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ABSTRACT
We propose a new method to determine the electron velocity (EV) distribution function in the intracluster

gas (ICG) in clusters of galaxies based on the frequency dependence of the Sunyaev-Zel’dovich (SZ) effect. It
is generally accepted that the relativistic equilibrium EV distribution is the one suggested by Jüttner. However,
there is an ongoing debate on the foundation of relativistic kinetic theory, and other distributions have also
been proposed. The mildly relativistic intracluster gas (ICG) provides a unique laboratory to test relativistic
kinetic theories. We carried out Monte Carlo simulations to generate SZ signal from a single-temperature
gas assuming the Jüttner EV distribution assuming a few per cent errors. We fitted SZ models based on non-
relativistic Maxwellian, and its two relativistic generalizations, the Jüttner and modified Jüttner distributions.
We found that a 1% error in the SZ signal is sufficient to distinguish between these distributions with high
significance based on their different best-fit temperatures. However, in any LOS in a cluster, the ICG contains a
range of temperatures. Using our N-body/hydrodynamical simulation of a merging galaxy cluster and assuming
a 1% error in the SZ measurements in a LOS through a bow shock, we find that it is possible to distinguish
between Jüttner and modified Jüttner distributions with high significance. Our results suggest that deriving ICG
temperatures from fitting to SZ data assuming different EV distribution functions and comparing them to the
temperature in the same cluster obtained using other observations would enable us to distinguish between the
different distributions.
Subject headings: galaxies: clusters: general – galaxies: clusters: individual (1E0657–56) – methods: Monte

Carlo

1. INTRODUCTION

The generalization of non-relativistic kinetic theory to rel-
ativistic velocities is still a subject of debate. Presently, there
does not exist a theory of relativistic statistical mechanics that
can account for the approach to equilibrium of an ensemble
of particles, i.e., a gas, or the relativistic generalization of
the many-body problem (for a review see Hakim 2011). The
essential difficulty is that, unless all particles in the ensem-
ble originate from the same point in space, they are initially
space-like separated. Therefore neither a time-ordering of the
particle states, nor their initial conditions can be established.
These difficulties impede developing a microscopic theory for
how a relativistic gas can achieve thermal equilibrium. Also,
treating many-particle interactions within the framework of
special relativity in kinetic theories is problematic. Even if
we assume that the relativistic gas is in equilibrium, the sta-
tistical mechanical treatment of the gas fails because interac-
tions cannot be included in the relativistic Hamiltonian in a
consistent manner, since any interaction term in the Hamil-
tonian would break the Poincaré symmetry (non-interaction
theorems, e. g., Leutwyler 1965; Marmo et al. 1984). This is
not a problem in nonrelativistic statistical mechanics, because
it allows the treatment of interactions between particles based
on instantaneous interaction potentials, which are additive in
the corresponding Hamiltonian straightforwardly leading to
equilibrium velocity distributions.

In 1911, Ferencz Jüttner derived a relativistic generalization
of the non-relativistic (Maxwell) velocity distribution, usually
referred to as the Jüttner, or Maxwell-Jüttner velocity distri-
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bution (Jüttner 1911). For a general introduction to relativis-
tic statistical mechanics, see Synge (1957). However, prob-
lems with the establishment of a self-consistent relativistic ki-
netic theory led to the question whether the Jüttner distribu-
tion is the correct relativistic equilibrium velocity distribution,
and other, modified Jüttner distributions were suggested (e.g.,
Dunkel & Hänggi 2007; Kaniadakis 2006; Lehmann 2006;
Schieve 2005; Horwitz et al. 1989). Relativistic molecular
dynamics Monte Carlo simulations in one, two, and three di-
mensions seem to support the Jüttner distribution for equilib-
rium (Cubero et al. 2007; Montakhab et al. 2009; Peano et al.
2009; Dunkel et al. 2009). These different approaches to rel-
ativistic kinetic theory make predictions, in principle testable,
and, as we show in this paper, feasible tests are possible. As
of today, there is no experimental verification of any of these
proposed velocity distributions.

The correct relativistic equilibrium velocity distribution is
essential in a variety of applications, including high energy
physics, astrophysics, and cosmology (e.g., Dunkel et al.
2007; van Hees et al. 2006; Bernstein 2004; Nozawa et al.
1998; Rephaeli 1995). Therefore, it is of fundamental im-
portance to find experimental or observational methods to de-
rive particle velocity distribution in mildly relativistic gases,
which would make it possible to distinguish between the pro-
posed distributions. In this paper we focus on experimental
tests of the relativistic Maxwell-Boltzmann distribution as de-
rived by Jüttner (1911), Dunkel & Hänggi (2007) and Horwitz
et al. (1981).

The high temperature low density gas of the intracluster gas
(ICG) in clusters of galaxies is mildly relativistic, the tem-
perature is not high enough for particle pair creation and an-
nihilation to be important. Thus the ICG provides a unique
laboratory to test the proposed velocity distribution functions.

Inverse Compton scatterings of low energy cosmic mi-
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crowave photons off hot electrons in the ICG, the thermal
Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1980),
provides a possibility to study electron velocity (EV) distri-
butions observationally. Calculations of the relativistic SZ ef-
fect assume that the EV distribution is in the form of Jüttner
distribution (for reviews see, e.g., Birkinshaw 1999; Rephaeli
1995. However, as of today, there is no observational con-
straints on the EV distribution function in the ICG. Prokhorov
et al. (2011) suggested that it may be possible to constrain
the EV distribution in the ICG based on the frequency de-
pendence of the SZ effect, and estimated the accuracy needed
in the SZ observations. They considered Maxwellian and its
relativistic generalization, the Jüttner EV distribution func-
tions. Their method compares the shape of the frequency de-
pendence of the SZ effect based on different EV distribution
functions. Prokhorov et al.’s results suggest that, applying
their method, SZ measurements with 0.1% accuracy would
be necessary to distinguish between Maxwellian and Jüttner
velocity distributions.

In this paper we propose a new method to constrain EV dis-
tribution functions based on the thermal SZ effect and carry
out Monte Carlo simulations to estimate the accuracy nec-
essary to distinguish between the different EV distributions.
The structure of this paper is as follows. In Section 2 we give
a short discussion about the different approaches to relativistic
kinetic theory. We introduce the non-relativistic and relativis-
tic thermal SZ effects in Sections 3 and 4. In Section 4 we also
discuss the differences between these approaches and high-
light some less known subtleties hidden in their assumptions.
We quantify the differences between non-relativistic and rel-
ativistic SZ effect at the wide frequency range adopted by the
detectors on the Planck satellite as well. In Section 5 we fit
SZ models to SZ observations of the Bullet cluster based on
EV distributions of the form of non-relativistic (Naxwellian),
relativistic Jüttner and modified Jüttner. We estimate the ac-
curacy we need in SZ measurements to constrain EV distri-
bution functions with high significance using mock SZ obser-
vations in Section 6. We show our results for fits to mock SZ
observations of a single-temperature gas in Section 6.1. We
fit SZ models to mock observations in a LOS through a bow
shock extracted from an N-body/hydrodynamical simulation
based on EV distributions of the form of relativistic Jüttner
and modified Jüttner in Section 6.2. In Section 7 we discuss
our results and the feasibility of our new method to constrain
EV distribution functions based on the SZ effect. Section 8
contains our conclusion.

