
Coulomb and strong interactions in the final state of HBT correlations
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We present detailed calculations about the expected shape of two-pion Bose-Einstein (or HBT)
correlations in high energy heavy ion collisions that include a realistic treatment of final state
Coulomb interaction as well as strong interactions (dominated by s-wave scattering). We assume
Lévy type source functions, a generalization that goes beyond the Gaussian approximation. Various
recent experimental results found the use of such source types necessary to properly describe the
shape of the measured correlation functions. We find that strong final state interactions may play
an important role in the shape of the two-pion correlation functions, especially if one considers
source parameters beyond the Gaussian HBT radii. Precise experimental determination of these
source parameters (such as Lévy stability exponent, correlation strength, etc.) seem to require the
inclusion of the treatment of strong interaction not just for heavier particles (e.g. protons, lambdas)
but also in case of two-pion measurements.

I. INTRODUCTION

Heavy ion physics strives to understand the properties
of strongly interacting matter produced in high energy
nuclear collisions. One of the key observables suited for
the experimental investigation of the space-time geome-
try of such collision events is the femtoscopic correlation
of produced particles (called Bose-Einstein correlations in
case of identical bosons). Since the discovery of quantum
statistical correlations of pions produced in high energy
reactions [1, 2], more and more experimental data led to
a refined understanding of the connection between such
correlations and the actual source dynamics, as well as
an increased expectation on phenomenological models to
reproduce the observations. In conjunction with the dis-
covery of the strongly interacting Quark-Gluon Plasma
(sQGP) by the experiments at the Relativistic Heavy Ion
Collider [3–6] a renewed interest arose in the investiga-
tion of femtoscopic correlations. For a review of such
measurements and connected phenomenological studies,
see e.g. Refs. [7, 8].

In heavy ion physics, for many years the usual assump-
tion for the source shape was Gaussian. This was cor-
roborated by phenomenological studies such as hydrody-
namical model calculations (see e.g. Refs. [9, 10]). Re-
cent results showed that to achieve a statistically accept-
able description of the measured correlation functions,
one must go beyond this simple picture. The application
of the source imaging technique discussed in Ref. [11] to
correlation functions measured in high energy heavy ion
collisions led to one of the first signs of non-Gaussian
behavior in such reactions [12]; it was found that the
two-pion source function indeed exhibits a power-law be-
havior. Since then a lot of experimental as well as the-
oretical work has been done in this direction. Recent
results by the PHENIX experiment [13] showed that by
utilizing Lévy type sources one can provide an acceptable
description of the measured correlations. These type of
source functions are expected to emerge from a scenario

called anomalous diffusion [14], but there are other possi-
ble competing explanations such as jet fragmentation [15]
or critical behavior [16].

When one tries to extract information about the source
through the analysis of femtoscopic correlations, it is of
utmost importance to properly take into account final
state interactions (FSI). The shapes of the experimen-
tally measured correlation functions are significantly af-
fected by these interactions (such as Coulomb repulsion
and also strong interaction), and taking them into ac-
count in the theoretical framework is crucial. The effect
of the Coulomb interaction and the methods to prop-
erly include it in the description of the correlation func-
tions have been widely studied before, for details see
e.g. Refs. [17–19]. However, final state strong interac-
tion between like-sign pions is generally thought to have
a small effect [20], so in most experimental analyses it is
neglected. In this paper we present a detailed calculation
of the shape of two-pion HBT correlation functions with
the assumption of Lévy stable source functions taking
into account Coulomb and strong final state interactions.

The structure of the paper is as follows: in Section II.
we discuss the basic definitions and properties of the fem-
toscopic correlations with special emphasis on the choice
of the source function. In Section III. we investigate the
effect of final state interactions on the pair wave func-
tion, and subsequently on the correlation function. In
Section IV. we present results of a numerical calculation
of the correlation function and investigate the differences
between using only Coulomb or both Coulomb and strong
interactions. Finally, in Section V. we conclude and sum-
marize our findings.

II. FEMTOSCOPIC CORRELATIONS

In this section we discuss the basic definitions and
properties of femtoscopic correlations, with special em-
phasis on the shape of the source function.
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A. Basic definitions

The general definition of the two-particle correlation
function as a function of the single particle four-momenta
is the following:

C2(p1, p2) =
N2(p1, p2)

N1(p1)N1(p2)
, (1)

where N1(p1), N1(p2) and N2(p1, p2) are the one- and
two-particle invariant momentum distributions. The
pair momentum distribution can be calculated from the

S(x, p) source distribution and the Ψ
(2)
p1,p2(x1, x2) sym-

metrized pair wave function:

N2(p1, p2)=

∫
d4x1d

4x2S(x1, p1)S(x2, p2)
∣∣Ψ(2)

p1,p2(x1, x2)
∣∣2.

