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ABSTRACT
This paper presents a procedure that constructs a Marko-
vian Arrival Process (MAP) based on the mean, the squared
coefficient of variation and the lag-1 autocorrelation of the
inter-arrival times. This method always provides a valid
MAP without posing any restrictions on the three input
parameters. Besides matching these three parameters, it
is possible to match the third moment of the inter-arrival
times and the decay of the autocorrelation function as well,
if they fall into the given (very wide) bounds.

1. INTRODUCTION
Markovian Arrival Processes (MAPs) are versatile tools

for modeling correlated workloads. They can be efficiently
applied in several fields of performance evaluation of vari-
ous systems. Once the traffic is represented by a MAP, it is
easy to generate random samples from it ([11], [13]), which
is beneficial in simulations and measurement based perfor-
mance analysis. It is also well known that queueing models
where the arrival and/or service process are given by MAPs
can be analyzed in a numerically efficient way by matrix
geometric methods [14].

However, the accuracy of the MAP based models depends
on how well the traffic is represented by the MAP. There are
several fitting and matching procedures published in the lit-
erature to obtain a MAP based on various properties of the
workload. A popular fitting approach is to apply an EM al-
gorithm to find the MAP that maximizes the likelihood of a
measurement trace ([5], [15]). These EM based fitting meth-
ods are perhaps the best choices once there is a measurement
trace available, and once the inherent computational effort
is tolerable.

In several situations our aim is not to fit trace data, but
to capture some statistical parameters of the arrival process
with a MAP. This approach is typically used in order to
approximate the behavior of a complex process (e.g. the
departure process of a queue) by a much more tractable
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MAP, or to construct a MAP based on a limited amount of
information (e.g. we need a MAP with given ”burstiness”
and lag-1 autocorrelation, but nothing else is given). Our
proposed MAP matching procedure belongs to this class of
fitting methods as well.

Among the statistical parameter based fitting methods
by far the most popular solutions intend to capture the
marginal moments and the joint moments or the lag au-
tocorrelation function. Some of these procedures intend to
approximate them (like [6] and [7]), but a more difficult
problem is capturing them in an exact way, thus performing
MAP matching.

MAP matching methods can be classified further based
on the structure they use. Procedures using a rigid struc-
ture keep the number of states fixed and can not adapt to
the input parameters. Such methods are [3], [8] and [9],
where 2-state MAPs are used to fit three marginal moments
and the lag-1 autocorrelation. However, if these parame-
ters do not fall into the bounds (which are provided in [3]),
these method fails. The moment matching method in [17]
operates on N states instead of only 2, but again, if the
set of moments are not feasible with N states, there is no
valid result (moreover, the bounds of feasible moments are
not even known for N > 2). At the other hand, methods
using a flexible structure are able to adopt to the input pa-
rameters, meaning that they can grow in size if necessary.
Semi-flexible methods which are quite close to this paper
in topic are described in [10] and [12], where two or three
moments and the lag-1 autocorrelation are matched. There
is some flexibility in these procedure in the sense that they
build upon Erlang distributed components with the shape
parameters providing a degree of freedom. The procedure of
[10] is not able to realize all possible input parameter com-
binations, nor does it explicitly provide the bounds for it.
In [12] the Erlang distributed components have a common
shape parameter, which may lead to a large state space,
furthermore there is no proof that the full range of the au-
tocorrelation can be matched.

Our procedure presented in this paper uses a flexible struc-
ture. It is able to construct a MAP having any mean,
squared coefficient of variation (SCV) and lag-1 autocor-
relation parameters that a valid arrival process can have.
Furthermore, we can match the third moment as well, ex-
cept the case when the SCV < 1 and the correlation is
negative. In this case we have (quite loose) constraints for
the third moment, but in all other cases we can match the
third moment without any restrictions as well. Additionally,



it is possible to set the decay of the autocorrelation function
in a given range.

The rest of the paper is organized as follows. Section 2
re-introduces Markovian Arrival Processes with the nota-
tions used throughout the paper. The natural bounds of the
parameters we intend to match are discussed in Section 3.
Section 4 details the proposed matching procedure. The fea-
tures of the procedure as well as some possible applications
are demonstrated in Section 5. Finally, Section 6 concludes
the paper.

2. MARKOVIAN ARRIVAL PROCESSES
A Markovian Arrival Process (MAP, [14]) of order N is

given by two N × N matrices, D0 and D1. The sum of
these matrices D = D0 + D1 is the generator of an ir-
reducible continuous time Markov chain (CTMC) with N
states, which is the background process of the MAP. Matrix
D1 contains the rates of those state transitions which are
accompanied by an arrival, and the off-diagonal entries of
D0 are the rates of internal state transitions.

To express various properties of the MAP, we have to in-
troduce a discrete time Markov chain (DTMC) representing
the background process at arrival instants, given by tran-
sition probability matrix P = (−D0)−1D1. The steady
state probability vector of the background process embed-
ded at arrival instants, denoted by π is the unique solution
of πP = π, π1 = 1, where 1 is the column vector of ones of
appropriate size.

