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Abstract

The pseudoachromatic index of the finite affine space AG(n, q), de-

noted by ψ′(AG(n, q)), is the the maximum number of colors in any

complete line-coloring of AG(n, q). When the coloring is also proper,

the maximum number of colors is called the achromatic index of AG(n, q).

We prove that if n is even then ψ′(AG(n, q)) ∼ q1.5n−1; while when

n is odd the value is bounded by q1.5(n−1) < ψ′(AG(n, q)) < q1.5n−1.

Moreover, we prove that the achromatic index of AG(n, q) is q1.5n−1

for even n, and we provides the exact values of both indices in the

planar case.

1 Introduction

This paper is motivated by the well-known combinatorial conjecture about

colorings of finite linear spaces formulated by Erdős, Faber and Lovász in
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1972. As a starting point, we briefly introduce some definitions and give

the conjecture. Let S be a finite linear space. A line-coloring of S with

k colors is a surjective function ς from the lines of S to the set of colors

[k] = {1, . . . , k}. For short, a line-coloring with k colors is called k-coloring.

If ς : S → [k] is a k-coloring and i ∈ [k] then the subset of lines ς−1(i) is

called the i-th color class of ς. A k-coloring of S is proper if any two lines

from the same color class have no point in common. The chromatic index

χ′(S) of S is the smallest k for which there exists a proper k-coloring of S.

The Erdős-Faber-Lovász conjecture (1972) states that if a finite linear space

S contains v points then χ′(S) ≤ v, see [12, 13].

Many papers deal with the conjecture for particular classes of linear

spaces. For instance, if each line of S has the same number κ of points then

S is called a block design or a (v, κ)-design. The conjecture is still open for

designs even when κ = 3, however, it was proved for finite projective spaces

by Beutelspacher, Jungnickel and Vanstone [8]. It is not hard to see that

the conjecture is also true for the n-dimensional finite affine space of order

q, denoted by AG(n, q), which has qn points. In fact,

χ′(AG(n, q)) =
qn − 1

q − 1
. (1)

Related results proved by some authors of this paper can be found in [5, 7].

A natural question is to determine similar, but slightly different color

parameters in finite linear spaces. A k-coloring of S is complete if for each

pair of different colors i and j there exist two intersecting lines of S, such

that one of them belongs to the i-th and the other one to the j-th color

class. Observe that any proper coloring of S with χ′(S) colors is a complete

coloring. The pseudoachromatic index ψ′(S) of S is the largest k such that

there exists a complete k-coloring (not necessarily proper) of S. When the

k-coloring is required to be complete and proper, the parameter is called the

achromatic index and it is denoted by α′(S). Therefore, we have that

χ′(S) ≤ α′(S) ≤ ψ′(S). (2)

Several authors studied the pseudoachromatic index, see [2, 3, 4, 6, 9, 14,

15, 17]. Moreover, in [1, 10, 18] the achromatic indices of some block designs
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were also estimated.

The objective of this paper is to study the pseudoachromatic and achro-

matic indices of finite affine spaces. Let Vn be an n-dimensional vector space

over the finite field of q elements GF(q). The n-dimensional Desarguesian

finite affine space AG(n, q) is the geometry whose k-dimensional affine sub-

spaces for k = 0, 1, . . . , n − 1 are the translates of the k-dimensional linear

subspaces of Vn. Thus any k-dimensional affine subspace can be given as:

Σk = Lk + v = {x+ v : x ∈ Lk}

where Lk is a k-dimensional linear subspace and x is a fixed element of Vn.

Subspaces of dimensions 0, 1, 2 and n − 1 are called points, lines, planes

and hyperplanes, respectively. Two affine subspaces Σi and Σj are said to

be parallel, if there exists v ∈ Vn for which Σi + v ⊆ Σj or Σj + v ⊆
Σi. In particular, two lines are parallel if and only if they are translates

of the same 1-dimensional linear subspace of Vn. Affine spaces are closely

connected to projective spaces. Let Vn+1 be an (n + 1)-dimensional vector

space over GF(q). The n-dimensional Desarguesian finite projective space,

PG(n, q), is the geometry whose k-dimensional subspaces for k = 0, 1, . . . , n

are the (k+1)-dimensional subspaces of Vn+1. Let H∞ be a fixed hyperplane

in PG(n, q). If we delete all points of H∞ from PG(n, q) then we obtian

AG(n, q). The deleted points can be identified with the parallel classes of

lines in AG(n, q). These points are called points at infinity and we often

consider the affine space as AG(n, q) = PG(n, q) \ H∞. For the detailed

description of these spaces we refer to [16].

The results are organized as follows. In Section 2 the following upper

bound is proved:

Theorem 1.1. Let v = qn denote the number of points of the finite affine

space AG(n, q). Then

ψ′(AG(n, q)) ≤
√
v(v − 1)

q − 1
−Θ(q

√
v/2).

In Section 3 lower bounds for pseudoachromatic and achromatic indices

of AG(n, q) are presented. The main results are the following.
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Theorem 1.2. Let v = qn denote the number of points of AG(n, q).

• If n is even:

1

2
·
√
v(v − 1)

q − 1
−Θ(

√
v/2) ≤ ψ′(AG(n, q)).