(2)
Using the pair source D(r,K), defined as

D(r,K) =

∫
S(ρ+ r/2,K)S(ρ− r/2,K)d4ρ, (3)

equation (1) can be reinterpreted as

C2(k,K) =

∫
d4rD(r,K)

∣∣Ψ(2)
k (r)

∣∣2. (4)

This way, instead of the single-particle variables
p1, p2, x1, x2 one can use the following pair variables: the
pair separation four-vector r, the pair center of mass four-
vector ρ, the relative momentum k = (p1−p2)/2, and the
average momentum K = (p1 + p2)/2. Since the Lorentz-
product of the k and K four-vectors are zero, one may
transform the k dependent correlation function to depend
on the three-vector component k only. Furthermore, if
the energy of the particles contributing to the correlation
function are similar, then K is approximately on shell, so
the correlation function can be measured as a function of
k and K.

At this point it is also useful to introduce the core-
halo picture, in which the particle emitting source has
two components: a hydrodynamically behaving fireball-
like core which contains particles created directly from
the freeze-out (or from decays of short-lived resonances),
and a surrounding halo which contains particles that
are the decay products of long-lived resonances (such
as η, η′,K0

S , ω). This picture is particularly important
for pions, but the general structure of the model may
be relevant for other mesons as well. If one assumes
that the single-particle source has two components (S =
Score +Shalo), it follows that the pair source D will have
three - a core-core, a core-halo, and a halo-halo compo-
nent:

D = D(c,c) +D(c,h) +D(h,h). (5)

Experimentally however, only the core-core part is rele-
vant, the width of the Fourier transform of the other two
is below the minimal resolvable momentum difference.

Introducing the correlation strength parameter λ and
coupling the core-halo model with the Bowler-Sinyukov
procedure the correlation function can be written as

C2(k,K) = 1− λ+ λ

∫
d3rD(c,c)(r,K)

∣∣Ψ(2)
k (r)

∣∣2. (6)

More details about the core-halo model and the impor-
tance of the λ correlation strength parameter can be
found e.g. in Ref. [13] .

To calculate the shape of the C2(k,K) two-particle
correlation function, one needs an assumption on the
shape of the pair source D(c,c)(r,K), and a proper de-
scription of the effect of final state interactions enclosed

in the Ψ
(2)
k (r) pair wave function. In the following, in

Section II B. we discuss the details of Lévy type source
functions, and in Section III A. we proceed by discussing

the calculation of Ψ
(2)
k (r) with the Coulomb and strong

final state interactions included. Finally, in Section III B.
we combine the previous calculations to derive the shape
of the correlation function.

B. Lévy-stable source functions

Stable distributions are of utmost importance when
studying the limiting distributions of random variables
based on a sum of elementary processes. It is well known,
that in case of one dimensional random variables, the
stable distributions can be given through the following
formula:

f(x;α, β,R, µ) =
1

2π

∫ ∞
−∞

ϕ(q;α, β,R, µ)eiqxdq, (7)

where the characteristic function is given as:

ϕ(q;α, β,R, µ) = exp(iqµ− |qR|α(1− iβsgn(q)Φ)), (8)

where Φ =

{
tan(πα2 ), α 6= 1,
− 2
π log |q|, α = 1.

In our case, the symmetric, centered (β = 0, µ = 0) sta-
ble distributions may play a role of the source distribu-
tion, if that results from a statistical process. In multiple
dimensions, the situation is far less clear. It is however
known that the following distribution in N dimensions is
stable [21]:

L(r;α,R) =
1

(2π)3

∫
d3qeiqre−

1
2 |qRq|α/2 , (9)

from which in case of spherical symmetry (Rij = R2δij),
we obtain

L(r;α,R) =
1

(2π)3

∫
d3qeiqre−

1
2 |qR|

α

. (10)

The two main parameters of such distributions are the
index of stability, α, and the scale parameter, R. In case
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FIG. 1: Lévy-stable source distributions with S(r) =
L(|r|;α,R) for α = 1, 1.5 and 2. The dependence on R is
scaled out.

of α < 2 the distribution exhibits a power-law behav-
ior, while the α = 2 case corresponds to the Gaussian
distribution. The most important property of this distri-
bution is that any moment greater than α is not defined
and it retains the same α under convolution of random
variables. From the latter it is apparent that if the sin-
gle particle source Score(r) is a Lévy-stable distribution,
then the pair-source D(c,c)(r) also has a Lévy shape with
the same index of stability α:

Score(r) = L(r;α,R)⇒ D(c,c)(r) = L(r;α, 21/αR)
(11)

An illustration of the shape of such distributions can be
seen on Fig. 1. The average momentum dependence ap-
pears through the two parameters of D(c,c)(r):

D(c,c)(r,K) = L(r;α(K), 21/α(K)R(K)). (12)

The dependence of the Lévy source parameters on the
pair average momentum K is non-trivial, and is often the
subject of the experimental investigations.