The steady state distribution of the inter-arrival times X
is phase-type (PH) distributed with initial vector π and tran-
sient generator D0, thus

P (X < t) = 1− πeD0t
1. (1)

The marginal moments of the inter-arrival times are then
([14])

mk = E(X k) = k!π(−D0)−k1. (2)

With the joint moments of the inter-arrival times it is pos-
sible to characterize the correlation structure of the MAP.
By denoting the `th inter-arrival time by X`, the joint mo-
ments are calculated as

E(X i0X j` ) = i!j!π(−D0)−iP `(−D0)−j1. (3)

A popular correlation measure is the lag autocorrelation
function (ACF), which provides the correlations between X0

and X`

ρ` =
E(X0X`)−m2

1

m2 −m2
1

. (4)

3. NATURAL BOUNDS OF THE MO-
MENTS AND THE LAG-1 AUTOCOR-
RELATION

The moments to match can not be arbitrary numbers.
The Stieltjes moment problem ([16]) provides conditions to
determine if the sequence {mn, n = 0, 1, . . . } corresponds to

a distribution [0,∞). Let us define Hankel matrices H
(0)
n

and H
(1)
n as

H
(0)
n =


m0 m1 m2 . . . mn

m1 m2 m3 . . . mn+1

m2 m3 m4 . . . mn+2

...
...

... . . .
...

mn mn+1 mn+2 . . . m2n

 , (5)

H
(1)
n =


m1 m2 m3 . . . mn+1

m2 m3 m4 . . . mn+2

m3 m4 m5 . . . mn+3

...
...

... . . .
...

mn+1 mn+2 mn+3 . . . m2n+1

 . (6)

The condition for {mn, n = 0, 1, . . . } being a moment se-

quence on [0,∞) is that det(H
(0)
n ) > 0 and det(H

(1)
n ) > 0

for all n. (For simplicity, let us ignore the case when the
determinants are zero).

From det(H
(0)
1 ) > 0 and det(H

(1)
1 ) > 0 we can imme-

diately obtain conditions for the second and third moments
yielding

m2 > m2
1, (7)

m3 > m2
2/m1. (8)

Instead of using the raw moments, it will be beneficial to
introduce second and third order moment expressions as

c2 ,
m2

m2
1

− 1, `3 ,
m3m1

m2
2

− 1. (9)

Note that c2 is the squared coefficient of variation (SCV).
For the moment expressions the bounds given by (7) and (8)
translate to c2 > 0 and `3 > 0.

The lag correlations can not be arbitrary either. Due to
the Cauchy-Schwartz inequality we have that ρ1 ∈ [−1,+1].
However, since the inter-arrival times are non-negative,
E(X0X1) is non-negative as well, consequently ρ1 ≥ −1/c2
must hold, too (see (4)). We have that

max{−1,−1/c2} ≥ ρ1 ≤ 1. (10)

4. THE PROPOSED MATCHING PROCE-
DURE

To solve the matching problem, we introduce a special
MAP structure consisting of

• two PH distributions,

• and a 2-state discrete time Markov chain that deter-
mines which of the two components generates the next
inter-arrival time.

Notice that similar structure has been proposed in [1] (called
SMAP) and in [15] (called PH-CHMM) as well. The MAPs
defined in [10] and [12] are similar in spirit as well.

The two PH distributions (referred to as ”component” PH

distributions) are given by initial vectors α(i) and transient

generators A(i), i = {1, 2}; and their kth moments are de-

noted by m
(i)
k , i = {1, 2}. The squared coefficient of varia-

tions and the third order moment expressions of the compo-

nent distributions are denoted by c
(i)
2 and `

(i)
3 , i = {1, 2}.

The state transition probability matrix of the 2-state
DTMC and its stationary distribution are denoted by Π



and π, respectively. Denoting the transition probabilities by
p1 and p2 we have

Π =

[
1− p1 p1
p2 1− p2

]
, π =

[ p2
p1+p2

p1
p1+p2

]
. (11)

With these definitions and notations the D0 and D1 ma-
trices of the MAP are

D0 =

[
A(1) 0

0 A(2)

]
,

D1 =

[
−A(1)

1α(1) · (1−p1) −A(1)
1α(2) · p1

−A(2)
1α(1) · p2 −A(2)

1α(2) · (1−p2)

]
.