• If n is odd:

1√
q
·
√
v(v − 1)

q − 1
−Θ(v

√

v/q5) ≤ ψ′(AG(n, q)).

Theorem 1.3. Let v = qn denote the number of points of AG(n, q). If n is

even:
1

3
·
√
v(v − 1)

q − 1
+ Θ(v/q) ≤ α′(AG(n, q)).

Note that when n is even Theorems 1.1 and 1.2 show that ψ′(AG(n, q))

grows asymptotically as Θ(v1.5/q), while Theorems 1.2 and 1.3 show that

α′(AG(n, q)) grows asymptotically as Θ(v1.5/q).

Finally, in Section 4 we determine the exact values of pseudoachromatic

and achromatic indices of arbitrary (not necessarily Desarguesian) finite

affine planes and we improve the previous lower bounds in dimension 3.

2 Upper bounds

In this section upper bounds for the pseudoachromatic index of AG(n, q)

are presented when n > 2. The following lemma is pivotal in the proof.

Lemma 2.1. Let n > 2 be an integer and L be a set of s lines in AG(n, q).

Then the number of lines in AG(n, q) intersecting at least one element of L
is at most

q2
(

s
qn−1 − 1

q − 1
− (s − 1)

)

.

Proof. Recall that in AG(n, q) there exists a unique line joining any pair

of points, and each line has exactly q points. Hence there are qn−1
q−1 lines

through each point. Thus there are

q

(

qn − 1

q − 1
− 1

)

= q2
(

qn−1 − 1

q − 1

)
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lines intersecting any fixed line. We claim that if ℓ1 and ℓ2 are different lines

then the number of lines intersecting both ℓ1 and ℓ2 is at least q
2. If ℓ1∩ℓ2 = ∅

then the q2 lines joining a point of ℓ1 and a point of ℓ2 intersect both ℓ1 and

ℓ2, while, if ℓ1 ∩ ℓ2 = {P} then the other (qn−1 + qn−2 + · · · + 1) − 2 > q2

lines through P intersect both ℓ1 and ℓ2. Consequently, the number of lines

intersecting at least one element of L is at most

sq2
(

qn−1 − 1

q − 1

)

− (s− 1)q2.

Notice that the previous inequality is tight, since if L consists of s parallel

lines in a plane then there are exactly q2
(

s q
n−1−1
q−1 − (s− 1)

)

lines intersect-

ing at least one element of L.

Lemma 2.2. Let n > 2 be an integer. Then the colorings of the finite affine

space AG(n, q) satisfy the inequality

ψ′(AG(n, q)) ≤
√

4qn(qn − 1)(qn − q2) + (q2 + 1)2(q − 1)2

2(q − 1)
+
q2 + 1

2
. (3)

Proof. Consider a complete coloring which contains ψ′(AG(n, q)) color classes.

Then the number of lines in the smallest color class is at most

s =
qn−1(qn − 1)

(q − 1)ψ′(AG(n, q))
.

Each of the other ψ′(AG(n, q)) − 1 color classes must contain at least one

line which intersects a line of the smallest color class. Hence, by Lemma 2.1,

we obtain

ψ′(AG(n, q))− 1 ≤ q2
(

s
qn−1 − 1

q − 1
− (s− 1)

)

.

Multiplying it by ψ′(AG(n, q)), we get a quadratic inequality on ψ′(AG(n, q)),

whose solution yields the statement of the theorem.

We can now prove our first main theorem.

Proof of Theorem 1.1. In the case n > 2 elementary calculation yields

4qn(qn − 1)(qn − q2) + (q2 + 1)2(q − 1)2 =
(

2q
n
2 (qn − 1)− q

n
2 (q2 − 1)

)2

− qn(q2 − 1)2 + (q2 + 1)2(q − 1)2

<
(

2q
n
2 (qn − 1)− q

n
2 (q2 − 1)

)2
,
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because n > 2 implies that qn(q2 − 1)2 > (q2 + 1)2(q − 1)2. Thus we can

estimate the radical expression in Equation (3) and we obtain

ψ′(AG(n, q)) ≤ q
n
2

(

qn − 1

q − 1

)

− q
n
2

(

q + 1

2

)

+
q2 + 1

2
,

which proves the theorem for n > 2. For n = 2 the statement is clear.

3 Lower bounds

In this section we prove a lower bound on the pseudoachromatic index of

AG(n, q). To achieve this we present complete colorings of AG(n, q). The

constructions depend on the parity of the space dimension. First, we prove

some geometric properties of affine and projective spaces.

Proposition 3.1. Let n > 1 be an integer, Π1 and Π2 be subspaces in

PG(n, q) = AG(n, q) ∪ H∞. Let di denote the dimension of Πi for i = 1, 2.

Suppose that Π1 ∩ Π2 ∩ H∞ is an m-dimensional subspace and d1 + d2 =

n+ 1+m. Then Π1 ∩Π2 ∩AG(n, q) is an (m+ 1)-dimensional subspace in

AG(n, q).

In particular, Π1∩Π2 is a single point in AG(n, q) when Π1∩Π2∩H∞ = ∅
and d1 + d2 = n.