2. DIFFERENT APPROACHES TO RELATIVISTIC KINETIC THEORY

As we mentioned in the Introduction, a relativistic gener-
alization of classical kinetic theory cannot approach equilib-
rium, yet, we observe in the universe relativistic gas that we
believe should be treated as in equilibrium. The difficulties
of establishing a self-consistent relativistic kinetic theory can
be avoided if we simply assume that a system of relativistic
particles, constituting a gas, is in equilibrium, and derive the
equilibrium velocity distribution function using macroscopic
methods, the principle of maximum entropy, as it was done
by Jüttner (Jüttner 1911). The maximum entropy principle
(MEP) is particularly apt in this context precisely because
we cannot give a microscopic account for how equilibrium
is achieved. In a mildly relativistic gas the particle inter-
actions are not so energetic as to significantly involve con-
sideration of pair-creation, there are only two constraints on
the entropy: 1) particle number conservation and 2) energy

conservation. Having formed a relativistically invariant La-
grangian, and carefully choosing an invariant measure for the
phase space, the Jüttner distribution is obtained (Synge 1957).

The standard classical macroscopic theory assumes the
Gibbs entropy functional,

SNR[ f ] = −

∫
d3v f (v) log{ f (v)}, (1)

where v is the 3D velocity. The velocity distribution func-
tion is derived by maximizing SNR under the constraints that
f ≥ 0,

∫
d3v f (v) = 1, and the energy conservation, 〈E〉 =∫

d3v f (v)E(v), where the non-relativistic energy, E(v) =
mv2/2. Note, however, this method works only in Cartesian
coordinates, it is not coordinate invariant. Using the relative
entropy, the MEP can be cast in a coordinate invariant form
(Dunkel et al. 2007). Assuming a reference measure of ρ(p),
the relative entropy of Φ(p) with respect to the reference mea-
sure can be written as

S[Φ|ρ] = −

∫
d3 p Φ(p) log{Φ(p)/ρ(p)}, (2)

under the constraints that Φ ≥ 0, ρ ≥ 0,
∫

d3 p Φ(p) = 1, and
〈E〉 =

∫
d3 p Φ(p) E(p), where the relativistic energy, E(p)2 =

m2c4 + p2. Dunkel et al. (2007) showed that adopting a ref-
erence measure of ρ0 = 1/(mc)3, and maximizing the relative
entropy, S[Φ|ρ0] (Equation 2), one obtains the Jüttner distri-
bution,

Φη(p) =
exp{−βE(p)}

Zη E(p)η
, (3)

where η = 0, and Zη is the partition function. Adopting a ref-
erence measure of ρ1 = E(p)−1, the MEP returns the modi-
fied Jüttner distribution, Equation 3 with η = 1. Dunkel et
al. (2007) demonstrate that the choice of ρ0 for the reference
measure is associated with translational invariance in the mo-
mentum space, while ρ1 is associated with Lorentz invariance.
As we can see, if we require a coordinate invariant form for
the MEP, we encounter the questions: Which reference mea-
sure should we use? What is the relevant symmetry for the
entropy? Since we do not have an established theory for rela-
tivistic kinetic theory, the answer is not trivial.

Different approaches to relativistic kinetic theory resulted
in particle equilibrium momentum distributions with different
values of η in Equation 3. An extension of special relativity
was also introduced along the lines suggested by Stueckelberg
(Horwitz et al. 1973). The problem of simultaneity is solved
by establishing a measure of time common to all particles, on
the expense of reinterpretation of relativity. This approach re-
sulted in an equilibrium momentum distribution of the form
of Equation 3 with η = 1 (Horwitz et al. 1981). A different
approach was followed by Lehmann (2006). Lehmann noted
that the derivation of Jüttner was relativistic, but not covari-
ant. The covariant approach introduced by Lehmann based on
Poincaré-invariant constrained Hamiltonian dynamics led to a
relativistic one particle momentum distribution function of the
form of Equation 3, with η = 2. Dunkel & Hänggi (2007) were
using microscopic collision processes to investigate the rela-
tivistic generalization of the Brownian motion. They derived
an equilibrium momentum distribution for relativistic parti-
cles of the form of the modified Jüttner distribution with η = 1
(Equation 3).
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3. NON-RELATIVISTIC SUNYAEV-ZEL’DOVICH EFFECT

Photons of the cosmic microwave background (CMB),
on average, gain energy via inverse Compton scattering
off electrons in the ICG in clusters of galaxies, and redis-
tributed to higher frequencies. The intensity change in the
CMB due to inverse Compton scattering in clusters assum-
ing non-relativistic (Maxwellian) electron velocity distribu-
tion is called non-relativistic SZ effect. Conventionally, the
non-relativistic SZ effect is derived using the Kompaneets ap-
proximation (Sunyaev & Zeldovich 1980). In the literature,
the SZ amplitude derived from the Kompaneets approxima-
tion is identified with the non-relativisitc thermal SZ effect.
However, the Kompaneets approximation is based on more
restrictive assumptions, as we will see.

The Kompaneets equation is based on an expansion of
the Boltzmann equation, which describes the evolution of
the photon occupation number, using a small parameter,
∆Ephot/(kBT ), where Ephot is the energy change in the pho-
tons due to inverse Compton scattering, T is the elec-
tron temperature, and kB is the Boltzmann constant (Kom-
paneets 1957). The Kompaneets approximation assumes
that the isotropic incoming photons have a thermal (Planck-
ian) spectrum, the isotropic electron velocity distribution is
Maxwellian, and the energy change in the photons, ∆Ephot is
small, ∆Ephot/(kBT )<< 1. This method is using the Thomp-
son scattering cross section in the rest frame of the CMB in-
stead of the rest frame of the electron assuming that the elec-
tron velocities are small, thus the Lorentz transformations be-
tween the two rest frames can be ignored.

Sunyaev and Zel’dovich assumed that the photon occupa-
tion number, n, and xe are small in the ICG, thus terms pro-
portional to n and n2 can be ignored relative to ∂n/∂xe. In this
case the Kompaneets equation simplifies to

∂n
∂y

=
1
x2

e

∂

∂xe

[
x4

e

(
∂n
∂xe

)]
, (4)

where the dimensionless frequency is xe = hPν/(kBT ), and
hP is the Planck constant, the Compton-y parameter is y =∫
Θdτ , where the dimensionless electron temperature is Θ =

(kBT )/(mec2), me is the mass of the electron, and the optical
depth, τ is defined as dτ = σT ned`, where σT is Thomson scat-
tering cross-section, ne is the electron number density, and d`
is the line element along the LOS.

Changing the dimensionless frequency xe to xν = hPν/
(kBTCMB), where TCMB is the temperature of the CMB, does
not change the right hand side of Equation 4, and changing
variables from n(xν ,y), to n(lnxν + 3y,y), Equation 4 can be
transformed into a form of diffusion equation. This diffusion
equation can be solved analytically, and since the intensity is
proportional to x3n, the intensity change can be expressed as

∆IK(xν ,T ) = y
ı0 x4

ν exν

(exν − 1)2

(
xν

exν + 1
exν − 1

− 4
)
, (5)

where the Compton-y parameter is y =
∫
Θdτ , where the opti-

cal depth, τ is defined as dτ = σT ned`, where σT is Thomson
scattering cross-section, ne is the electron number density, and
d` is the line element along the LOS, and the conversion fac-
tor, i0, is

i0 = 2(kBTCMB)3/(hPc)2. (6)

In this approximation, at constant temperature in the line of
sight (LOS), ∆IK ∼ τ , which shows that it is essentially a sin-

gle scattering approximation (also verified with Monte Carlo
simulations; Molnar & Birkinshaw 1999). In the single scat-
tering approximation the photon and electron distributions are
isotropic, in accordance with the original assumptions. Note,
that single scattering, in most cases, is an adequate approxi-
mation in the ICG, since the optical depth integrated along a
LOS through a cluster is τ =

∫
σT ned`<∼0.01.

In the Kompaneets approximation, only the amplitude of
the SZ effect depends on the electron temperature, the shape
of the effect as a function of frequency is the same. As a con-
sequence, the crossover frequency, ν0 = 217.7 GHz, where the
SZ amplitude is zero (∆IK[ν0] = 0) and the amplitude changes
from decrement in the CMB to increment, is independent of
the electron temperature.