(12)

This MAP structure has the advantage that both the
marginal moments and the lag autocorrelations can be ob-
tained simpler then (2) and (4). Since the marginal distri-
bution is the mixture of the two components, the marginal
moments are

mk =
p2

p1 + p2
m

(1)
k +

p1
p1 + p2

m
(2)
k . (13)

For the lag-1 joint mean we have that

E(X0Xk) =
[
m

(1)
1 m

(2)
1

]
· diag〈π〉 ·Πk ·

[
m

(1)
1

m
(2)
1

]
. (14)

It can be proven by induction that

Πk =
1

p1 + p2

[
p1(1−p1−p2)k+p2 p1−p1(1−p1−p2)k

(p2−(1−p1−p2)kp2 p1+(1−p1−p2)kp2

]
,

(15)

from which some algebraic manipulation gives

ρk =
E(X0Xk)/m2

1 − 1

c2

=

(
m

(1)
1

m1
− m

(2)
1

m1

)2
p1p2
p1 + p2

(1− p1 − p2)k

+

(
m

(1)
1

m1

p2
p1 + p2

+
m

(2)
1

m1

p1
p1 + p2

)2

.

(16)

Now we can formalize the matching problem to be solved
in this paper. Our goal is to find

• the parameters of the component distributions
α(i),A(i), i = {1, 2},

• and switching probabilities p1 and p2,

such that the resulting MAP matches m1, c2, ρ1 and option-
ally `3 as well, without posing any restrictions on these pa-
rameters (apart from the natural bounds shown in Section
3).

We perform the MAP matching differently depending on
c2 and ρ1. According to Figure 1 we can identify three
regions. The case of positive correlation (Region 1 in the
Figure) is discussed in Section 4.1, while Regions 2 and 3
are discussed in Section 4.2.

4.1 The case of positive auto-correlation
The matching procedure is discussed in an incremental

way in this Section. First we determine the component
means and the switching probabilities such that m1 and ρ1
are matched for m1 > 0 and ρ1 ∈ [0, 1]. In the next step
the SCV parameters of the components are determined such

0.0 0.5 1.0 1.5 2.0 2.5 3.0
c2

1.0

0.5

0.0

0.5

1.0

ρ
1

Region 1

Region 2

Region 3

Figure 1: Regions on the c2–ρ1 plane needing differ-
ent treatment

that c2 is matched for c2 > 0. We also provide an alternative
method that matches not only c2, but `3 as well. In case of
positive ρ1 our method is able to match any `3 > 0.

4.1.1 Matching the mean and the auto-correlation
During the discussion of the procedure the key elements

are stated as Theorems to put more emphasis on them.
The following Theorem provides the mean values of the

components as well as the switching probabilities such that
m1 and ρ1 are matched.

Theorem 1. The mean and the lag-k auto-correlations
of the inter-arrival times of the MAP defined by component
means

m
(1)
1 = m1(1−

√
r), (17)

m
(2)
1 = m1(1 + c2

√
r), (18)

and switching probabilities

p1 =
1

1 + c2
(1− ρ1/r), (19)

p2 =
c2

1 + c2
(1− ρ1/r) (20)

are given by m1 and

ρk = r(ρ1/r)
k, (21)

for ρ1 < r < 1.

Proof. The Theorem can be proven by substituting

m
(1)
1 ,m

(2)
1 , p1 and p2 defined by (17), (18), (19) and (20)

into (13) and (16).
The bounds for parameter r ensure that (17) and (18) are

positive, and (19) and (20) are valid probabilities.

The construction introduced by Theorem 1 has a free pa-
rameter, parameter r. The theorem ensures that the lag-1
autocorrelation is matched for r ∈ (ρ1, 1), thus r provides
some additional flexibility to tune the decay of the autocor-
relation function of the resulting MAP. There are several
possibilities to set its value:
• Parameter r can be set such that ρ2 is matched. Note

however, that the bounds for r restrict the feasible lag-
2 autocorrelation to ρ21 < ρ2 < ρ1.

• Parameter r can be determined by optimization such
that the (geometric) shape of the autocorrelation func-
tion is as close to the target as possible according to a
distance function.



• If there is no information on the autocorrelation func-
tion apart from ρ1, parameter r can be set arbitrarily.
However, shifting r towards its bounds is not advis-

able, since at r = 1 we get m
(1)
1 = 0, and at r = ρ1

we have that p1 = p2 = 0. To obtain a representation
with well-balanced entries in the D0,D1 matrices we
recommend to set r such that ρ2 falls in the middle of
its feasible region, thus ρ2 = (ρ1 + ρ21)/2, yielding

r =
2ρ1

1 + ρ1
. (22)

4.1.2 Matching the second moment
In this Section we consider the case when we have only two

marginal moments to match (m1 and c2), `3 is not available
for some reason.

First we determine c
(1)
2 and c

(2)
2 , the SCVs of the two

components, such that the SCV of the mixture of the com-
ponents is c2. Then, we provide a simple procedure to

construct PH distributions (α(i),A(i)) based on m
(i)
1 and

c
(i)
2 , i = {1, 2}.
Let us start by expressing the second marginal moment

with p1 and p2 given by Theorem 1 as

m2 =
c2

1 + c2
m

(1)
2 +

1

1 + c2
m

(2)
2 ,

that, divided by m2
1, provides

m2

m2
1

=
c2

1 + c2

m
(1)
2

m
(1)
1

2

m
(1)
1

2

m2
1

+
1

1 + c2

m
(2)
2

m
(2)
1

2

m
(2)
1

2

m2
1

.