Proof. Since Π1 ∩ Π2 ∩ H∞ is an m-dimensional subspace, the subspace

Π1 ∩ Π2 has dimension at most m + 1. On the other hand, the dimension

formula yields

dim(Π1 ∩Π2) = dimΠ1 + dimΠv − dim〈Π1,Π2〉 ≥ d1 + d2 − n = m+ 1,

therefore Π1∩Π2∩AG(n, q) is an (m+1)-dimensional subspace in AG(n, q).

If m = −1, Π1 ∩Π2 ∩H∞ = ∅, but the subspace Π1 ∩Π2 has dimension

0 in PG(n, q). Hence, it is a single point and this point is not in H∞ so it is

in AG(n, q).

In the following proposition we present a partition of the points of

PG(2k, q) that we will call good partition in the rest of the paper.
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Proposition 3.2. Let k ≥ 1 be an integer and Q ∈ PG(2k, q) be an arbitrary

point. The points of PG(2k, q) \ {Q} can be divided into into two subsets,

say A and B, and one can assign a subspace S(P ) to each point P ∈ A∪B,
such that the following holds true.

• P ∈ S(P ) for all points,

• |A| = q2
(

q2k−1
q2−1

)

and, if A ∈ A then S(A) is a k-dimensional subspace,

• |B| = q
(

q2k−1
q2−1

)

and, if B ∈ B then S(B) is a (k − 1)-dimensional

subspace,

• S(A) ∩ S(B) = ∅ for all A ∈ A and B ∈ B.

Proof. We prove by induction on k. If k = 1 then let {ℓ0, ℓ1, . . . , ℓq} be the

set of lines through Q. Let A and B consist of points PG(2, q) \ {ℓ0} and

ℓ0 \ {Q}, respectively. If A ∈ A then let S(A) be the line AQ, if B ∈ B then

let S(B) be the point B. These sets clearly fulfill the prescribed conditions,

so PG(2, q) admits a good partition.

Now, let us suppose that PG(2k, q) admits a good partition. In PG(2k+

2, q) take a 2k-dimensional subspace Π which contains the point Q. Then Π

is isomorphic to PG(2k, q), hence it has a good partition {Q}∪A′ ∪B′ with

assigned subspaces S′(P ). Let H0,H1, . . . ,Hq be the pencil of hyperplanes

in PG(2k+2, q) with carrier Π. Let B = B′∪(H0\Π) and A = PG(2k+2, q)\
(B ∪ {Q}). Notice that A′ and B′ have the required cardinalities, because

|A′| = q2k+3 − 1

q − 1
− (|B|+ 1) = (q + 1)

q2k+3 − 1

q2 − 1
− q

(

q2k+2 − 1

q2 − 1

)

− 1

= q2
(

q2k+2 − 1

q2 − 1

)

,

|B′| = |B|+ |(H0 \ Π| = q

(

q2k − 1

q2 − 1

)

+ q2k+1 = q

(

q2k+2 − 1

q2 − 1

)

.

We assign the subspaces in the following way. If A ∈ A′ then let S(A)

be the (k + 1)-dimensional subspace 〈S′(A), P 〉 where P ∈ ∪q
i=1Hi is an

arbitrary point, whereas, if A ∈ (∪q
i=1Hi) \ Π then let S(A) be the (k + 1)-

dimensional subspace 〈A,S′(P )〉 where P ∈ A′ is an arbitrary point. In

7



both cases S(A) ⊂ ∪q
i=1Hi for all A ∈ A. Similarly, if B ∈ B′ then let S(B)

be the k-dimensional subspace 〈S′(B), P 〉 where P ∈ H0 is an arbitrary

point, whereas, if B ∈ H0 \ Π then let S(B) be the k-dimensional subspace

〈B,S′(P )〉 where P ∈ B′ is an arbitrary point. Also here, in both cases,

S(B) ⊂ H0 for all B ∈ B. Moreover, the assigned subspaces satisfy the

intersection condition because if A ∈ A and B ∈ B are arbitrary points then

S(A) ∩ S(B) = (S(A) ∩ (∪q
i=1Hi)) ∩ (S(B) ∩H0) = S′(A) ∩ S′(B) ∩Π = ∅.

Hence PG(2k+1, q) also admits a good partition, the statement is proved.

The next theorem proves Theorem 1.2 for even dimensional finite affine

spaces. Notice that the lower bound depends on the parity of q, but its

magnitude is
√
v(v−1)
2(q−1) in both cases, where v = qn.

Theorem 3.3. If k > 1 then the colorings of the even dimensional affine

space, AG(2k, q), satisfy the inequalities

ψ′(AG(2k, q)) ≥







qk(q2k−1)
2(q−1) , if q is odd,

qk(q2k−q)
2(q−1) + 1, if q is even.

Proof. Consider the projective closure of the affine space, PG(2k, q) = AG(2k, q)∪
H∞. The parallel classes of affine lines correspond to the points of H∞. The

hyperplane at infinity is isomorphic to the projective space PG(2k − 1, q),

hence it has a (k−1)-spread S = {S1, S2, . . . , Sqk+1}. The elements of S are

pairwise disjoint (k− 1)-dimensional subspaces (see [16, Theorem 4.1]). Let

{P i
1, P

i
2, . . . , P

i
(qk−1)(q−1)

} be the set of points of Si for i = 1, 2, . . . , qk + 1.