III. FINAL STATE INTERACTIONS

To make the paper as self-contained as possible, in this
section we review the methodology of the calculation of
a correlation function that includes the effect of the final
state Coulomb and strong interactions. In doing so, we
closely follow along the lines of Ref. [18].

A. The pair wave function

Firstly let us introduce the Sommerfeld parameter η
that appears frequently during calculations concerning

the quantum mechanical Coulomb problem:

η ≡ q2
e

4πε0

µ

~2k
, µ =

m1m2

m1+m2
. (13)

Here µ is the reduced mass of the particle pair. Note that

one often uses the fine structure constant α ≡ q2e
4πε0

1
~c ≈

1
137 in the definition of η, with which it could be written
as η = µα

~ck ; nevertheless, we avoid this in this paper
because we denote the Lévy index also by α, as indicated
in the previous section.

A normalization constant N appears in many contexts
in the Coulomb wave function. Its definition is

N = e−πη/2Γ(1+iη), (14)

and its modulus square, which is called the Gamow fac-
tor, can be calculated with elementary functions (owing
to the well known step and reflection properties of the
gamma function) as

|N |2 =
2πη

e2πη−1
. (15)

The Schrödinger equation in a repulsive Coulomb poten-
tial can be written as

4ψk(r)− 2ηk

r
ψk(r) = k2ψk(r). (16)

For the treatment of the final state interactions, one has
to utilize the scattering wave solutions whose asymptotic
form is a plane wave plus a spherical wave. Such solutions
for the Coulomb potential are well known:

ψ
(+)
k (r) = N eikrF(−iη, 1, i(kr−kr)) =

= N eikrF(1+iη, 1,−i(kr−kr)), (17)

ψ
(−)
k (r) = N ∗eikrF(iη, 1,−i(kr+kr)) =

= N ∗e−ikrF(1−iη, 1, i(kr+kr)). (18)

Here F(a, b, z) is the (renormalized) confluent hypergeo-
metric function (Kummer’s function); its definition and
some basic properties are recited in Appendix A. (A
well-known property shows that the two forms of each
functions introduced here are indeed equal.)

The connection between these wave functions is

ψ
(+)
k (r) =

(
ψ

(−)
−k (r)

)∗
. (19)

From the asymptotic expression of the confluent hyperge-
ometric function one can verify that the asymptotic form
of these wave functions is

ψ
(+)
k (r) ≈ eikreiη log(kr−kr)+

+ fc(ϑ)
eikr

r
e−iη log(kr−kr), (20)

ψ
(−)
k (r) ≈ eikre−iη log(kr+kr)+

+ f∗c (ϑ)
e−ikr

r
eiη log(kr+kr). (21)
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Here the notation fc(ϑ) stands for the Coulomb scatter-
ing amplitude, which is defined as

fc(ϑ) = − η

2k

1

sin2 ϑ
2

Γ(1+iη)

Γ(1−iη)
. (22)

One indeed sees that asymptotically the ψ
(+)
k (r) and the

ψ
(−)
k (r) wave functions contain a plane wave plus an out-

going or an incoming spherical wave, respectively. (There
are logarithmic factors stemming from the long range
nature of the Coulomb interaction that distort both of
them; these factors do not influence the physical mean-

ing of the wave functions.) The ψ
(+)
k (r) and the ψ

(−)
k (r)

functions are called in and out scattering states, respec-
tively.1

The scattering states written up here can be expanded
in terms of energy eigenstates which are also angular mo-
mentum eigenstates. For given l and m angular momen-
tum quantum numbers, one has two linearly indepen-
dent angular momentum eigenstate solutions of the (16)
Schrödinger equation: their angle dependence is that of
the Ylm(ϑ, ϕ) spherical harmonic function, and their ra-
dial parts are called regular and singular Coulomb waves,
respectively. We denote them here by Fk,l(r) and Gk,l(r)
(as they depend on the k wave number magnitude and
the l total angular momentum quantum number but not
on the magnetic quantum number m); their expression is