After substituting (17) and (18) we arrive to the following
equation for the SCVs of the components.

c2 + 1 =
c2

1 + c2
(c

(1)
2 + 1)(1−

√
r)2

+
1

1 + c2
(c

(2)
2 + 1)(1 + c2

√
r)2.

(23)

Any c
(1)
2 > 0 and c

(1)
2 > 0 satisfying (23) can be chosen

for the components. However, it is well known that the
minimal SCV an order-n PH distribution can realize is 1/n,
thus choosing too low component SCVs can lead to overly
large representations. The exact cost of given component
SCVs in terms of number of states of the resulting MAP is

C(c(1)2 , c
(2)
2 ) = max

{⌈
1

c
(1)
2

⌉
, 2

}
+ max

{⌈
1

c
(2)
2

⌉
, 2

}
,

which, due to the ceiling function and the maximum, is dif-
ficult to handle analytically. However, the simplified cost
function given by

C′(c(1)2 , c
(2)
2 ) = 1/c

(1)
2 + 1/c

(2)
2 , (24)

which is clearly in a close relation with the size of the re-
sulting MAP, allows us to express the optimal component
SCVs explicitly.

Theorem 2. The component SCVs minimizing the cost

function 1/c
(1)
2 + 1/c

(2)
2 are given by

c
(1)
2 =

(1 + c2)
√
c2(1 +

√
r)

1 +
√
c2(1−

√
r) + c2

√
r
, (25)

c
(2)
2 =

c2(1 + c2)(1− r)
(1 + c2

√
r)(1 +

√
c2(1−

√
r) + c2

√
r)
. (26)

Proof. The theorem can be proven by using the La-
grange multiplier technique. Let us introduce the function

f(c
(1)
2 , c

(2)
2 , λ) =

1

c
(1)
2

+
1

c
(2)
2

+ λ

(
c2

1 + c2
(c

(1)
2 + 1)(1−

√
r)2

+
1

1 + c2
(c

(2)
2 + 1)(1 + c2

√
r)2 − (c2 + 1)

)
,

where the last term comes from the constraint (23).
The optimal solution is located at the point where the

derivatives of f(c
(1)
2 , c

(2)
2 , λ) taken according to all three vari-

ables are equal to zero. The equations to solve are

0 = − 1

c
(1)
2

2 +
c2(1−

√
r)2λ

1 + c2
, (27)

0 = − 1

c
(2)
2

2 +
c2(1 + c2

√
r)2λ

1 + c2
, (28)

0 =
c2(1 + c

(1)
2 )(1−

√
r)2 + (1 + c

(2)
2 )(1 + c2

√
r)2

1 + c2
− 1− c2.

(29)

First we can express λ from (27), solve c
(2)
2 from (28) (care

has to be taken to select the positive solution), finally, c
(1)
2

is provided by (29).
Note that both (25) and (26) are positive since c2 > 0 and

r ∈ (0, 1).

The α(i),A(i) parameters of the component PH distribu-

tions are determined from m
(i)
1 and c

(i)
2 based on the next

theorem.

Theorem 3. The mean and the SCV of the size N PH
distribution given by (α,A) are m1 = 1/λ and c2, where

α =
[
p 0 . . . 0 1− p

]
, (30)

A =


−Nλp Nλp

−Nλp Nλp
. . .

. . .

−Nλp Nλp
−Nλ

 (31)

with

p =
1

c2 + 1 + (c2 − 1)/(N − 1)
(32)

and

N = max

{⌈
1

c2

⌉
, 2

}
. (33)

Proof. As there are only two states with non-zero initial
probabilities, the mean value can be expressed by

m1 = p ·
(

(N − 1)
1

Nλp
+

1

Nλ

)
+ (1− p) · 1

Nλ

= (N − 1)
1

Nλ
+

1

Nλ
=

1

λ
.

(34)



For the second moment we have

m2 = p ·
[(

(N − 1)
1

N2λ2p2
+

1

N2λ2

)
+

(
(N − 1)

1

Nλp
+

1

Nλ

)2
]

+ (1− p) · 2

N2λ2

=
N − 1 + 2p

Npλ2
=

1 + c2
λ2

,

(35)

which, divided by m2
1 and decreased by 1 gives c2. In the last

step of (35) we applied the definition of p given by (32).

4.1.3 Matching the third moment
In this Section we are matching m1, c2 and `3 as well.
The concept of the solution is the same as before, we are

again looking for the appropriate component moments, that,
with the given switching probabilities provide c2 and `3.