4. RELATIVISTIC SUNYAEV-ZEL’DOVICH EFFECT

The Komponeets approximation has been and is widely
used to calculate the SZ signal, since it can be easily calcu-
lated, as it provides an analytic expression (for reviews see
Carlstrom et al. 2002; Birkinshaw 1999). However, it was re-
alized that, at the high-temperature ICG (∼15 keV), the gas is
mildly relativistic, thus a relativistic generalization of the non-
relativistic Maxwellian velocity distribution should be used at
mm/submm wavelengths (Rephaeli 1995).

The relativistic treatment of the inverse Compton scattering
in mildly relativistic electrons (applicable in the ICG) with-
out assuming that the photon energy change is small was de-
rived by Wright (1979). Wright’s method adopts the Thomp-
son scattering cross section in the rest frame of the electron
instead of the rest frame of the CMB, and uses Lorentz trans-
formations between them.

Following Wright, we express the frequency change due to
inverse Compton scattering between an electron with velocity
β = v/c (where c is the speed of light) as a function of the
logarithm of the ratio of the frequencies of the scattered and
input photons, ν and ν0, in the Lab frame,

s = ln
[
ν

ν0

]
= ln
[

1 +βµ2

1 −βµ1

]
, (7)

where we also expressed the ratio of the frequencies in the
rest frame of the electron, where the photon scattered from an
input cosine angle µ1 = cosϕ1 to µ2 = cosϕ2 relative to the z
axis (z is parallel to the velocity of the electron).

We use the Wright’s formalism in the single scattering limit,
which is appropriate in the ICG with low optical depth. In this
approximation, the probability that a single photon scattering
with an electron with a velocity of β (in units of c) results
in a frequency shift described by s, the frequency redistribu-
tion function, P1(s,β), can be expressed in the electrons’s rest
frame, as

P1(s,β)ds =
∫

pµ(µ1)φ(µ2|µ1)dµ1
dµ2

ds
ds, (8)

where pµ(µ1) is the probability that the electron scatters with
a photon having an incoming cosine angle µ1, and φ(µ2|µ1)
is the conditional probability of photons scattering into cosine
angle µ2 if the initial photon direction cosine was µ1 (µ1 →
µ2) in the rest frame of the electron (Chandrasekhar 1960):

φ(µ2|µ1)dµ2 =
3
8

[
1 +µ2

1µ2
2

+
1
2

(1 −µ2
1))(1 −µ2

2)
]
dµ2. (9)
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pµ(µ1) can be derived from transforming an isotropic incom-
ing photon direction distribution to the rest frame of the elec-
tron,

pµ(µ1)dµ1 =
[
2γ4(1 −βµ1)3]−1

dµ1, (10)

where γ2 = 1/(1 −β2). The frequency redistribution function
due to Compton scattering, the probability for a single scat-
tering resulting a frequency shift s in the Lab frame, thus can
be expressed as

P1(s,β)ds =
1

2γ4β

∫ µb

µa

dµ1
1 +βµ2

[1 −βµ1]3φ(µ2|µ1)ds, (11)

where the limits of the integral, µa and µb are determined by
the condition that the cosines have to be real:

µa =
{

−1 s≤ 0
[1 − e−s(1 +β)]/β s≥ 0

µb =
{

[1 − e−s(1 −β)]/β s≤ 0
1 s≥ 0.

(12)

The integral over µ1 can be performed analytically (e.g., Mol-
nar 2015).

The frequency redistribution function, P1, as a function of
s, can be obtained by integrating over the velocity distribution
of the electrons, pe(β)dβ, assuming that it is known,

P1(s) =
∫ 1

β0

P1(s,β)pe(β)dβ, (13)

where the lower limit β0 is the minimum electron velocity
needed to get frequency shift s,

β0 =
e|s| − 1
e|s| + 1

. (14)

Note that carrying the integral over µ1 analytically, our inte-
gral in Equation 13 is only one dimensional. In general, this
integral needs to be performed numerically.

The intensity at frequency ν, after single scatterings, I1(ν),
can be expressed as a convolution of the incoming intensity,
I0(ν0), assumed to be isotropic, and the single scattering prob-
ability distribution, P1(s),

I1(ν) =
∫ ∞

−∞
dsP1(s)I0(ν0), (15)

where the integral is over s = ln(ν/ν0) with the frequency after
scattering, ν, fixed, and P1(s) is given by Equation 13.

In the single-scattering approximation, the probability that
a photon passes the ICG without scattering is eτ , and the
chance that is scatted once is τeτ . Thus the full frequency
redistribution function, which describes the frequency change
after the photons pass through the ICG, becomes

F1(s) = (1 − τ )δ(s) + τ P1(s), (16)

and the emergent intensity can be expressed as a convolution,

ISZ(ν) =
∫ ∞

−∞
dsF1(s)I0(ν0). (17)

Thus, assuming that the incoming photon frequency distribu-
tion is Planckian in the Lab frame, the change in the emerging
intensity, ISZ(ν) − I0(ν), the thermal SZ effect, becomes

∆ISZ(ν) = i0τ
∫

dsP1(s)
(

x3
0

ex0 − 1
−

x3
ν

exν − 1

)
, (18)

where x0 = hPν0/(kBTCMB), and i0 is defined as in Equation 6.
Assuming that the electron equilibrium velocity distribution

function is non-relativistic (Maxwellian),

pMX (β)dβ = NMXβ
2 exp{−β2/(2Θ)}dβ, (19)

where NMX is the normalization, we obtain a non-relativistic
approximation of the SZ effect, ∆INR from Equation 18.
However, contrary to the conventional non-relativistic SZ ef-
fect based on the Kompaneets approximation, this method
uses the Wright formalism, and does not ignore the Lorentz
transformations between the rest frame of the electron and the
CMB.

Wright (1979) calculated the SZ amplitude using the rela-
tivistic generalization of the Maxwellian velocity distribution
derived by Jüttner,

pJ(β)dβ = NJ
γ5β2

Θ
exp{−γ/Θ}dβ, (20)

where NJ is the normalization for the probability distribution.
The relativistic SZ effect based on the Jüttner velocity distri-
bution, ∆IJ , can be derived using Equation 20 in Equation 18.

We use the modified Jüttner distribution in the form of

pMJη(β)dβ = NMJη
γ5β2

γηΘ
exp{−γ/Θ}dβ, (21)

where NMJη is the normalization for the modified Jüttner elec-
tron velocity distribution (Lehmann 2006; Dunkel & Hänggi
2007). The modified Jüttner distribution differs from the Jüt-
tner distribution only in the power of γ, pMJη ∼ pJ/γ

η (e.g.,
Dunkel et al. 2007). We derive the relativistic SZ effect based
on the modified Jüttner velocity distribution, ∆IMJη , using
Equation 18.

As an illustration, in Figure 1, we show the intensity change
in the CMB due to the Sunyaev-Zel’dovich effect (in units
of i0τ , where τ is the optical depth and i0 is given by Equa-
tion 6) as a function of frequency (in GHz) for electron tem-
peratures of 15.33 keV and 5.11 keV (upper and lower set
of lines). Solid, dashed, and dotted lines represent SZ am-
plitudes assuming electron velocity distribution functions of
the form of relativistic Jüttner (Equation 20), modified Jüttner
with η = 1 (Equation 21), and non-relativistic, Maxwellian
(Equation 19) using the Wright formalism (∆IJ , ∆IMJ1, and
∆IMX ). Dash-dotted lines show the non-relativistic SZ ampli-
tude derived based on the Kompaneets approximation (∆IK).
The squares, triangles, and plus signs represent SZ amplitudes
assuming relativistic Jüttner and Maxwellian velocity distri-
butions based on the Wright formalism, and amplitudes us-
ing the Kompaneets approximation at the frequencies of the
Planck instruments (ν = 30, 44, 70, 100, 143, 217, 353, 545,
and 857 GHz; e.g., Bourdin et al. 2017; note, the Herschel-
SPIRE instrument also covers the 600 and 857 GHz frequency
channels with higher spatial resolution; Griffin et al. 2010).