Fk,l(r) = eπη/2(−1)l+14k(2kr)l×

×R
{
eikr+iδ

c
k,l×U

(
l+1+iη, 2l+2,−2ikr

)}
, (23)

Gk,l(r) = −eπη/2(−1)l+14k(2kr)l×

×I
{
eikr+iδ

c
k,l×U

(
l+1+iη, 2l+2,−2ikr

)}
, (24)

where the so-called Tricomi’s function, U(a, b, z) is an-
other solution of the confluent hypergeometric equation
(see Appendix A for some details). They are chosen for
the set of linearly independent solutions because Fk,l is
finite at the r=0 origin, and their asymptotic form is
quite simple and straightforward: for r →∞ we have

Fk,l(r) ≈
2

r
sin

(
kr− lπ

2
+δck,l − η log(2kr)

)
, (25)

Gk,l(r) ≈
2

r
cos

(
kr− lπ

2
+δck,l − η log(2kr)

)
, (26)

where the so-called Coulomb phase shift δck,l is defined as

δck,l ≡ arg Γ(l+1+iη). (27)

1 It is a known fact that when calculating transition matrix ele-

ments, one has to utilize the ψ
(−)
k (r) state (the out state) for

the wave function of the final state; this might seem somewhat
counter-intuitive, since this function contains an incoming spher-

ical wave. Similarly, one has to use ψ
(+)
k (r) for the initial state.

See e.g. Ref. [22] for some details.

One can also take a linear combination of these two func-
tions whose asymptotic form contains an additional ar-
bitrary ∆k,l phase shift.

Mk,l(r) := cos ∆k,l · Fk,l(r)+ sin ∆k,l · Gk,l(r), (28)

whose asymptotic form duly is

Mk,l(r) ≈
2

r
sin

(
kr− lπ

2
+∆k,l+δ

c
k,l−η log(2kr)

)
. (29)

The above scattering-like solutions of the Schrödinger
equation can be expanded in partial waves as

ψ
(−)
k (r) =

∞∑
l=0

2l+1

2k
(−i)lPl(cosϑ)e−iδ

c
lFk,l(r). (30)

Owing to the short range of strong interaction, we can
treat its effect by introducing the ∆s

k,0 s-wave ,,strong”
phase shift, and modifying the s-wave component of the
exact Coulomb wave function to a s-wave which con-
tains this additional phase shift (see more details in e.g.
Ref [23]). This is done by replacing the Fk,0 function
in the l=0 term in the expansion (30) with the above
defined Ms

k,0(r) function which contains the additional
∆s
k,0 phase shift:

ψ
(−)
k (r) → Ψcs

k (r), (31)

so the wave function incorporating the Coulomb and
strong interaction effects, Ψcs

k (r), becomes

Ψcs
k (r) = ψ

(−)
k (r)− e−iδ

c
k,0

2k
Fk,0(r)+

+
e−iδ

c
k,0

2k
e−i∆

s
k,0Ms

k,0(r) =

= ψ
(−)
k (r)− i

2k
e−i(δ

c
k,0+∆s

k,0) sin ∆s
k,0

(
Fk,0+iGk,0

)
. (32)

Substituting the formulas for the respective wave func-
tions encountered here, we get

Ψcs
k (r) = e−ikr

{
N ∗F

(
1−iη, 1, i(kr+kr)

)
+

+2i sin ∆s
k,0e
−i∆s

k,0eπη/2e−2iδck,0U
(
1−iη, 2, 2ikr

)}
. (33)

For identical bosonic particles (e.g. pions) one needs the
symmetrized two-particle wave function:

Ψ
(2)
k (r) :=

1√
2

(
Ψcs

k (r) + Ψcs
k (−r)

)
=

=
e−ikr√

2

{
N ∗F

(
1−iη, 1, i(kr+kr)

)
+

+N ∗F
(
1−iη, 1, i(kr−kr)

)
+

+4i sin ∆s
k,0e
−i∆s

k,0eπη/2e−2iδck,0U
(
1−iη, 2, 2ikr

)}
. (34)

Finally, one needs to calculate the modulus square of the
wave function. The [r → −r] term within the braces in
the following expression represents terms similar to the
ones that stand before it, just with a mirrored r:
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∣∣Ψ(2)
k (r)

∣∣2 =

{
|N |2

2

∣∣F(1−iη, 1, i(kr+kr)
)∣∣2 +

|N |2

2
F
(
1+iη, 1,−i(kr+kr)

)
F
(
1−iη, 1, i(kr−kr)

)
+ [r → −r]

}
+

+

{
4 sin ∆s

k,0e
πη/2R

[
N F

(
1+iη, 1,−i(kr+kr)

)
ie−i∆

s
k,0e−2iδck,0U

(
1−iη, 2, 2ikr

)]
+ [r → −r]

}
−

− 8 sin2 ∆s
k,0e

πη
∣∣U(1−iη, 2, 2ikr)∣∣2. (35)

B. The two-particle correlation function

In this section we combine the previously discussed
approaches, and write up the complete functional form
of the correlation function by plugging in Equation (12)
and (35) to Equation (6).