For the component SCVs the constraint given by (23)
must still be satisfied, but there is an additional constraint

for `
(i)
3 as well. Applying a derivation similar to the one

leading to (23) we have

(`3 + 1)(c2 + 1)2 =
c2

1 + c2
(`

(1)
3 + 1)(c

(1)
2 + 1)2(1−

√
r)3

+
1

1 + c2
(`

(2)
3 + 1)(c

(2)
2 + 1)2(1 + c2

√
r)3.

(36)

Any c
(i)
2 > 0 and `

(i)
3 > 0 parameters can be chosen which

satisfy (23) and (36), but we have to keep in mind that these
parameters affect the size of the resulting MAP significantly.
Unfortunately, the relation between `3 and the size of the
minimal APH distribution realizing it is quite complex (see
[2]), which makes the selection of the optimal moments for
the components difficult. To simplify the analysis, we pick
one particular bound: the one that says that the minimal `3
parameter that can be realized by an order-n APH is 1/n
(case b. of Theorem 3.1 in [2]), and perform the optimization

of `
(i)
3 parameters according to this rule. This leads to cost

function (simplified as in the previous section)

C′(c(1)2 , `
(1)
3 , c

(2)
2 , `

(2)
3 ) = min{ 1

c
(1)
2

,
1

`
(1)
3

}+ min{ 1

c
(2)
2

,
1

`
(2)
3

}.

Unfortunately we were not able to solve this optimization
problem such a straight forward way as we did in Section
4.1.2, we found that it does not even always have a unique
solution. What we could do is that we determined the opti-

mal `
(i)
3 parameters given that the c

(i)
2 parameters are fixed.

Theorem 4. The `
(i)
3 parameters of the components min-

imizing the cost function 1/`
(1)
3 + 1/`

(2)
3 are given by

`
(1)
3 = a/b, (37)

`
(2)
3 = `

(1)
3

c
(1)
2 + 1

c
(2)
2 + 1

1−
√
r

1 + c2
√
r

√
c2(1−

√
r)

1 + c2
√
r
. (38)

with

a = (`3 + 1)(c2 + 1)3 − c2(c
(1)
2 + 1)2(1−

√
r)3

− (c
(2)
2 + 1)2(1 + c2

√
r)3,

b = (c
(1)
2 + 1)(1−

√
r)

(
c2(c

(1)
2 + 1)(1−

√
r)2

+ (c
(2)
2 + 1)(1 + c2

√
r)2

√
c2(1− r)
1 + c2

√
r

)
,

Proof. The theorem can be proven by the same way as
Theorem 2.

We were not able to find component SCVs c
(i)
2 minimiz-

ing the size of the MAP representation. However, we were

able to find component SCVs such that the c
(i)
2 and `

(i)
3 are

always feasible. Thus, by setting the component moments
according to the next theorem we always get a valid MAP
matching m1, c2, `3 and ρ1.

Theorem 5. When the SCVs of the two components are

c
(1)
2 =

c2 +
√
r

1−
√
r
, (39)

c
(2)
2 = c2

1−
√
r

1 + c2
√
r
, (40)

the expressions for the cost-optimal `
(1)
3 and `

(2)
3 simplify to

`
(1)
3 =

l3(1 + c2)

c2(1−
√
r) +

√
c2(1 + c2

√
r)(1−

√
r)
, (41)

`
(2)
3 =

l3(1 + c2)

1 + c2
√
r +

√
c2(1 + c2

√
r)(1−

√
r)
. (42)

Furthermore, we have that c
(1)
2 > 0, c

(2)
2 > 0, `

(1)
3 > 0 and

`
(2)
3 > 0 always hold.

Proof. Equations (41) and (42) are obtained by substi-
tuting (39) and (40) into (37) and (38).

The positivity of c
(i)
2 and `

(i)
3 follows from c2 > 0, `3 > 0

and r ∈ (0, 1).

At this point we have three (feasible) marginal moments.

Based on these moments the appropriate (α(i),A(i)) repre-
sentations of the component PH distributions are obtained
by applying the results of [2].

4.2 The case of negative auto-correlation

4.2.1 Matching the mean and the auto-correlation
The MAP structure introduced in Section 4.1.1 in not

always able to match negative lag-1 autocorrelation. Thus,
for ρ < 0 (Region 2 and Region 3 in Figure 1) we introduce
a slightly different (and actually simpler) MAP structure.

Theorem 6. The mean and the lag-k auto-correlations
of the inter-arrival times of the MAP defined by component
means

m
(1)
1 = m1(1−

√
c2r), (43)

m
(2)
1 = m1(1 +

√
c2r), (44)



and switching probabilities

p1 =
1

2
(1− ρ1/r), (45)

p2 =
1

2
(1− ρ1/r) (46)

are given by m1 and

ρk = r(ρ1/r)
k, (47)

for

−ρ1 < r < min{1, 1/c2}. (48)

Proof. The theorem can proven the same way as Theo-
rem 1.