Figure 1 demonstrates that the differences between SZ am-
plitudes derived from the Kompaneets approximation (dash-
dotted lines) and those derived from the Wright formalism
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FIG. 1.— The Sunyaev-Zel’dovich effect (in units of i0τ ) as a function of
frequency (in GHz) for electron temperatures of 15.33 keV and 5.11 keV (up-
per and lower set of lines). Solid, dotted, and dashed lines represent SZ am-
plitudes assuming electron velocity distribution functions of the form of rel-
ativistic Jüttner, modified Jüttner with η = 1, and non-relativistic Maxwellian
using the Wright formalism. Dash-dotted lines show the non-relativistic SZ
amplitude derived using the Kompaneets approximation. The squares, tri-
angles, and plus signs represent the corresponding SZ amplitudes at the fre-
quencies of the Planck instruments.

using Maxwellian velocity distribution (dashed lines) rela-
tive to those derived from assuming Jüttner distribution (solid
lines) are larger (e.g., ∆IK is much larger than ∆IJ or ∆IMX
at 350 GHz). As a consequence, we obtain a better non-
relativistic approximation for the SZ effect using the Wright
method assuming a Maxwellian velocity distribution as op-
posed to using the Kompaneets equation. Thus, the main dif-
ference between the amplitudes of the SZ effect based on the
Kompaneets approximation and the relativistic SZ effect us-
ing the Wright method is not the form of the velocity distri-
bution used (Maxwelian vs. Jüttner), but the treatment of the
collision process (compare dashed and dash-dotted lines to
the solid lines in Figure 1). The komponeets approximation
over(under) estimates the SZ signal at frequencies <∼450 GHz
(>∼450 GHz). In Table 1 we quantify these differences. In
this table we show the ratios between SZ amplitudes derived
from the Kompaneets approximation over those based on the
Wright formalism assuming Jüttner distribution, ∆IK/∆IJ ,
and Maxwellian distribution, ∆IK/∆IMX , at electron temper-
atures of T = 15.55 keV and T = 5.11 keV.

At high electron temperatures, e.g., T = 15 keV, the er-
ror due to using the Kompaneets approximation instead of
the Wright formalism with the Jüttner (or Maxwellian) dis-
tribution is >∼10% for ν>∼100 GHz (or ν>∼217 GHz). At
the highest Planck frequency, ν = 857 GHz, ∆IK and ∆IMX
are lower than ∆IJ by a factor of 4 and 5 (∆IK/∆IJ = 0.25,
∆IK/∆IMX = 0.2). Even at lower temperatures, ∆IK deviates
from ∆IJ by >∼8%, and at ν = 857 GHz ∆IK is a factor of
2 too small (∆IK/∆IJ ∼ ∆IK/∆IMX ∼ 0.5). Thus, Table 1
demonstrates that at high Planck frequencies (ν>∼217 GHz),
even for lower ICG temperatures (T ∼ 5 keV), the Wright for-
malism should be used to calculate the SZ signal either with
the Jüttner, or Maxwellian velocity distribution instead of the

TABLE 1
SZ AMPLITUDE RATIOS AT Planck FREQUENCIES USING DIFFERENT

METHODS FOR T = 15.55 KEV AND 5.11 KEV.

Freq. ∆IK/∆IJ
a ∆IK/∆IMX

b ∆IK/∆IJ
c ∆IK/∆IMX

d

GHz T = 15.5 keV T = 15.5 keV T = 5.1 keV T = 5.1 keV
30 1.06 0.98 1.02 0.99
44 1.06 0.99 1.02 1.00
70 1.08 1.01 1.03 1.00.

100 1.10 0.03 1.03 1.01
143 1.11 1.03 1.04 1.01
217 0.11 0.09 0.24 0.22
353 1.26 1.20 1.08 1.06
545 0.86 0.79 0.92 0.89
857 0.25 0.20 0.53 0.50

a SZ amplitudes derived from the Kompaneets approximation over those
based on the Wright formalism assuming Jüttner velocity distribution at
T = 15.55 keV.
b SZ amplitudes derived from the Kompaneets approximation over those
based on the Wright formalism assuming Maxwellian velocity distribution
at T = 15.55 keV.
c Same as a but for T = 5.11 keV.
d Same as b but for T = 5.11 keV.

Kompaneets approximation. However, the Kompaneets ap-
proximation is still widely used at all Planck frequencies (e.g.,
Baldi et al. 2019; Planck Collaboration et al. 2016).

In contrast to the non-relativistic SZ effect (based on the
Kompaneets approximation), the shape of the relativistic SZ
effect (derived using the Wright formalism) as a function of
frequency does depend on the temperature as well. This make
it possible to use the frequency dependence of the SZ ef-
fect to derive the temperature of the ICG (e.g., Pointecouteau
et al. 1998; Hansen et al. 2002). Other methods also have
been proposed to derive the temperature in the ICG using
the frequency dependence of the relativistic SZ effect based
on the shift of the crossover frequency from ν0 = 217.7 GHz
(Rephaeli 1995), the slope of the SZ effect near the crossover
frequency (Colafrancesco et al. 2009), and the ratio of the
SZ intensities at two different frequencies (Prokhorov et al.
2010).

5. FITTING TO SZ OBSERVATIONS OF THE BULLET CLUSTER

The Bullet cluster (1E0657–56) is one of the few high-
infall velocity merging galaxy clusters, which provided the
first direct evidence for the existence of dark matter based on
multi-frequency observations (Clowe et al. 2006). The off-
set between the mass surface density centers derived from
gravitational lensing and the X-ray emission peaks marking
the gas (baryonic) component were significant (200–300 kpc,
e.g., Paraficz et al. 2016).

We illustrate our proposed method to determine the EV dis-
tribution function in the ICG in clusters of galaxies based on
the frequency dependence of the SZ effect using SZ observa-
tions of the Bullet cluster. We use archival SZ observations
of the Bullet cluster available at four frequencies: 150, 275,
600, and 857 GHz (Gomez et al. 2004; Halverson et al. 2009;
Plagge et al. 2010; Zemcov et al. 2010). We show the SZ ob-
servations as a function of frequency in Figure 2 (squares with
error bars). We assume that the optical depth is unknown, and
treat it as a nuisance parameter, therefore our method is sen-
sitive only to the shape of the SZ signal. Note, that if the
optical depth were known with high precision, the SZ am-
plitudes could also be used and it would be easier to distin-
guish between different velocity distributions (see Figure 1).
We adopt a χ2 statistic and maximize our likelihood function,
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FIG. 2.— Sunyaev-Zel’dovich observations of the Bullet cluster (squares
with error bars) as a function of frequency and best-fit models based on differ-
ent electron velocity distributions (lines). The solid, dash-dotted, dashed, and
dash-dot-dot-dotted lines are the best-fit models assuming relativistic (Jüt-
tner), modified Jüttner with η = 1 and η = 1, and non-relativistic (Maxwellian)
velocity distributions. Note that SZ models based on all of these distributions
provide a good fit, thus the fitted models (lines) are indistinguishable.

L∼ exp(−χ2) to determine the best-fit temperatures using dif-
ferent SZ effect models derived based on the Wright formal-
ism (Section 4) assuming relativistic Jüttner (Equation 20),
modified Jüttner with η = 1 and 2 (Equation 21), and non-
relativistic, Maxwellian (Equation 19), velocity distribution
functions. We do not consider models derived from the Kom-
paneets equation because it does not provide a good approx-
imation for the nonrelativistic SZ effect at high frequencies
(see Figure 1).