We define a pairing on the set of points of H∞ which depends on the

parity of q. On the one hand, if q is odd then let (P i
j , P

i+1
j ) be the pairs

for i = 1, 3, 5, . . . , qk and j = 1, 2, . . . , q
k−1
q−1 . On the other hand, if q is even

then H∞ has an odd number of points, thus we give the paring on the set

of points H∞ \ {P 1
1 }: let (P i

j , P
i+1
j ) be the pairs for i = 4, 6, . . . , qk and

j = 1, 2, . . . , q
k−1
q−1 , and let (P 1

j , P
2
j ), (P

2
j+1, P

3
j+1), (P

1
j+1, P

3
j ) and (P 2

1 , P
3
1 )

be the pairs for i = 1, 2, 3 and j = 2, 4, 6, . . . , q
k−1
q−1 − 1.
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For P ∈ H∞ we denote by S(P ) the unique element of S that con-

tains P. Consider the set of k-dimensional subspaces of PG(2k, q) inter-

secting H∞ in S(P ). The affine parts of these subspaces determine a set

of qk parallel k-dimensional subspaces of AG(2k, q), denoted by A(P ) =

{ΠP,1,ΠP,2, . . . ,ΠP,qk}.
Let (U, V ) be any pair of points. Then, by defintion, S(U) 6= S(V ). Let

the color class CU,V,i contain the lines joining either U and a point from ΠU,i,

or V and a point from ΠV,i, for i = 1, 2, . . . , qk. Clearly, (U, V ) defines qk

color classes, each one consists of the parallel lines of one subspace in A(U)

and the parallel lines of one subspace in A(V ). Finally, if q is even, then let

the color class C1 consist of all lines of AG(2k, q) whose point at infinity is

P 1
1 .

We divided the points of H∞ into q2k−1
2(q−1) pairs if q is odd, and into q2k−q

2(q−1)

pairs if q is even. Consequently, the number of color classes is equal to
q2k−1
2(q−1)q

k when q is odd, and it is equal to q2k−q
2(q−1)q

k + 1 when q is even.

Now, we show that the coloring is complete. The class C1 obviously

intersects any other class. Let CU,V,i and CW,Z,j be two color classes. Then

S(U) and S(V ) are distinct elements of the spread S and S(W ) is also

an element of S. Hence we may assume, without loss of generality, that

S(U) ∩ S(W ) = ∅. As dim (S(U) ∪ ΠU,i) = dim (S(W ) ∪ ΠW,j) = k in

PG(2k, q), by Proposition 3.1, we have that ΠU,i ∩ΠW,j consists of a single

point in AG(2k, q). Notice that the coloring is not proper, because the same

argument shows that ΠU,i ∩ΠV,i is also a single point in AG(2k, q).

For odd dimensional finite affine spaces we have a slightly weaker esti-

mate. In this case, the magnitude of the lower bound is 1√
q
·
√
v(v−1)
q−1 , where

v = qn.

Theorem 3.4. If k ≥ 1 then the colorings of the odd dimensional affine

space, AG(2k + 1, q), satisfy the inequality

qk+2

(

q2k − 1

q2 − 1

)

+ 1 ≤ ψ′(AG(2k + 1, q)).

Proof. Consider the projective closure of the affine space PG(2k + 1, q) =

AG(2k+1, q)∪H∞. Here, the parallel classes of affine lines correspond to the

9



points of H∞, and the hyperplane at infinity is isomorphic to the projective

space PG(2k, q).

By Proposition 3.2, H∞ admits a good partition. So we can divide the

points of H∞ into three disjoint classes where A = {P1, P2, . . . , Pt} and

B = {R1, R2, . . . , Rs} are two sets of t = q2
(

q2k−1
q2−1

)

and s = q
(

q2k−1
q2−1

)

points, respectively, and C = {Q} is a set containing a single point. We can

also assign a subspace S(U) to each point U ∈ A∪B such that S(Pi) ⊂ H∞ is

a k-dimensional subspace if Pi ∈ A and S(Rj) ⊂ H∞ is a (k−1)-dimensional

subspace if Rj ∈ B, furthermore S(Pi) ∩ S(Rj) = ∅ for all i and j.

Consider the (k + 1)-dimensional subspaces of PG(2k + 1, q) that in-

tersect H∞ in S(Pi). The affine parts of these subspaces form a set of

qk parallel (k + 1)-dimensional subspaces of AG(2k + 1, q). Let A(Pi) =

{ΠPi,1,ΠPi,2, . . . ,ΠPi,qk
} denote this set. Similarly, consider the k-dimensional

subspaces of PG(2k + 1, q) intersecting H∞ in S(Rj). The affine parts of

these subspaces induce a set of qk+1 parallel k-dimensional subspaces of

AG(2k + 1, q) denoted by B(Rj) = {ΠRj ,1,ΠRj ,2, . . . ,ΠRj ,qk+1}.
Now, we define the color classes. Let C1 be the color class that contains

all lines of AG(2k + 1, q) whose point at infinity is Q. Let the color class

Ci,j,m contain the lines joining either P(j−1)q+i and a point from ΠP(j−1)q+i,m,

or Rj and a point from ΠRj ,(i−1)qk+m for j = 1, 2, . . . , s, i = 1, 2, . . . , q and

m = 1, 2, . . . , qk. Counting the number of color classes of type Ci,j,m, we

obtain s · q · qk = qk+2
(

q2k−1
q2−1

)

. Each color class consists of the parallel lines

of one subspace in A(P(j−1)q+i) and the parallel lines of one subspace in

B(Rj). Clearly, the total number of color classes is 1 + qk+2
(

q2k−1
q2−1

)

. The

color class C1 contains q
2k lines and each of the classes of type Ci,j,m consists

of qk + qk−1 lines.