Condition r > −ρ1 is necessary for p1 < 1, p2 < 1, and

r < 1/c2 is required to get m
(1)
1 > 0. However, showing why

the remaining condition r < 1 is necessary is a bit more
involved.

Let us express the SCV of the MAP with the component
SCVs. First, the second moment is

m2 =
1

2
m

(1)
2 +

1

2
m

(2)
2 ,

which, divided by m2
1, yields

m2

m2
1

= c2 + 1 =
1

2

m
(1)
2

m
(1)
1

2

m
(1)
1

2

m2
1

+
1

2

m
(2)
2

m
(2)
1

2

m
(2)
1

2

m2
1

=
1

2
(c

(1)
2 + 1)(1−

√
c2r)

2 +
1

2
(c

(2)
2 + 1)(1 +

√
c2r)

2.

(49)

The right hand side of (49) is minimized at c
(1)
2 = c

(2)
2 = 0 ,

thus

c2 + 1 >
1

2
(1−

√
c2r)

2 +
1

2
(1 +

√
c2r)

2 = c2r + 1, (50)

from which r < 1 follows.

As in case of positive autocorrelation, parameter r can be
used to adjust the decay of the autocorrelation function. The
feasible range of lag-2 autocorrelation, however, depends on
the SCV in this case.

• If c2 ≤ 1 (Region 2 in Figure 1), we have that ρ21 <
ρ2 < −ρ1 (from −ρ < r < 1).

• If c2 > 1 (Region 3 in Figure 1), we get ρ21c2 < ρ2 <
−ρ1 (as −ρ < r < 1/c2 in this case).

The recommended ”default” value for parameter r is such
that ρ2 is set to the middle of its feasible region (by similar
considerations as in Section 4.1.1), thus our suggestion is

r =


− 2ρ1

1− ρ1
if c2 ≤ 1,

− 2ρ1
1− ρ1c2

if c2 > 1.
(51)

4.2.2 Matching the second moment
We are again following the approach taken in the case of

positive lag-1 autocorrelation in Section 4.1.2.
The condition for the component SCVs is already derived

in (49), that is

c2 + 1 =
1

2
(c

(1)
2 + 1)(1−

√
c2r)

2 +
1

2
(c

(2)
2 + 1)(1 +

√
c2r)

2.

(52)

The next theorem provides the component SCVs that are
optimal with regards to the simplified cost function defined
by (24).

Theorem 7. The component SCVs minimizing the cost

function 1/c
(1)
2 + 1/c

(2)
2 are given by

c
(1)
2 = c2

1− r
1−√c2r

, (53)

c
(2)
2 = c2

1− r
1 +
√
c2r

. (54)

Proof. The results can be proven by the Lagrange mul-
tiplier technique as in case of Theorem 2.

Note that both (53) and (54) are positive since c2 > 0 and
c2r ∈ (0, 1) holds both in Region 2 and Region 3.

The (α(i),A(i)) representations of the component PH dis-
tributions are obtained by using Theorem 3.

4.2.3 Matching the third moment
Along the same line as Section 4.1.3, we can derive the

constraint for `
(i)
3 parameters as

(`3 + 1)(c2 + 1)2 =
1

2
(`

(1)
3 + 1)(c

(1)
2 + 1)2(1−

√
c2r)

3

+
1

2
(`

(2)
3 + 1)(c

(2)
2 + 1)2(1 +

√
c2r)

3,

(55)

and arrive to a theorem similar to Theorem 4:

Theorem 8. If ρ1 < 0, the `
(i)
3 parameters of the compo-

nents minimizing the cost function 1/`
(1)
3 + 1/`

(2)
3 are given

by

`
(1)
3 = a/b, (56)

`
(2)
3 = `

(1)
3

c
(1)
2 + 1

c
(2)
2 + 1

(
1−√c2r
1 +
√
c2r

) 3
2

(57)

with

a = 2(`3 + 1)(c2 + 1)2 − (c
(1)
2 + 1)2(1−

√
c2r)

3

− (c
(2)
2 + 1)2(1 +

√
c2r)

3

b = (c
(1)
2 + 1)2(1−

√
c2r)

3

+ (c
(1)
2 + 1)(c

(2)
2 + 1)(1 +

√
c2r)

3

(
1−√c2r
1 +
√
c2r

)3/2

The only remaining question is how to set the component

SCVs such that c
(i)
2 and `

(i)
3 are all positive, yielding valid

component PH distributions. Unfortunately we were not
able to find such a solution. The solution we found (given
by the next theorem) is able to satisfy these requirements for
Region 3, but not always in Region 2. Extensive numerical
experiments make us believe that this is a structural restric-
tion. According to us, no MAP exists that has a structure of
(12) and is able to implement both near-zero c2, near-zero
`3 and close to −1 lag-1 autocorrelation.