We show our results in Figure 2. The solid, dashed, dash-
dotted, and dash-dot-dot-dotted, lines are the best-fit models
assuming relativistic (Jüttner), modified Jüttner distributions
with η = 1 and 2, and non-relativistic (Maxwellian) EV dis-
tributions. The SZ model based on each one of these distri-
butions provides a good fit, there is no significant difference
in their χ2 values (∆χ2 < 1). thus the fitted models (lines)
are indistinguishable. We obtain good fits for all four mod-
els with best-fit electron temperatures of TJ = 22.1+5.65

−4.97 keV,
TMJ1 = 23.0+6.16

−5.32 keV, TMJ2 = 23.9+6.34
−5.57 keV, and TMX = 18.3+4.33

−3.76
keV, assuming Jüttner, modified Jüttner with η = 1 and η = 2,
and Maxwellian EV distributions. Our result for the best-fit
temperature, TJ = 22 keV, assuming the Jüttner EV distribu-
tion agrees with that obtained by Colafrancesco et al. (2011)
assuming a single temperature gas and adopting the same ve-
locity distribution function.

6. FITTING DIFFERENT VELOCITY DISTRIBUTION FUNCTIONS
TO SIMULATED SZ OBSERVATIONS

We address the question: What accuracy do we need in the
SZ observations to be able to derive more accurate tempera-
tures and thus distinguish EV distribution functions with high
significance? We proceed in two steps: First, we carry out
Monte Carlo simulations to generate mock SZ observations
assuming a fiducial EV distribution based on the Jüttner dis-
tribution function assuming a few per cent errors in the SZ
measurements. Then we determine the best-fit temperatures
(applying χ2 statistic as in Section 5) using data from the same
Monte Carlo realization of the SZ observations assuming dif-
ferent EV distribution functions, and compare the probability
distributions of the temperatures. We are adopting modified
Jüttner distributions only with η = 1 and 2, since these are
suggested by different approaches of relativistic kinetic the-

FIG. 3.— Probability distributions of best-fit temperatures from fitting
SZ models based on the Jüttner, modified Jüttner with η = 1 and 2, and
Maxwellian electron velocity distributions to the same simulated SZ obser-
vations (solid, dashed, and dash-dotted, and dash-dot-dot-dotted lines). We
assumed a Jüttner velocity distribution as our fiducial model with a tempera-
ture of 22.1 keV, and 5% errors in the SZ measurements.

ory (as described in Section 2). We found no theory resulting
modified Jüttner distributions with η > 2. The distributions
of the best-fit values can be used to determine the errors in
the derived gas temperatures for the assumed per cent errors
in the SZ amplitude measurement. Essentially, we use Monte
Carlo simulations to propagate the errors from the SZ ampli-
tude measurements to the derived temperatures.

6.1. Fitting to SZ observations of a single-temperature gas
In this section we assume a single temperature gas. For def-

initeness, motivated by our fit to the Bullet cluster data (Sec-
tion 5), we adopt an electron temperature of 22.1 keV.

We display our results in Figure 3 assuming 5% error in
the SZ measurements. In this figure we show probability dis-
tributions of the best-fit temperatures from fitting SZ mod-
els based on the Jüttner, PJ(T ), modified Jüttner with η = 1
and η = 1, PMJ1(T ) and PMJ2(T ), and Maxwellian, PMX (T ),
EV distributions to the same simulated SZ observations with
solid, dashed, dash-dotted, and dash-dot-dot-dotted lines. As
before, we find that each SZ model provides a good fit to the
simulated data, and there is no significant difference between
the fitted χ2 values. The shapes of the fitted functions are
very similar, they differ less than a fraction of 1% (the best-
fit SZ models not shown, they would be indistinguishable, as
in Figure 2). This agrees with the result of Prokhorov et al.
(2011), who demonstrated that their method needs an accu-
racy of 0.1% in the SZ measurements to be able to distinguish
between Maxwellian and Jüttner EV distributions.

Even though the best-fit SZ models based on different EV
distributions are indistinguishable, we find, that the fitted tem-
peratures are different: we obtained best-fit electron tem-
peratures of TJ = 22.1+1.25

−1.25 keV, TMJ1 = 23.0+1.41
−1.41 keV, and

TMJ2 = 23.9+1.43
−1.43 keV, and TMX = 18.3+0.96

−0.96 keV for EV distribu-
tions of the form of Jüttner, modified Jüttner with η = 1 and 2,
and Maxwellian. The probability distributions for the best-fit
temperatures assuming Maxwellian EV distribution (PMX [T ])
is well separated from those based on its three relativistic gen-
eralizations, the Jüttner and modified Jüttner velocity distribu-
tions with η = 1 and 2 (PJ[T ], PMJ1[T ], and PMJ2[T ]; Figure 3),
suggesting that the Maxwellian EV distribution function can
be distinguished from the other three distributions. However,
our results indicate that the Jüttner and modified Jüttner EV
distribution functions cannot be distinguished based on their
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FIG. 4.— Same as Figure 3, assuming the same fiducial model and fitting
SZ models based on the Jüttner and modified Jüttner electron velocity distri-
butions with η = 1 and 2 (solid, dashed, and dash-dotted lines), but adopting
measurement errors of 1% in the SZ effect.

temperatures assuming 5% accuracy in the SZ measurements.
We carried out Monte Carlo simulations to estimate the

accuracy necessary to distinguish between the different rela-
tivistic velocity distributions: the Jüttner and modified Jüttner
distributions. We used the same fiducial model as before: Jüt-
tner EV distribution function with a temperature of 22.1 keV,
but this time we assumed 1% measurement error in the SZ
observations. The probability distributions of best-fit temper-
atures from fitting SZ models based on the Jüttner, PJ(T ), and
modified Jüttner electron velocity distributions with η = 1 and
2, PMJ1(T ) and PMJ2(T ) to the same simulated SZ observations
(solid, dashed, and dash-dotted lines) are shown in Figure 4.

Again, we find that all models provide a good fit to the sim-
ulated data, the shape of the fitted SZ models are very simi-
lar. However, the fitted temperatures are different: we obtain
a good fit for all three models with best-fit electron tempera-
tures: TJ = 22.1+0.25

−0.25 keV, TMJ1 = 23.0+0.27
−0.27 keV TMJ2 = 23.9+0.28

−0.28
keV assuming Jüttner and modified Jüttner EV distributions
with η = 1 and 2. Note that the best-fit temperatures are the
same for these two EV distribution functions as before, since
we used the same fiducial models. The differences are only in
the errors in the derived temperatures, which are much smaller
as a consequence of our adopted smaller errors in the SZ am-
plitudes. The probability distributions for the best-fit temper-
atures assuming Jüttner (PJ[T ]) and modified Jüttner PMJ1[T ],
PMJ2[T ]) velocity distributions are well-separated (Figure 4),
suggesting that a 1% error in the SZ measurements would al-
lows us to distinguish between them.

6.2. Fitting to SZ observations of a shock from a merging
cluster simulation

In the previous section we demonstrated that, in the case
of a single temperature gas, SZ measurements with an accu-
racy of 1% at four frequencies may be used to distinguish be-
tween EV distribution functions of the form of non-relativistic
Maxwellian, Jüttner, and modified Jüttner. However, any LOS
through a galaxy cluster contains a range of temperatures,
even if the cluster is in dynamical equilibrium. It is also diffi-
cult to model clusters because they are not spherical, may be
dynamically active, and contain substructure.

In this section we use our N-body/hydrodynamical simula-
tion of a merging galaxy cluster to test our method to distin-
guish between EV distribution functions. Our simulation was
carried out using FLASH, an Eulerian N-body/hydrodynamical
code developed at the Center for Astrophysical Thermonu-

FIG. 5.— Temperature distribution along the LOS through a shock and
a pre-shocked region near the shock extracted from a merging cluster N-
body/hydrodynamical simulation (solid and dashed lines; see text for details).

clear Flashes at the University of Chicago (Fryxell et al. 2000;
Ricker 2008). We used our well-tested method to setup and
run the simulation (e.g., Molnar & Broadhurst 2015, 2017,
2018). For a detailed description of our method, see Molnar
et al. (2012). We adopted initial total masses of 1.7×1015 M�
and 1.6×1015 M� (main and infalling cluster), an impact pa-
rameter of 100 kpc, and an infall velocity of 2500km s−1 in
our simulation.