To prove that the coloring is complete, notice that the class C1 obviously

intersects any other class. Let Ci,j,m and Ci′,j′,m′ be two color classes other

than C1. Consider those elements of A(P(j−1)q+i) and B(R′
j) whose lines are

contained in Ci,j,m and in Ci′,j′,m′ , respectively. One of these subspaces is

a (k + 1)-dimensional subspace, whereas the other one is a k-dimensional

subspace in PG(2k+1, q), and they have no point in common in H∞. Thus,

by Proposition 3.1, their intersection is a single point in AG(2k + 1, q).
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The coloring is not proper, because the same argument shows that

ΠP(j−1)q+i,m ∩ ΠRj ,(i−1)qk+m is also a point in AG(2k + 1, q), thus Ci,j,m

contains a pair of intersecting lines.

Now, we are ready to prove our second main theorem.

Proof of Theorem 1.2. If n is even then Theorem 3.3 gives the result at once.

If n is odd then v = q2k+1, hence
√

v/q = qk. From the estimate of Theorem

3.4 we get

qk+2

(

q2k − 1

q2 − 1

)

+ 1 =
q3k+2 − qk+2

q2 − 1
+ 1

=
(q + 1)(q3k+1 − qk)

q2 − 1
− q3k+1 + qk+2 − qk+1 − qk

q2 − 1
+ 1

=
1√
q

√
v(v − 1)

q − 1
− q3k+1 + qk+2 − qk+1 − qk

q2 − 1
+ 1,

which proves the statement.

Next, recall that a lower bound for the achromatic index require a proper

and complete line-coloring of AG(n, q). We consider only the even dimen-

sional case.

Theorem 3.5. Let k > 1 and ǫ = 0, 1 or 2, such that qk + 1 ≡ ǫ (mod

3). Then the achromatic index of the even dimensional finite affine space

AG(2k, q) satisfies the inequality
(

qk + 1− ǫ

3
(qk + 2) + ǫ

)

qk − 1

q − 1
≤ α′(AG(2k, q)).

Proof. Again, consider the projective closure of the affine space PG(2k, q) =

AG(2k, q)∪H∞. The parallel classes of affine lines correspond to the points

of H∞, and the hyperplane at infinity is isomorphic to PG(2k − 1, q).

Let L = {ℓ1, ℓ2, . . . , ℓqk+1} be a (k − 1)-spread of H∞. Consider the set

of k-dimensional subspaces of PG(2k, q) intersecting H∞ in ℓi. The affine

parts of these subspaces form a set of qk parallel k-dimensional subspaces in

AG(2k, q). Let A(ℓi) = {Πℓi,1,Πℓi,2, . . . ,Πℓi,qk
} denote this set. By Proposi-

tion3.1, the intersection Πℓi,s ∩Πℓj ,t is a single affine point for all i 6= j and

1 ≤ s, t ≤ qk.
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First, to any triple of (k−1)-dimensional subspaces e, f, g ∈ L we assign

qk+2 color classes as follows. Take a fourth (k−1)-dimensional subspace d ∈
L, and, for u = (qk−1)/(q−1), denote the points of the (k−1)-dimensional

subspaces d, e, f and g as D1,D2, . . . ,Du, E1, E2, . . . , Eu, F1, F2, . . . , Fu and

G1, G2, . . . , Gu, respectively. For any triple (Di, e, g) there is a unique line

through Di which intersects the skew subspaces e and g. We can choose the

numbering of the points Ei and Gi, such that the line EiGi intersects d in Di

for i = 1, 2, . . . , u; the numbering of the points Fi, such that the line DiFi+1

intersects d and g for i = 1, 2, . . . , u − 1, and, finally choose the line DuF1

that intersects d and g. Notice that this construction implies that the line

DiFi does not intersect g for i = 1, 2, . . . , u. Let the points of Πd,1 denote

by M1,M2, . . . ,Mqk . We can choose the numbering of the elements of A(e),

A(f) and A(g), such that Πe,i ∩Πf,i ∩Πg,i = {Mi} for i = 1, 2, . . . , qk.

We define three types of color classes for i = 1, 2, . . . , u and j = 1, 2, . . . , qk.

Let Bi,0
e,f,g and Bi,1

e,f,g be the color classes that contain the affine parts of the

lines EiMj , and FiMj , respectively. Let Ci,j
e,f,g be the color class that con-

tains the affine parts of lines in Πe,i whose point at infinity is Ej, except

the line EjMi, the affine parts of lines in Πf,i whose point at infinity is Fj ,

except the line FjMi, and the affine parts of lines in Πg,i whose point at

infinity is Gj . Hence each of Bi,0
e,f,g and Bi,1

e,f,g contains qk lines and Ci,j
e,f,g

contains 3qk−1 − 2 lines.