Theorem 9. When the SCVs of the two components are

c
(1)
2 =

c2 +
√
c2r

1−√c2r
, (58)

c
(2)
2 =

c2 −
√
c2r

1 +
√
c2r

, (59)



the expressions for the cost-optimal `
(1)
3 and `

(2)
3 simplify to

`
(1)
3 =

2`3

1−√c2r +
√

1− c2r
, (60)

`
(2)
3 =

2`3

1 +
√
c2r +

√
1− c2r

. (61)

Furthermore, we have that c
(1)
2 > 0, c

(2)
2 > 0, `

(1)
3 > 0 and

`
(2)
3 > 0 holds if r < c2.

Proof. Equations (60) and (61) are obtained by substi-
tuting (58) and (59) into (56) and (57).

Since c2 > 0, `3 > 0, r < 1/c2 and r > 0, all four expres-

sions are positive except c
(2)
2 , which is positive only if the

condition r < c2 holds.

Note that the condition of the Theorem r < c2 always
holds in Region 3, but depending on the lag-1 autocorrela-
tion and the SCV it may not always hold in Region 2. Thus,
for c2 ≥ 1 we are able to match any c2, `3, ρ1 combinations,
while for c2 < 1 we might not able to do that.

4.3 Summary of the matching procedure
The pseudo-code in Figure 2 gives an overview of the pre-

sented procedure. The main decision points of the method
are as follows.

• We are using different structures for positive and neg-
ative ρ1 values, thus the procedure checks ρ1 right at
the beginning.

• If we do not want to set parameter r (because of the
lack of knowledge of the ACF), a default value has to
be assigned.

• Different methods are used to obtain the component
distributions when two (m1, c2) or three (m1, c2, `3)
moments are matched.

5. NUMERICAL EXAMPLES
Our implementation of the matching procedure is avail-

able online1 for Mathematica, Matlab and Python environ-
ments.

5.1 Size of the resulting MAP representation
In the first experiment we investigate how the size of the

final MAP representation depends on the input parameters.
The results are depicted in Figure 3. The different shades
of grays represent the size of the MAP, with the lightest
being the smallest one (with 4 states), and the darker shade
correspond to the larger MAP size (the completely black
means that the result is larger than 50 states). The dashed
line indicates the region that can be covered by the MAP-2
as published in [3].

It is clearly visible in the Figure that our procedure was
able to cover the entire c2–ρ1 plane (with respect to the
natural bounds). The closer c2 is to zero and the larger |ρ1|
is, the more states are required to match them (up to infinity
at the bounds).

In the second scenario the `3 parameter is also involved
into the matching. We fixed the lag-1 autocorrelation to
ρ1 = 0.2, and recorded the size of the resulting MAP by

1http://www.hit.bme.hu/~ghorvath/software

1: procedure MAPMatch(m1, c2, `3, ρ1, r)
2: if ρ1 ≥ 0 then
3: if r is given and r ≤ 0 or r ≥ 1 then
4: error ”Parameter r is out of range!”
5: else if r is not given then
6: r ← 2ρ1

1+ρ1
7: end if
8: Set m

(1)
1 ,m

(2)
1 according to (17) and (18)

9: Set p1, p2 according to (19) and (20)
10: if `3 is not given then

11: Calculate c
(1)
2 and c

(2)
2 by (25) and (26)

12: Obtain α(1),A(1), α(2),A(2) by Theorem 3
13: else
14: Calculate c

(1)
2 and c

(2)
2 by (39) and (40)

15: Calculate `
(1)
3 and `

(2)
3 by (41) and (42)

16: Obtain α(1),A(1), α(2),A(2) by [2]
17: end if
18: else
19: if r is given and r ≤ 0 or r ≥ min{1, 1/c2} then
20: error ”Parameter r is out of range!”
21: else if r is not given then
22: if c2 ≤ 1 then
23: r ← − 2ρ1

1−ρ1
24: else
25: r ← − 2ρ1

1−ρ1c2
26: end if
27: end if
28: Set m

(1)
1 ,m

(2)
1 according to (43) and (44)

29: Set p1, p2 according to (45) and (46)
30: if `3 is not given then

31: Calculate c
(1)
2 and c

(2)
2 by (53) and (54)

32: Obtain α(1),A(1), α(2),A(2) by Theorem 3
33: else if r ≥ c2 then
34: error ”Can not match `3 by the given c2, ρ1!”
35: else
36: Calculate c

(1)
2 and c

(2)
2 by (58) and (59)

37: Calculate `
(1)
3 and `

(2)
3 by (60) and (61)

38: Obtain α(1),A(1), α(2),A(2) by [2]
39: end if
40: end if
41: Construct matrices D0 and D1 according to (12)
42: return D0,D1

43: end procedure

Figure 2: The matching procedure

different c2 and `3 parameters. The conclusion is the same
as in the previous case (see Figure 4). The MAP-2 is able
to match only a limited range of these parameters (striped
area in the Figure), while our procedure is flexible and suc-
cessfully matches any c2–`3 combinations by increasing the
size of the MAP. Again, the closer c2 and `3 are to 0, the
more states are needed to match them.