We chose an epoch soon after the 1st core passage from
our outputs, when a bow shock is moving ahead of the in-
falling cluster. The Mach number for this shock is 6.51, and
the shock velocity is 5740 km s−1. We extract data using a
viewing angle assuming that the two cluster centers and their
relative velocities are in the plane of the sky. We choose a
LOS close to the edge of the bow shock. We show the temper-
ature distribution along this LOS in Figure 5 (solid line). The
temperature along a LOS through the pre-shocked gas near
the shock is shown with a dashed line. The average tempera-
ture through the LOS of the pre-shocked gas is 2.68 keV with
a 8.5% dispersion, while the average temperature of the pre-
shock region in the LOS through the shocked gas (low tem-
perature region of the solid line in Figure 5) is 2.64 keV with
a 8.8% dispersion. The average temperature in the shocked
region is 42.1 keV with a 2% dispersion. Thus, we can iden-
tify two phases of the gas in the LOS through the shock: one
lower and one with temperature phase corresponding to the
pre-shocked and shocked regions, with a less than 9% dis-
persion, much less than the difference between the average
temperatures (42.1 keV vs. 2.68 keV). These results suggest
that we may adopt a two temperature model for the gas in the
LOS through the shock.

We expected that fitting two temperature models to SZ data
points at only four frequencies would not constrain the EV
distribution functions well, thus we assumed measurements
at the Planck/Herschel frequencies (ν = 30, 44, 70, 100, 143,
217, 353, 545, 600, and 857 GHz). Carrying out Monte
Carlo simulations assuming 1% error in the SZ amplitudes,
we found that the distributions of the best-fit temperatures
were not well separated, thus these set of frequencies do not
make it possible to distinguish between Jüttner and modified
Jüttner EV distributions. We repeated our simulations adding
more measurements around the steep slope at frequencies be-
tween 217 and 353 GHz (244.4, 272.8, 06.9 GHz), but that did
not improve much the accuracy in the best-fit temperatures.
We found that adding 1080 GHz, to the Planck/Herschel fre-
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FIG. 6.— Mock SZ observations along a LOS through a shock extracted
from a merging cluster N-body/hydrodynamical simulation assuming 1% er-
ror in the SZ amplitudes (squares with error bars). The temperature distribu-
tion in this LOS is shown with a solid line in Figure 5. We adopted a Jüttner
electron velocity distribution to generate the SZ signal (solid line; see text for
details).

quencies to capture the fall off of the SZ signal at very high
frequencies improved on the accuracy in the best-fit temper-
atures significantly. The SZ signal from a low temperature
gas (a few keV) at very high frequencies (above ∼ 900 GHz)
is negligible, but provide strong constraints on high temper-
ature gas. We show the simulated SZ observations at these
extended Planck/Herschel frequencies and the underlying SZ
model through a LOS containing a shock in Figure 6 (squares
with error bars and solid line).

We fitted a two temperature model to the mock SZ observa-
tions of the LOS through the shocked region, but found that
the temperature of the pre-shocked gas was not constrained
well. However, since the temperature of the pre-shocked gas
in the LOS through the shock is very close to that in the LOS
through the pre-shocked gas (see Figure 5), we fixed the tem-
perature of the pre-shocked gas we derived using the LOS
through a nearby pre-shocked region. The best fit value in
a LOS through the pre-shocked region was 2.78 keV with a
± 3% error, which is a very good match with the average value
derived directly from our FLASH simulations (2.68 keV). It is
also very close to the temperature of the pre-shocked gas in
the LOS through the shock derived from our hydrodynami-
cal simulation (2.65 keV). Therefore we fixed the lower tem-
perature component at 2.78 keV, and fit SZ models based on
the Jüttner and modified Jüttner EV distributions to the tem-
perature of the shocked gas. We show the distributions of
the best-fit temperatures assuming Jüttner and modified Jüt-
tner EV distributions with η = 1 and η = 2 in Figure 7 (solid,
dashed, and dash-dotted histograms).

Again, we obtain good fits for both models with differ-
ent best-fit electron temperatures for the shocked region,
TJ = 42.1± 0.88 keV, TMJ1 = 45.0± 0.99 keV, and TMJ2 =
48.2± 1.12 keV, assuming Jüttner and modified Jüttner EV
distributions with η = 1 and 2. The best-fit shock tempera-
ture, TJ = 42.1 keV is a very good match with the average
temperature we obtained directly from our FLASH simula-
tion (42.1 keV). As we can see from Figure 7, the probabil-
ity distributions for the best-fit temperatures assuming Jüttner
(PJ[T ]) and modified Jüttner PMJ1[T ], PMJ2[T ]) velocity dis-
tributions are clearly separated, suggesting that a 1% error in
the SZ measurements would allows us to distinguish between
these distribution functions.

7. DISCUSSION

FIG. 7.— Probability distributions of best-fit shock temperatures from fit-
ting SZ models based on the Jüttner and modified Jüttner electron velocity
distributions with η = 1 and 2 (solid, dashed, and dash-dotted lines) to mock
observations of a LOS through a shock extracted from a merging cluster N-
body/hydrodynamical simulation (shown in Figure 6).

The low density, high temperature ICG in clusters of galax-
ies provides a unique laboratory to test the proposed EV dis-
tribution functions. The temperature in the ICG is not high
enough for particle pair creation and annihilation to be im-
portant, thus we expect that an equilibrium particle velocity
distribution function based on particle number conservation
can be found. Also, the assumption of local thermodynam-
ical equilibrium (LTE), which is a fundamental criterion for
the existence of an equilibrium particle velocity distribution,
should be valid in the ICG in relaxed galaxy clusters. The
LTE should also be valid in merging clusters, because the time
scale for the EV distribution to reach equilibrium is shorter
than the time scale for galaxy cluster merging (e.g., Prokhorov
et al. 2011).

Prokhorov et al. (2011) investigated the possibility to con-
strain the EV distribution in the ICG based on multi-frequency
SZ observations. They assumed a temperature of 15.3 keV
for the ICG, appropriate for a high-mass galaxy cluster and
considered Maxwellian and its relativistic generalization, the
Jüttner EV distribution functions. Prokhorov et al. expanded
the velocity distribution functions in Fourier series and used
the Wright formalism for the relativistic (Jüttner) distribution
to derive equations for the Fourier coefficients. Comparing
the coefficients, they concluded that the Maxwellian and Jüt-
tner velocity distributions can be distinguished if the SZ am-
plitude is measured with 0.1% accuracy. They verified their
conclusion with Monte Carlo simulations. Prokhorov et al.
also pointed out the importance of high-frequency SZ obser-
vations (e.g. 375–860 GHz) in constraining EV distribution
functions based on the SZ effect.

The Bullet cluster is one of the high-infall velocity merg-
ing galaxy clusters, which provided the first direct evidence
for the existence of dark matter based on gravitational lens-
ing (Clowe et al. 2006). The offsets between the mass surface
density centers derived from lensing and the corresponding
X-ray emission peaks marking centers of the gas (baryonic)
components were significant (200–300 kpc, e.g., Paraficz et
al. 2016). Multi-frequency radio/submm observations of the
Bullet cluster are available at four frequencies from 150 GHz
to 857 GHz, which makes it an excellent target for SZ studies
(see Section 5).