C2(k) = 1− λ+ λ · I(c,c)(k), (36)

where the I(c,c)(k) integral can be written as

I(c,c)(k) =

∫
d3rD(c,c)(r)

∣∣Ψ(2)
k (r)

∣∣2 =

= 2π

∫ ∞
0

dr r2D(c,c)(r)

∫ 1

−1

dy
∣∣Ψ(2)

k (r)
∣∣2. (37)

Substituting Eq. (35) into Eq. (37) we get the following
expression:

I(c,c)(k) = 2π
{
|N |2×I(1)(k) + |N |2×I(2)(k)−

− 8 sin2 ∆s
k,0e

πη×I(3)(k) + 8 sin ∆s
k,0e

πη/2×

×R
[
iN e−i∆

s
k,0e−2iδck,0I(4)(k)

]}
, (38)

where the following integrals were introduced:

I(1)=

∫ ∞
0

dr r2D(c,c)(r)

∫ 1

−1

dy
∣∣F(1−iη, 1, ikr(1+y)

)∣∣2, (39)

I(2)=

∫ ∞
0

dr r2D(c,c)(r)

∫ 1

−1

dy
{
F
(
1−iη, 1, ikr(1+y)

)
×

× F
(
1+iη, 1,−ikr(1−y)

)}
, (40)

I(3)=2

∫ ∞
0

dr r2D(c,c)(r) ·
∣∣U(1−iη, 2, 2ikr)∣∣2, (41)

I(4)=

∫ ∞
0

dr r2D(c,c)(r) · U
(
1−iη, 2, 2ikr

)
×

×
∫ 1

−1

dyF
(
1+iη, 1,−ikr(1+y)

)
. (42)

The last step is to explore the dependence of the strong
phase shift ∆s

k,0 on k. Using the notation of Ref. [18] we

can relate ∆s
k,0 to the full (Coulomb+strong) scattering

amplitude fc(k):

sin ∆s
k,0e

i∆s
k,0 = k|N |2fc(k). (43)

The scattering amplitude fc(k) can be expressed as [23]

fc(k) =

(
1

K(k)
− 2kη

(
h(η) + i

|N |2

2η

))−1

, (44)

where h(η) is related to the digamma function ψ as

h(η) =
[
ψ(iη) + ψ(−iη)− log(η2)

]
/2. (45)

The k dependence of fc(k) partly comes from the function

K(k), which can be expressed with the δ
(2)
k,0 phaseshift

(where the (2) superscript denotes the I = 2 isospin chan-
nel, the only allowed channel in case of identical charged
pion pairs):

K(k) =
1

k
tan δ

(2)
k,0. (46)

If there would be no Coulomb, only strong interaction,

δ
(2)
k,0 would be identical to the previously introduced ∆s

k,0
strong phase-shift. One can find different parametriza-

tions for δ
(2)
k,0 in the literature, in the following we mention

some of them. A simple parametrization can be found in
J. Bijnens et al. [24]:

K(k) =

(
mπ

a
(2)
0

+
1

2
r

(2)
0 k2

)−1

, (47)

where a
(2)
0 is called the scattering length, and r

(2)
0 is called

the effective range. The latter can also be connected to

a b
(2)
0 slope parameter as

r
(2)
0 =

1

mπa
(2)
0

− 2mπb
(2)
0(

a
(2)
0

)2 − 2a
(2)
0

mπ
. (48)

This effective-range parametrization is thought to be
useful when the scattering length is much larger than the
range of the scattering potential [25], which is not the
case for identical pion scattering. Another parametriza-
tion [26] better suited for our investigations can be
written up with the help of the center-of-mass energy
s = 4(m2

π + k2) as

K(k) =
2√
s

4m2
π−s

(2)
0

s−s(2)
0

(
a

(2)
0 +b̃

(2)
0

k2

m2
π

)
, where (49)
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FIG. 2: Comparison of different K(k) parametrizations. See
equations (47), (49), and (51) for Bijnens, CGL and GM,
respectively.

b̃
(2)
0 = b

(2)
0 −

4m2
πa

(2)
0

s
(2)
0 − 4m2

π

. (50)

The s
(2)
0 parameter corresponds to the value of s where

the phase shift passes through 90◦. It usually has a nega-
tive value, indicating that for the I = 2 channel the phase
remains below 90◦. The parametrization can also be ex-
tended with higher order terms, the values of the param-
eters can be found e.g. in Colangelo-Gasser-Leutwyler

(CGL) [27]: a
(2)
0 = −0.0444, b

(2)
0 = −0.0803 m−2

π , s
(2)
0 =

−21.62 m2
π.