Notice that for each i ∈ {1, 2, . . . , u}, the union of the color classes

Ki
e,f,g = Bi,0

e,f,g ∪B
i,1
e,f,g ∪

qk

j=1 C
i,j
e,f,g

contains the affine parts of all lines of PG(2k, q) whose point at infinity is

Ei, Fi or Gi. Each of the two sets of lines whose affine parts belong to Bi,0
e,f,g

or Bi,1
e,f,g, naturally defines a (k + 1)-dimensional subspace of PG(2k, q), we

denote these subspaces by ΠEi
and ΠFi

, respectively.

For t = 0, 1, . . . , ⌊(qk − 2 − ǫ)/3⌋ let e = ℓ3t+1, f = ℓ3t+2, g = ℓ3t+3,

d = ℓ3t+4, define ℓqk+2−ǫ as ℓ1, and make the qk + 2 color classes Bi,0
e,f,g,

Bi,1
e,f,g and Ci,j

e,f,g. Finally, for each point P in the subspace ℓqk+1 if ǫ = 1, or

in ℓqk if ǫ = 2, define a new color class DP which contains the affine parts

of all lines whose point at infinity is P.

12



Clearly, the coloring is proper and it contains, by definition, the required

number of color classes. Now, we prove that it is complete. Notice that each

color class of type DP obviously intersects any other color class. In relation

to the other cases we have that:

• The color classes Bi,j
ℓ3m+1,ℓ3m+2,ℓ3m+3

and Bi′,j′

ℓ3m+1,ℓ3m+2,ℓ3m+3
intersect,

because both of them contain all affine points of the k-dimensional

subspace Πℓ3m+4,1.

• If t 6= m then the color classes Bi,j
ℓ3t+1,ℓ3t+2,ℓ3t+3

and Bi′,j′

ℓ3m+1,ℓ3m+2,ℓ3m+3

intersect, because the (k − 1)-dimensional subspaces ℓ3t+4 and ℓ3m+4

are skew in H∞, hence the 2-dimensional intersection of the (k + 1)-

dimensional subspaces ΠEi
or ΠFi

, according as j = 1 or 2, and ΠE′
i
or

ΠF ′
i
, according as j′ = 1 or 2, is not a subspace of H∞. Thus Proposi-

tion 3.1 implies that the intersection contains some affine points.

• The color classes Bi,j
ℓ3m+1,ℓ3m+2,ℓ3m+3

and Ci′,j′

ℓ3t+1,ℓ3t+2,ℓ3t+3
intersect in

both cases m = t and m 6= t, because the (k − 1)-dimensional sub-

spaces ℓ3m+4 and ℓ3t+3 are skew in H∞. Again, Proposition 3.1 implies

that the intersection of the k-dimensional subspaces Πℓ3m+4,1 (which

is a subspace of either the (k + 1)-dimensional subspace ΠEi
or ΠFi

,

according as j = 1 or 2) and Πℓ3m+3,i′
is an affine point.

• If t 6= m then each pair of color classes Ci,j
ℓ3t+1,ℓ3t+2,ℓ3t+3

and Ci′,j′

ℓ3m+1,ℓ3m+2,ℓ3m+3
,

intersects since, as previously, the (k− 1)-dimensional subspaces ℓ3t+3

and ℓ3m+3 are skew in H∞, thus Proposition 3.1 implies that the point

of intersection of the k-dimensional subspaces Πℓ3t+3,i and Πℓ3m+3,i′ is

in AG(2k, q).

• Finally, we prove that each pair of color classes Ci,j
ℓ3t+1,ℓ3t+2,ℓ3t+3

and

Ci′,j′

ℓ3t+1,ℓ3t+2,ℓ3t+3
intersects. It is obvious when i = i′. Suppose that

i 6= i′, let Mi = Πℓ3t+1,i ∩ Πℓ3t+2,i ∩ Πℓ3t+3,i and Mi′ = Πℓ3t+1,i′ ∩
Πℓ3t+2,i′ ∩Πℓ3t+3,i′ . Since the points Mi and Mi′ are in Πℓ3t+4,1, the line

MiMi′ intersects H∞ in ℓ3t+4. Consider the point T = MiMi′ ∩ ℓ3t+4

and the lines EjT and FjT. Clearly, at least one of these lines does
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not intersect ℓ3t+3, we may assume, without loss of generality, that the

line EjT does not intersect the (k − 1)-dimensional subspace ℓ3t+3 in

H∞.

By Proposition 3.1, there exist affine points Ni = Πℓ3t+1,i ∩ Πℓ3t+3,i′

and Ni′ = Πℓ3t+1,i′ ∩Πℓ3t+3,i.