Colafrancesco et al. (2011) fitted models to SZ observations
of the Bullet cluster assuming a single and a double tempera-
ture thermal models for the ICG, and a sum of a single tem-
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perature model and one with a non-thermal EV distribution.
They assumed a Jüttner EV distribution for their thermal mod-
els. Colafrancesco et al. found that a thermal model with a
temperature of T = 22 keV and optical depth τ = 8.3× 10−3,
and a model concisting a sum of one thermal and one non-
thermal EV models provide the best fits (no significant dif-
ference in the reduced χ2). They fixed the temperature of
the later model at the value derived from X-ray measurements
(TX = 13.9±0.7 keV; Govoni et al. 2004). Colafrancesco et al.
argued that their later model with a sum of thermal and non-
thermal plasma is more plausible because: 1) observations
suggest the existence of a non-thermal electron component in
the Bullet cluster (Ajello et al. 2010; Petrosian et al. 2006),
and 2) their single component thermal model has a best-fit
temperature of T = 22 keV, which is much higher than the one
derived from X-ray observations assuming a single tempera-
ture model (TX = 13.9 keV).

Chandra observations of the Bullet cluster found that the
projected temperature in the Bullet cluster ranges between 4
and 30 keV, but the projected temperature in the LOS of the
SZ center is about 15 keV (Govoni et al. 2004; Markevitch
2006). We expect that in the LOS going through the SZ cen-
troid the ICG has a wide range of temperatures. In merging
clusters, the physical gas temperature can be substantially re-
duced due to projection effects, as it was demonstrated quan-
titatively using hydrodynamical simulations (see Figure 4 in
Molnar & Broadhurst 2017).

In order to demonstrate our new method, we fitted sin-
gle temperature EV models to SZ observations of the Bullet
cluster, and obtained best-fit temperatures of TMX = 18 keV,
TJ = 22 keV, TMJ1 = 23 keV, and TMJ2 = 24 keV assuming
Maxwellian, Jüttner, modified Jüttner EV distributions with
η = 1 and 2 (see Section 5). The best-fit temperature, TJ = 22
keV, of our single-temperature model assuming the Jüttner
EV distribution (Section 5) agrees with that obtained by Co-
lafrancesco et al. (2011) assuming a single temperature gas
adopting the same velocity distribution function. All three
models provided a good fit with no significant difference in
their χ2 values (∆χ2 < 1).

Even though the differences in the fitted temperatures be-
tween SZ models based on the Maxwellian EV distribution
and those using Jüttner and modified Jüttner distributions
are as large as TJ − TMX = 4 keV, TMJ1 − TMX = 5 keV, and
TMJ2 − TMX = 6 keV, the error bars on these temperatures are
even larger (∼5 – 6 keV), thus we cannot distinguish between
these EV models based on the best-fit temperatures.

The projected temperature from X-ray observations of the
Bullet cluster through the SZ centroid is 15 keV, which would
be consistent with the temperature we derived from the SZ ob-
servations assuming Maxwellian EV distribution (and more
than 1σ smaller than the temperatures derived assuming its
relativistic generalizations), but this X-ray temperature is not
reliable due to projection effects (e.g., Molnar & Broadhurst
2017). The SZ signal was derived from these observations
along a LOS through the center of the Bullet cluster, which
may be contaminated by a high energy, nonthermal electron
population. Dedicated SZ observations through a LOS which
has no contamination by nonthermal electrons might simplify
the modeling of the cluster SZ signal. However, the bullet
cluster is a large-infall velocity merging cluster, thus its LOS
temperature structure can only be determined by dedicated
N-body/hydrodynamical simulations. The numerical simula-
tions could provide a more realistic model for the LOS distri-

bution of the density and temperature in the ICG to derive the
SZ effect amplitude as a function of frequency.

We obtained similar results fitting the same EV distribution
models to mock SZ observations adopting a fiducial model
based on the Jüttner distribution with electron temperature of
22 keV (motivated by our results from fitting models to SZ
observations of the Bullet cluster) assuming a few percent er-
ror in the observations (Section 6.1). The best fit temperatures
assuming Jüttner, modified Jüttner, and Maxwellian EV dis-
tributions were TJ = 22 keV, TMJ1 = 23 keV, TMJ2 = 24 keV, and
TMX = 18 keV, in agreement with our fits to the Bullet cluster
data, but the error bars for the temperatures were smaller. We
noticed, that the best-fit temperatures may differ as much as 1
– 6 keV depending on which model we assume for the veloc-
ity distribution. These results suggest that, if we can derive
the ICG temperature from a different, independent method,
we may be able to distinguish between the proposed EV dis-
tributions. Based on our results, we propose a new method to
constrain the electron velocity distribution in the ICG making
use of the frequency distribution of the SZ effect. Our method
consists of two steps: 1) derive the temperature from fitting
models to SZ observations based on different EV distribution
functions; 2) compare the derived temperatures to a tempera-
ture obtained using an independent (e.g., X-ray) method.

Such independent method may be provided by high-
spectral and spectral resolution X-ray observations, which
could measure accurate temperatures in the ICG based on
emission lines. This method would have less projection bias
than the conventional one using low spectral-resolution wide
spectra. In principle, measuring thermal line broadening
would allow us to derive gas temperatures in clusters, but it
may be difficult to separate it from broadening due to turbu-
lence or resonant line scattering (e.g., Inogamov & Sunyaev
2003; Molnar 2016). Line ratios may provide a better diag-
nostic of gas temperatures in clusters (e.g., Nevalainen et al.
2003). Note, however, that models for X-ray emission lines
should be calculated consistently, using the appropriate EV
distribution functions (e.g., using the method developed by
Prokhorov et al. 2009).

We carried out Monte Carlo simulations of SZ measure-
ments of a single-temperature gas to estimate the accuracy
needed to distinguish between different EV distribution func-
tions. Fitting to mock SZ observations assuming a 5% error
in the SZ measurements we found that the relativistic general-
izations of the Maxwell velocity distribution, cannot be distin-
guished from each other, but they can be distinguished from
the Maxwellian velocity distribution, since the probability
distribution of best-fitted temperatures assuming Maxwellian
velocity distribution, PMX (T ), is clearly separated from those
based on the Jüttner and modified Jüttner distributions with
η = 1 and 2, PJ(T ), PMJ1(T ), and PMJ2(T ) (see Figure 3).
Assuming that the temperature can be derived using another
method with the same accuracy as the one based on the SZ ob-
servations assuming 5% errors in the SZ amplitudes (∼ 1.25
keV), we can still distinguish between the Maxwellian and
its relativistic generalizations, the Jüttner, and the modified
Jüttner distributions with high significance (∼ 2σ). In order
to distinguish between different relativistic generalizations of
the Maxwell velocity distribution we need more accurate SZ
measurements than 5%. The significance of measuring SZ ef-
fect with 5% accuracy is that it could justify the usage of rel-
ativistic generalizations of the Maxwell velocity distributions
in studying the ICG in galaxy clusters.

