-angle formulas of the sine and cosine functions

sinnt =

n
∑

k=0

(

n
k

)

cosk t sinn−k t sin
(

n−k
2 π

)

, cosnt=

n
∑

k=0

(

n
k

)

cosk t sinn−k t cos
(

n−k
2 π

)

,

we get that the vector fields sinnt ξ0, cosnt ξ0 ∈ X(I0) can be expressed as a linear combination of
elements of Σn:

sinnt ξ0 =
n
∑

k=0

(

n
k

)

sin
(

n−k
2 π

)

ξk,n−k
0 ,(21a)

cosnt ξ0 =

n
∑

k=0

(

n
k

)

cos
(

n−k
2 π

)

ξk,n−k
0 .(21b)
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On the other side, Lemma 1 shows that the vector fields of Σn are elements of the holonomy algebra
hol∗0(D

2). Therefore, the vector fields (21a) and (21b), n ∈ N, are element of hol∗0(D
2) and

(22) Span { sinnt ξ0, cosnt ξ0 | n = 0, 1, . . . } ⊂ hol∗0(D
2).

Moreover, any 2π periodic smooth function can be approximated uniformly by the arithmetical
means of the partial sums of its Fourier series [5, Theorem 2.12]. In particular the functions
(sinnt)/ω(t) and (cosnt)/ω(t) can be approximated uniformly by their Fourier sums. Hence we
get

(23)
{

d
dt
, cosnt d

dt
, sinnt d

dt

}

n∈N
⊂
{

Span
{

ξ0, cosnt ξ0, sinnt ξ0
}

n∈N

}

⊂ hol
∗

0(D
2).

The Lie algebra generated by the left hand side of (23) is diffeomorphic to the Fourier algebra
F(S1) on S1. Therefore from (23) we get that the infinitesimal holonomy algebra contains a Lie
algebra diffeomorphic to the Fourier algebra F(S1) on S1. Hence from Proposition 5.1 of [9] we get

that the holonomy group Hol0(D
2) is maximal and Hol0(D2) is diffeomorphic to Diff

∞

+ (S1). �

Using Z. Shen’s classification theorem of Randers manifolds we can get the following

Theorem 3. The holonomy group of a simply connected non-Riemannian projectively flat Finsler
two-manifold of constant non-zero flag curvature is maximal and Hol(M) is diffeomorphic to the
orientation preserving diffeomorphism group of S1, that is

Hol(M) ∼= Diff
∞

+ (S1).

Proof. Let (M,F) be a simply connected non-Riemannian projectively flat Finsler two-manifold
of constant non-zero flag curvature and x0 ∈ M . Since rescaling the metric by a constant factor
does not change the connection and the parallel translation, it does not change the holonomy group
either. Hence we can suppose that the metric is normalized so that the curvature is λ = − 1

4 . Using

Shen’s results, F can be locally expressed in the form Fa given in (7) where a = (a1, 0) ∈ R2 is a
nonzero constant vector with |a1| < 1. From Proposition 1 we get, that the closed holonomy group
of (D2,Fa) is maximal and diffeomorphic to Diff

∞

+ (S1), therefore the same is true for the closed

holonomy group Holx(M) of (M,F) at x0 ∈ M . �

We can obtain the following classification:

Corollary 4. The closure of the holonomy group Hol(M) of a simply connected, locally projectively
flat Randers two-manifold of constant flag curvature λ is

(1) the trivial group {id}, when λ = 0;

(2) the rotation group SO(2), when λ 6= 0 and the metric is Riemannian;

(3) the orientation preserving diffeomorphism group of the circle Diff
∞

+ (S1), when λ 6= 0 and the
metric is non-Riemannian.

Proof. The holonomy structure of projectively flat Finsler manifolds was investigated in [10]: It has
been proved that the holonomy group of projectively flat Finsler manifold is a) finite dimensional
if λ = 0 or the metric is Riemannian, and b) infinite dimensional if λ 6= 0 and the metric is
non-Riemannian. It is clear that the holonomy structures listed in (1) and (2) correspond to the
(already well known) finite dimensional holonomy cases. Moreover, when λ 6= 0 and the metric is
non-Riemannian we get (3) from Theorem 3. �
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