A different parametrization can be found in a more
recent paper from Garćıa-Mart́ın et al. (GM) [28]:

K(s) =
2√
s

s− 2z2
2

m2
π

(
B0+B1

√
s−
√
ŝ− s

√
s+
√
ŝ+ s

)−1

, (51)

where the parameter values are the following: z2 =
143.5 MeV, B0 = −79.4, B1 = −63.0,

√
ŝ = 1050 MeV.

A comparison of the previously mentioned parametriza-
tions can be seen on Fig.2. In the k range important
for our investigations (k . 100 MeV/c) the different
parametrizations give almost identical results, so in the
following we utilized the most recent one from Ref. [28].

IV. NUMERICAL RESULTS

In this chapter we present the results of the numerical
calculation of C2(k). Using numerical integral calcula-
tions we created a lookup table for the function defined
in Equation (38) for a wide range of values of k, R and α.
This lookup table then was used to obtain the value of
the function for any k,R and α by interpolation (within
the available range).

If we omit the I(3) and I(4) terms from Eq. (38),
we get back the pure Coulomb part. In the following,

Q [GeV/c]
0 0.05 0.1 0.15 0.2

(Q
)

2
C

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
 = 1λ = 1.5, α

R = 4 fm
R = 6 fm	   Coulomb only
R = 8 fm

R = 4 fm
R = 6 fm	   Coulomb + strong
R = 8 fm}
}

FIG. 3: Two-pion correlation functions calculated for Lévy-
stable sources. Three different Lévy-scale values are com-
pared at the same index of stability α = 1.5 and same
correlation strength λ = 1. The functions containing only
the Coulomb interaction and the ones including both the
Coulomb and strong interactions are shown separately.

we compare the correlation function containing only the
Coulomb interaction with the one containing both the
Coulomb and the strong interactions, and try to give an
estimate on the change in the values of the Lévy source
parameters that is caused by the proper treatment of the
strong interaction compared to the neglection of it.

From here on, we change the relative momentum vari-
able to Q = 2k to better compare to the notation of
published experimental results.

A. Comparison of Coulomb and strong FSI effects

Fig. 3. shows the calculated correlation functions for
three different Lévy-scale values at the same index of
stability α and same correlation strength λ. It is clearly
visible that turning on the strong interaction affects the
strength of the correlation functions, however, the effect
on the Lévy-scale R and the index of stability α is not so
transparent at this point.

To investigate the effect of the strong interaction in
more detail, we generated histograms by sampling the
calculated functions containing both Coulomb and strong
interactions. To make the generated correlation func-
tion resemble real data, we randomly scatter the points
around the calculated function and assign a relative er-
ror proportional to 1/Q (which is a realistic assumption
if one considers typical experimental scenarios). We then
fit the generated data with the help of the ROOT Minuit2
minimizer framework, with a similar method to what is
described in Ref. [13]. To check the validity of the fitting
method, first we fit the generated histogram with the
corresponding functional form to see if we get back the
input parameter values. Fig. 4 shows such a fit to the
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FIG. 4: Numerically generated two-pion correlation his-
togram, fitted with the corresponding functional form to test
the validity of the fitting method. The output parameter val-
ues are within errors the same as the input.

generated data. The fit converged with an acceptable
χ2/NDF value, the error matrix turned out to be accu-
rate, and for the output parameter we got back within
errors the same ones as were given as input. We repeated
this test for multiple different input parameter values and
found that our fitting method is indeed reliable.

As a next step, we took the same generated data and
fitted it with a function containing only the effect of the
Coulomb interaction. Fig. 5 shows an example for such a
fit on panel (a). The fit converged again, the error matrix
again turned out to be accurate. The resulting χ2 value
becomes just slightly higher than before, nevertheless,
the fit is still acceptable. Although in this case the func-
tion containing only the Coulomb interaction can provide
an acceptable fit to the generated data which contains
also the strong interaction, the values of the fit param-
eters differ from the input parameter values. It seems
that in this case one underestimates the value of λ from
such a fit, and overestimates α. Within this precision, it
seems that the value of R is unaffected.