As we discussed it in Section 2, there are difficulties in de-
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FIG. 8.— Probability distributions of the differences of the best-fit shock
temperatures from fitting SZ models to mock observations of a line of sight
through a shock extracted from a merging cluster simulation assuming 1%
errors in measurements. Dashed and dash-dotted lines show differences be-
tween best-fit temperatures based on the Jüttner and modified Jüttner elec-
tron velocity distributions with η = 1 (TMJ1 − TJ) and η = 2 (TMJ2 − TJ). The
dash-dot-dot-dotted line represents temperature differences between assum-
ing modified Jüttner distributions with η = 1 and η = 2 (TMJ2 − TMJ1).

veloping a self-consistent extension of our nonrelativistic ki-
netic theory to the relativistic regime. Therefore, it would
be of fundamental importance to use the SZ effect to verify
which relativistic generalization of the Maxwell distribution
is correct: the Jüttner or one of the modified Jüttner distribu-
tions. This would provide us an empirical test for different
relativistic generalizations of our non-relativistic kinetic the-
ory. Fitting to mock SZ observations as before, but assuming
1% errors in the SZ measurements we find that the probability
distributions of best-fit temperatures from fitting SZ models
based on the Jüttner, PJ(T ), and modified Jüttner EV distribu-
tions with η = 1 and η = 2, PMJ1(T ), and PMJ2(T ), to the same
simulated SZ observations are well separated (Figure 4), thus
we can distinguish them. Assuming that the measurement er-
ror in the temperature of the ICG in a cluster is±0.9keV (3σ)
based on another method, our results suggest that we can dis-
tinguish between the Jüttner and modified Jüttner EV distri-
butions with η = 1 with high significance (∼ 3σ). Measuring
the gas temperature with an error of ±1.8keV (3σ) with an-
other method, we expect that we can distinguish between the
Jüttner and modified Jüttner distribution with η = 2 with high
significance (∼ 3σ). In order to distinguish between modified
Jüttner distributions with η = 1 and η = 2, we would need an
accuracy of about ±1.0keV. Note, that 1% errors in the SZ
measurements are already achievable with some instruments
(e.g., Herschel-SPIRE; Griffin et al. 2010).

We demonstrated that our method can be used to distin-
guish between different EV distribution functions if the gas
has a single temperature. However, any LOS through a galaxy
cluster has a range of temperatures, even if the cluster is re-
laxed. In order to test our proposed method to EV distribution
functions in a more realistic cluster model, we fitted to mock
SZ observations as before to a LOS through a shock extracted
from our self-consistent N-body/hydrodynamical simulation
assuming 1% errors in the SZ measurements at the Planck/
Herschel frequencies and an additional high frequency (1080
GHz). Again, we found that the probability distributions of
best-fit temperatures from fitting SZ models based on the Jüt-
tner, PJ(T ), and modified Jüttner EV distributions with η = 1
and 2, PMJ1(T ) and PMJ2(T ), to simulated SZ observations are
well separated (Figure 7), thus we can distinguish them. We
show the probability distribution of the differences in the best-

fit temperatures in a LOS through a shock using EV distribu-
tions of the form of Jüttner and modified Jüttner with η = 1
and 2 in Figure 8. In this Figure, dashed and dash-dotted lines
show the distribution of best-fit temperature differences be-
tween assuming Jüttner and modified Jüttner EV distributions
with η = 1 (TMJ1 − TJ) and η = 2 (TMJ2 − TJ). Best-fit temper-
ature differences between based on modified Jüttner distribu-
tions with η = 1 and η = 2 (TMJ2 − TMJ1) are displayed with
a dash-dot-dot-dotted line. We find that assuming that the 3σ
measurement error in the temperature of the ICG in a cluster is
±2.65keV (±5.65keV) based on another method, our results
suggest that we can distinguish between the Jüttner and the
modified Jüttner EV distributions with η = 1 (η = 2) with high
significance (∼ 3σ). In order to distinguish between modified
Jüttner distributions with η = 1 and η = 2 with high signifi-
cance (∼ 3σ), we would need to measure the ICG tempera-
ture with an error of ±2.98keV (3σ) using another method,
similar to the requirement for distinguishing between Jüttner
and modified Jüttner distribution with η = 1.

In general, higher temperature ICG would make it easier the
test EV distribution functions. We found that, for gas temper-
atures of ∼ 20keV and ∼ 40keV, the differences between the
best-fit temperatures assuming Jüttner and a modified Jüttner
EV distribution with η = 1, TMJ1 - TJ , are 4% and 7%, while
for temperatures adopting a modified Jüttner distribution with
η = 2, the differences, TMJ2 - TJ , are 8% and 14%. Based
on our results, we expect that for shock temperatures of ∼60
keV, the differences between best-fit temperatures for TMJ1 -
TJ , TMJ2 - TJ , and TMJ2 - TMJ1 would be about 14%, 21%, and
15%, much easier the achieve.

The observational frequencies could be chosen to minimize
the errors in the temperature derivations based on different
EV distribution models. High-spectral and spatial resolution
radio/submm observations may help to separate some of the
contaminating components by choosing LOSs avoiding sub-
structures and radio halos and relics containing high energy
nonthermal electrons. Radio relics associated with shocks are
patchy in most merging clusters, thus they can be avoided
(e.g., except the “Sausage cluster”, although it can be modeled
with N-body/hydrodynamical simulations; Molnar & Broad-
hurst 2017). Also, it will be necessary to identify other meth-
ods to derive accurate temperatures in the ICG. X-ray emis-
sion lines from the ICG may provide the required accuracy. A
dedicated feasibility study would be important based on more
realistic ICG cluster models taking into account the response
of the available detectors (spectral and spatial resolution, sen-
sitivity, etc.), and contaminating effects in conjunction with
an analysis of other, independent, methods to derive the tem-
perature in the ICG. We leave this detailed analysis for the
future.

8. CONCLUSION

We developed a new method to test relativistic kinetic the-
ories based on observations of the thermal SZ effect in galaxy
clusters. We demonstrated that the frequency dependence of
the SZ effect can be used to distinguish between different EV
equilibrium distribution functions in the ICG assuming that
an independent measurement of the temperature is available
from another method. This new method is based on our ob-
servation that different EV distribution functions result in dif-
ferent temperatures when their models are fitted to the same
SZ data.

We found that a 5% accuracy is necessary in the SZ ampli-
tude measurements of high single temperature gas (∼ 20 keV)
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to distinguish between non-relativistic (Maxwellian), and its
relativistic generalizations, the Jüttner and the modified Jüt-
tner EV distributions. In order to identify the correct rela-
tivistic generalization of the Maxwell velocity distribution as
the Jüttner or one of the modified Jüttner EV distributions, we
would need about 1% errors in the measured SZ amplitudes.

We demonstrated that our method works in a simulated
merging cluster using a LOS through a shocked region. A
LOS through a shock contains two phases of the gas: shocked
and pre-shocked gas, with a range of temperatures. We found
that the change of the temperature within each phase is rela-
tively small. We carried out Monte Carlo simulations assum-
ing a 1% error in the SZ measurements at the Planck/Herschel
frequencies and at 1080 GHz. We found that two temper-
ature gas models based on Jüttner and modified Jüttner EV
distributions with η = 1 and 2 fit well to the mock SZ obser-
vations. Our results suggest that these three distributions can
be distinguished with high significance based on their best-
fit temperatures to the high temperature >∼40 keV) shocked
gas in clusters of galaxies. We found that in order to reach
high significance in distinguishing between Jüttner and mod-
ified Jüttner EV distributions we need observations at THz
frequencies. Astrophysics in the THz frequency range is a
promising new field covering a wide range of research topics

from black holes to exoplanets and cosmology (e.g., Gurvits
et al. 2019; Withington 2004). There are atmospheric win-
dows at e.g., ∼ 1.1THz, and ∼ 1.5THz, which make ground-
based observations available at high altitude, dry observing
sites (e.g., from Antarctica (Seta et al. 2013). Using hetero-
dyne arrays on board of SOFIA balloon experiment, observa-
tions have already been made between 1.8 THz and 4.7 THz
(Risacher et al. 2018), and more ground and space based THz
telescopes are under development (e.g., Gurvits et al. 2019).

Our results suggest that it would be worth while to carry out
a feasibility study of our proposed new method to constrain
EV distributions in the ICG based on more realistic cluster
models derived from hydrodynamical cosmological simula-
tions. Systematic effects from inhomogeneous temperature
distribution, substructures and nonthermal electron popula-
tions could be studied using clusters from cosmological sim-
ulations.

We thank the referee for detailed comments and sugges-
tions, which helped to improve our paper. This work was
supported in part by the Ministry of Science and Technol-
ogy of Taiwan (grants MOST 106-2628-M-001-003-MY3
and MOST 109-2112-M-001-018-MY3) and by Academia
Sinica (grant ASIA-107-M01).
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