Suppose that Ni ∈ Ej′Mi′ and Ni′ ∈ EjMi. Then the intersection of

the (k − 1)-dimensional subspace ℓ3t+1 and the line MiMi′ is empty,

hence these two subspaces generate a (k + 1)-dimensional subspace

Σk+1, which intersects H∞ in a k-dimensional subspace Σk. Obviously,

Σk also contains the points Ej and Ej′ . Then Σk = 〈ℓ3t+1, T 〉, and
Σk∩ ℓ3t+3 is a single point, say U. As the lines Ni′Mi and NiMi′ are in

the k-dimensional subspaces Πℓ3t+3,i and Πℓ3t+3,i′ , respectively, there

exist the points Ni′Mi ∩ ℓ3t+3 and NiMi′ ∩ ℓ3t+3. Moreover, we have

that Ni′Mi ∩ ℓ3t+3 = NiMi′ ∩ ℓ3t+3 = U. Hence the points Ni,Mi, Ni′

and Mi′ are contained in a 2-dimensional subspace Σ2, and Σ2 ∩ H∞

contains the points U, Ej, Ej′ and T. Consequently, Σ2 ∩ H∞ is the

line EjT and it contains the point U, thus EjT intersects the subspace

ℓ3t+3, contradiction.

Thus Ni 6∈ Ej′Mi′ or Ni′ 6∈ EjMi. This implies that Ni or Ni′ is a

common point of the color classes Ci,j
ℓ3t+1,ℓ3t+2,ℓ3t+3

and Ci′,j′

ℓ3t+1,ℓ3t+2,ℓ3t+3
.

Hence, each pair of color classes Ci,j
ℓ3t+1,ℓ3t+2,ℓ3t+3

, Ci′,j′

ℓ3t+1,ℓ3t+2,ℓ3t+3
inter-

sects.

In consequence, the coloring is complete.

To conclude this section we prove our third main theorem.

Proof of Theorem 1.3. As v = q2k, from Theorem 3.5 we get

(

qk + 1− ǫ

3
(qk + 2) + ǫ

)

qk − 1

q − 1
=
q3k + (2− ǫ)q2k + (2ǫ− 1)qk − 2− ǫ

3(q − 1)

=
1

3

√
v(v − 1)

q − 1
+

(2− ǫ)v + 2ǫ
√
v − 2− ǫ

3(q − 1)
,

which proves the statement.
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4 Small dimensions

In this section, we improve the previous bounds for dimensions two and

three. First, we prove the exact values of achromatic and pseudoachro-

matic indices of finite affine planes. Due to the fact that there exist non-

desarguesian affine planes, we use the notation Aq for an arbitrary affine

plane of order q. For the axiomatic definition of Aq we refer to [11]. The

basic combinatorial properties of Aq are the same as of AG(2, q).

Theorem 4.1. Let Aq be any affine plane of order q. Then

χ′(Aq) = α′(Aq) = q + 1.

Proof. There are q + 1 parallel classes of lines in Aq, let S1,S2, . . . ,Sq+1

denote them. The lines in each class give a partition of the set of point of Aq

and two lines have a point in common if and only if they belong to distinct

parallel classes. Hence, if we define a coloring φ with q + 1 colors such that

a line ℓ gets color i if and only if ℓ ∈ Si then φ is proper. This shows the

inequality q + 1 ≤ χ′(Aq).

Since χ′(Aq) ≤ α′(Aq), it is enough to prove that α′(Aq) ≤ q+1. Suppose

to the contrary that α′(Aq) ≥ q + 2, and let ψ be a complete and proper

coloring with more than q + 1 color classes, say C1, C2, . . . , Cm. As ψ is

proper, each color class must be a subset of a parallel class. There are more

color classes than parallel classes, hence, by the pigeonhole principle, there

are at least two color classes that are subsets of the same parallel class.

If Ci, Cj ⊂ Sk then the elements of Ci have empty intersection with the

elements of Cj contradicting to the completeness of ψ. Thus α′(Aq) ≤ q+1,

the theorem is proved.

Theorem 4.2. Let Aq be any affine plane of order q. Then

ψ′(Aq) =
⌊

(q+1)2

2

⌋

.

Proof. First, we prove that ψ′(Aq) ≤
⌊

(q+1)2

2

⌋

. Suppose to the contrary that

there exists a complete coloring ϕ of Aq with
⌊

(q+1)2

2

⌋

+ 1 color classes. As
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Aq has q2 + q lines, this implies that ϕ has at most q2 + q −
(

⌊ (q+1)2

2 ⌋+ 1
)

color classes of cardinality greater than one. Thus, there are at least

⌊

(q+1)2

2

⌋

+ 1−
(

q2 + q −
(⌊

(q+1)2

2

⌋

+ 1
))

=







q + 2, if q is even,

q + 3, if q is odd,

color classes of size one. Hence, again by the pigeonhole principle, there

are at least two color classes of size one such that they belong to the same

parallel class. This means that they have empty intersection, so ϕ is not

complete. This contradiction shows that ψ′(Aq) ≤
⌊

(q+1)2

2

⌋

.

We continue to give a complete coloring of Aq with
⌊

(q+1)2

2

⌋

color classes.