One can also assume that if the data is more precise,
meaning that the fluctuation and the statistical uncer-
tainty of the generated points are smaller, the fit will not
provide an acceptable χ2 anymore. To check this, we
also generated such C2(Q) histrograms, and found that
the Coulomb fits converged, but indeed the χ2 values
increase by a considerable amount resulting in statisti-
cally unacceptable fits. An example for this can be seen
on panel (b) of Fig. 5. One can also observe that on the
subplot showing the values of the difference of the fit from
the data divided by the uncertainty of the datapoint, a
characteristic oscillating structure appears.

B. Quantitative estimation of the strong FSI effect

To give a better estimation on the change in the pa-
rameter values when fitting data containing strong in-
teraction with a function containing only the Coulomb
effect, we generated and fitted histograms similar to
panel (b) of Fig. 5, spanning a wide range in parame-
ter space of λinput = 0.3− 1.0, Rinput = 3 fm - 9 fm and
αinput = 1.0−2.0. For each fit parameter, we plotted the
output versus the input values. The plotted output val-
ues represent a weighted average of output values coming
from the same input for the given parameter but differ-
ent inputs for the other two parameters. The results of
this investigation can be seen on Fig. 6, panel (a)–(c).

By fitting data containing the Coulomb and strong
final state interactions with a functional form describ-
ing only the Coulomb part, it seems that the correlation
strength λ is underestimated by about 5% on average.
The effect on the Lévy-scale parameter R is negligible
at small values of it, while at higher values of R (up to
about 9 fm) it is also slightly underestimated, by about
1%. The Lévy exponent α is overestimated by about
1-2%.

The estimations given here for the change in parame-
ter values are by no means universal, they also depend on
other factors such as numerical precision of the integral
calculations, fit limits (Qmin dependence), the precision
of the generated data (see for example the difference be-
tween Fig. 5 (a) and (b)), or the parametrization of the
strong phase-shift. The important conclusion from our
investigations is that if the data is precise enough (which
could be the case for recent measurements at RHIC or
LHC), one most likely has to incorporate the strong in-
teraction in the fits to achieve a statistically acceptable
description of pion-pion correlation functions.

V. SUMMARY AND CONCLUSIONS

In this paper we presented a detailed calculation of the
shape of two-pion HBT correlation functions with the as-
sumption of Lévy stable source functions, and taking into
account the Coulomb and strong final state interactions.
Strong final state interactions were treated in the s-wave
approximation.

A numerical calculation of the correlation function re-
vealed that the strong final state interaction can have a
non-negligible effect on the shape of pion-pion correla-
tion function. As a first step towards the more thorough
evaluation, we presented a quantitative estimation of the
magnitude of this effect. As a general trend, we can as-
certain that fits without the strong interaction effect typ-
ically underestimate the strength of the correlation, λ,
and the Lévy scale R, while overestimate the Lévy expo-
nent α. The magnitudes of these deviations are generally
found to be no more than a few percent.

However, typical fits to measured correlation functions
can become statistically unacceptable if the strong inter-
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FIG. 5: Numerically generated two-pion correlation histogram incorporating Coulomb and strong final state interactions, fitted
with a functional form containing only the Coulomb effect. When the generated data is less precise (a), the fit is statistically
acceptable, but the output parameter values differ from the input. The difference is even more pronounced when the generated
data is more precise (b), in this example the value of λ decreased by about 4%, the value of R decreased by about 1%, and the
value of α increased by about 3%. It is also important to note that in this case the χ2/NDF value is not acceptable anymore.
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FIG. 6: Output versus input values from fits similar to Fig. 5.(b). The correlation strength λ is shown on panel (a), the Lévy
scale parameter R is shown on panel (b) and the Lévy exponent α is shown on panel (c). The identity line is shown with a
dashed line, while a linear fit is shown with a continuous line. For a given input parameter, the weighted average of the output
values are shown with markers, and the standard deviation is shown with a band.

action is neglected. If one aims at a high level of precision
(feasible in case of precise enough data coming from to-
day’s typical heavy ion experiments), one can arrive at
refined conclusions about the source function if the small
deviations (caused by the strong interaction) are treated
properly in the fitting procedure.

As an outlook, we note that there is some room for
improvement in the methodology of the numerical calcu-
lations presented here. Such improvements might yield
so precise predictions that it becomes possible to actu-
ally give constraints on like-sign pion strong interactions
(i.e. scattering lengths) based on HBT correlation mea-
surements in heavy ion collisions, a topic long thought
to be interesting to investigate [29]. We look forward
to a concrete experimental test of the predictions made

here about the shape of the correlation function that gets
influenced by strong final state interaction.
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Appendix A: Assorted special functions

The following definitions, formulas and the explana-
tion of the special functions that come by can be found
in any standard textbook on quantum mechanical scat-
tering theory (such as Ref. [23]), nevertheless we write
them up to make the paper as self-contained as possible.