The situation is similar in case of negative correlation
(Figure 5), In this case, the region feasible with MAP-2 is
even smaller. As mentioned before, our procedure can not
match all c2, `3 parameters. As also visible in the Figure,
only c2 > 1/3 is covered (remember that this value depends
on ρ1), but if it holds, the `3 parameter can be arbitrary.



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
c2

−1.0

−0.5

0.0

0.5

1.0

ρ
1

4

10

20

50

Figure 3: The size of the MAP as a function of the
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Figure 4: The size of the MAP as a function c2 and
`3 at ρ = 0.2
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Figure 5: The size of the MAP as a function c2 and
`3 at ρ = −0.2

5.2 Application for fitting traffic traces
Although there are methods which are much better suited

for trace fitting, we can apply the proposed matching pro-
cedure to real traffic traces as well. In this example we have
chosen a traffic trace which is frequently used as a bench-

mark, the BC-pAug89 trace2.
We investigate the following three scenarios depending on

which statistics are involved in the matching and how.

• Only three parameters, m1, c2 and ρ1 are matched ac-
cording to the proposed procedure.

• Five parameters, m1, c2, `3, ρ1 and ρ2 are matched ac-
cording to the proposed procedure.

• In this scenario we are trying to capture the charac-
teristics of the trace with our MAP structure as much
as possible. In the first step we are looking for the
optimal ρ1 and r parameters such that the Kullback–
Leibler distance (also called as relative entropy) of the
geometric ACF given by (21) and the ACF of the trace
are minimized. Then, we are looking for the optimal

c
(i)
2 , `

(i)
3 parameters for the marginal distribution (re-

specting the constraints of (23) and (36)) such that the
Kullback–Leibler distance between the resulting and
the empirical density functions are minimized. This
means that two separate nonlinear optimization is re-
quired in this case, both of them involves only two
variables. On our average computer both terminates
in 1-2 seconds.

The results are depicted in Figures 6 and 7. As expected,
the worst results are obtained in Case 1, where only 3 pa-
rameters are matched. Matching 5 parameters improves the
approximation of the density function and the ACF as well,
the improvement in the ACF is substantial. The best ap-
proximation is achieved by the third scenario, which is not
surprising, as it utilizes the most information from the trace.
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Figure 6: Marginal density functions of the 3 cases

We emphasize again that the main purpose of the pre-
sented procedure is to match a few statistical parameters,
which is not always enough to capture the dominant charac-
teristics of a measurement trace. There are several existing
procedures that have been developed specifically for trace
fitting.

5.3 Sensitivity analysis of the M/MAP/1
queue

This section demonstrates an other possible application
area of the presented procedure. It is well known, that the
mean waiting time of the M/GI/1 queue depends only on the

2Downloaded from http://ita.ee.lbl.gov/html/
contrib/BC.html
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mean and the SCV of the inter-arrival times (as stated by
the Pollaczek-Khintchine formula, [4]). We consider, how-
ever, the case when the service times are correlated, and in-
vestigate how the mean waiting time of a M/MAP/1 queue
depends on the c2 (”burstiness”) and on the ρ1 (”correla-
tion”) parameters of the service times.

First of all we checked whether the mean waiting time is
still insensitive to `3 when ρ1 6= 0. We found that the insen-
sitivity does not hold any more when the service times are
correlated, however, the impact of `3 on the mean waiting
time is negligible. Hence, we are matching only m1, c2 and
ρ1 in the sequel.

Figure 8 and Figure 9 depicts the mean waiting time as
the function of the lag-1 autocorrelation by higher and lower
load, respectively. According to the results the higher the
correlation is, the higher is the mean waiting time. Inter-
estingly, the mean waiting time with negatively correlated
service times is lower than in the uncorrelated case. Further-
more, the higher the SCV of the service time is, the more
sensitive the waiting time is to the lag-1 autocorrelation.
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6. CONCLUSION
The proposed procedure is able to construct a Markovian

arrival process based on the mean inter-arrival times (m1),
the ”burstiness” (SCV,c2) and the ”correlation” (ρ1) param-
eters. The resulting MAP is always valid for all c2 > 0 and
ρ1 ∈ (−1,+1). The applied structure has some degrees of
freedom left that can be used to adjust the decay of the
autocorrelation function and to match the third moment as
well. Apart from the case when c2 < 1, ρ1 < 0, the third
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Figure 9: Mean waiting time in case of lower load

moment can be arbitrary as well.
The application fields of the procedure include different

fitting problems when only a low number of parameters are
available, or sensitivity analysis when we are interested in
how the system reacts on different burstiness and correlation
parameters.

Acknowledgment
This work was supported by the Hungarian Government
through the OTKA K101150 project, by the European
Union (co-financed by the European Social Fund) through
the TAMOP-4.2.2C-11/1/KONV-2012-0001 project, and by
the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

7. REFERENCES
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