Let P be a point and e1, e2, . . . , eq+1 be the lines through P . For i =

1, 2, , . . . , q+1 let Si be the parallel class containing ei and denote the q−1

lines in the set Si \ {ei} by ℓi, ℓ(q+1)+i, . . . , ℓ(q−2)(q+1)+i. Then

q
⋃

i=1

(Si \ {ei}) = {ℓ1, ℓ2, . . . , ℓq2−1},

and the lines ℓj and ℓj+1 belong to distinct parallel classes for all 1 ≤ j <

q2 − 1. For better clarity, we construct q + 1 color classes with even indices

and
⌊

q2−1
2

⌋

color classes with odd indices. Let the color class C2k consist

of one element, the line ek, for k = 1, 2, . . . , q + 1, let the color class C2k−1

contain the lines ℓ2k−1 and ℓ2k for k = 1, 2, . . . ,
⌊

q2−1
2

⌋

, finally, if q is even,

let the color class Cq2−3 contain the line ℓq2−1, too.

The coloring is complete, because color classes having even indices in-

tersect at P, and each color class with odd index contains two non-parallel

lines whose union intersects all lines of the plane.

Our last construction gives a lower bound for the achromatic index of

AG(3, q). As α′(AG(3, q)) ≤ ψ′(AG(3, q)), this can be considered as well as

lower estimate on the pseudoachromatic index of AG(3, q) and this bound is

better than the general one proved in Theorem 3.4. We use the cyclic model

of PG(2, q) to make the coloring. The detailed description of this model

can be found in [16, Theorem 4.8 and Corollary 4.9]. We collect the most

important properties of the cyclic model in the following proposition.
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Proposition 4.3. Let q be a prime power. Then the group Zq2+q+1 admits a

perfect difference set D = {d0, d1, d2, . . . , dq}, that is the q2+q integers di−dj
are all distinct modulo q2+ q+1. We may assume without loss of generality

that d0 = 0 and d1 = 1. The points and lines of the plane PG(2, q) can be

represented in the following way. The points are the elements of Zq2+q+1,

the lines are the subsets

D + j = {di + j : di ∈ D}

for j = 0, 1, . . . , q2 + q, and the incidence is the set-theoretical inclusion.

Theorem 4.4. The achromatic index of AG(3, q) satisfies the inequality:

q(q + 1)2

2
+ 1 ≤ α′(AG(3, q)).

Proof. Consider the projective closure of the affine space, let PG(3, q) =

AG(3, q) ∪ H∞. Then the parallel classes of affine lines correspond to the

points of H∞. This plane is isomorphic to PG(2, q), hence it has a cyclic

representation (described in Proposition 4.3). Let v = q2 + q + 1, let the

points and the lines of H∞ be P1, P2, . . . , Pv , and ℓ1, ℓ2, . . . , ℓv, respectively.

We can choose the numbering such that for i = 1, 2, 3, . . . , v the line ℓi

contains the points Pi, Pi+1 and Pi−d (where 0 6= d 6= 1 is a fixed element

of the difference set D, and the subscripts are taken modulo v).

The affine parts of the planes of PG(3, q) intersecting H∞ in a fixed

line ℓi form a set of q parallel planes in AG(3, q). We denote this set by

A(Pi) = {ΠPi,1,ΠPi,2, . . . ,ΠPi,q}. Let Wi be a plane of PG(3, q) intersecting

H∞ in ℓi−d. Then each element of A(Pi) ∪ A(Pi+1) intersects Wi in a line

which passes on the point Pi, so we can choose the numbering of the elements

of A(Pi) and A(Pi+1), such that ΠPi,j ∩ΠPi+1,j ⊂ Wi for i = 1, 3, . . . , v − 2

and j = 1, 2, . . . , q. Let eij denote the line ΠPi,j ∩ΠPi+1,j.

We assign q+1 color classes to the pair (Pi, Pi+1) for i = 1, 3, . . . , v− 2.

Let the color class Ci
0 contain the affine parts of the lines ei1, e

i
2 . . . , e

i
q. For

j = 1, 2, . . . , q, let the color class Ci
j contain the parallel lines of ΠPi,j passing

on Pi except the line eij , and the q parallel lines of ΠPi+1,j passing on Pi+1.

Finally, let the color class Cv contain the affine parts of all lines through Pv.
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In this way we constructed

(q + 1)
v − 1

2
+ 1 =

q(q + 1)2

2
+ 1

color classes and each line belongs to exactly one of them, because Ci
0 con-

tains q lines, Ci
j contains 2q−1 lines for each j = 1, 2, . . . , q. and Cv contains

q2 lines.

The coloring is proper by definition. The color class Cv obviously inter-

sects any other class. For other pairs of color classes, two major cases are

distinguished when we prove the completeness. On the one hand, if i 6= k

then we have:

• Ci
0 ∩ Ck

0 6= ∅, because the planes Wi and Wk intersect each other,

• if j > 0 then Ci
0∩Ck

j 6= ∅, because the planes Wi and ΠPk+1,j intersect

each other,

• if m > 0 and j > 0 then Ci
m ∩Ck

j 6= ∅, because the planes ΠPi+1,m and

ΠPk+1,j intersect each other.

On the other hand, color classes having the same superscript also have non-

empty intersection:

• Ci
0 ∩ Ci

j 6= ∅, because the planes Wi and ΠPi+1,j intersect each other,

• if j 6= k then the planes ΠPi,j and ΠPi+1,k intersect in a line f and

f 6= eij , hence its points are not removed from ΠPi,j, so C
i
j ∩ Ci

k 6= ∅.

Hence the coloring is also complete, this proves the theorem.
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