In the treatment of the quantum mechanical Coulomb
problem, one encounters the confluent hypergeometric
equation, a second order linear differential equation for
the unknown f(z) function, written as

zf ′′(z) + (b−z)f ′(z)− af(z) = 0, (A1)

where a and b are two arbitrary parameters. A commonly
used pair of linearly independent solutions are provided
by the (renormalized) confluent hypergeometric function
or Kummer’s function:

F(a, b, z) :=
F (a, b, z)

Γ(b)
, (A2)

F (a, b, z) :=

∞∑
n=0

Γ(a+n)Γ(b)

Γ(a)Γ(b+n)

zn

n!
, (A3)

which has the convenient property that it is analytic ev-
erywhere, especially at z=0; and the other solution is the
so-called Tricomi’s function, defined as

U(a, b, z) =
π

sin(πb)

{
F(a, b, z)

Γ(a+1−b)
−

− z1−bF(a+1−b, 2−b, z)
Γ(a)

}
(A4)

if b is not an integer, and as a limit b→ n in the b = n∈Z
integer case. The U(a, b, z) function has a branch point
at z=0, with the form written up having a branch cut
along the z∈R− negative real line. However, it has the
convenient property that it behaves asymptotically as

U(a, b, z) ∼ z−a, (A5)

and this is a property that is unique to it among the
solutions of the confluent hypergeometric equation.

A ,,dual” pair of useful properties of the functions in-
troduced is

F(a, b, z) = ezF(b−a, b,−z), (A6)

U(a, b, z) = z1−bU(a+1−b, 2−b, z), (A7)

the former of which is verified by noting that both sides
are analytic and fulfill the very same differential equation;
the latter is a simple consequence of the definition. As
seen above, U(a, b, z) can be expressed from F(a, b, z);
one can also derive the ,,inverse” formula:

F(a, b, z) =
eiΠza

Γ(b−a)
U(a, b, z)+

+
eiΠz(a−b)

Γ(a)
ezU(b−a, b,−z), (A8)

with the Πz notation introduced here as being π or −π,
if arg z>0 or arg z<0, respectively.

Using l’Hospital’s rule, the power series expression of
the U(a, b, z) function for integer b turns out to be

U(a,m+1, z) =
(−1)m

Γ(a−m)

{
− log z · F(a,m+1, z)+

+

m∑
s=1

(−1)s

zs
(s−1)!

(m−s)!
Γ(a−s)

Γ(a)
+

∞∑
s=0

zs

s!

1

(m+ s)!

Γ(a+s)

Γ(a)
×

×
[
ψ(s+1)−ψ(a+s)+ψ(s+m+1)

]}
, m∈N+

0 . (A9)

Here ψ(s) is the digamma function defined as

ψ(s) ≡ Γ′(s)

Γ(s)
. (A10)

Some convenient properties of it are:

ψ(a+n) = ψ(a) +

n∑
k=1

1

a+k
, (A11)

⇒ ψ(n+1) = −γ +

n∑
k=1

1

k
, (A12)

where γ is the Euler constant:

γ = lim
n→∞

( n∑
k=1

1

k
− lnn

)
= 0.577 . . . (A13)

A side note to the calculation of the F(a, b, z) and
U(a, b, z) functions: for the typical parameter values en-
countered in our work (i.e. a and b on the order of unity),
the power series in z can be used in a numerically satis-
factory way only up to |z| ≈ 30. For higher |z| values,
one rather uses the asymptotic expansion of U(a, b, z):

U(a, a+1−β, z) = z−a
{

1− aβ

1!z
+
a(a+1)β(β+1)

2!z2
−

− a(a+1)(a+2)β(β+1)(β+2)

3!z3
+ . . .

}
, (A14)

and for F(a, b, z), the expression of it that uses U(a, b, z),
see Eq. (A8) above.

Regrettably, most numerical packages that are used for
the computation of special functions do not have built-
in methods for the calculation of the gamma function
and the digamma function, Γ(z) and ψ(z) for arbitrary
complex arguments, which was very much needed for our
objectives for this work. In our calculations, we used the
Lanczos approximation [30] for both Γ(z) and ψ(z) when
it was necessary. Usually, the Lanczos approximation
is written up only for Γ(z), however, it is easy to verify
that the approximative formula is a well-behaved smooth
function of z, so it can safely be used for the calculation
of ψ(z) as well, by taking the logarithmic derivative of it.
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