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Abstract

In this paper, we consider different types of non-positive curvature
properties of the Hilbert metric of a convex domain in R

n. First, we
survey the relationships among the concepts and prove that in the case
of Hilbert metric some of them are equivalent. Furthermore, we show
some condition which implies the rigidity feature: if the Hilbert metric
is Berwald, i.e., its Finslerian Chern connection reduces to a linear one,
then the domain is an ellipsoid and the metric is Riemannian.

Subjclass: 53C60.
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1 Introduction

The Hilbert geometry of a convex domain is just the generalization the
Cayley-Klein model of the hyperbolic plane, first introduced by D. Hilbert
in 1908. The Hilbert metric is not only an example of Finsler metric with
special metric but also a geodesic metric space, where several synthetic con-
cepts of hyperbolicity, i.e., of non-positive curvature can be used. Our aim is
to find what consequences are implied by the non-positive curvature prop-
erties of the Hilbert metric, and whether the mutual relationships of the
different non-positivity concepts reduce to each other in this case.

In geodesic metric spaces, several types of non-positivity concepts were
introduced by Alexandrov, see [6], Busemann [3], and others. In the general
context, the Alexandrov’s one is the strongest, implying Busemann’s one.
Then a weaker class of non-positively curved spaces is the spaces of peakless
metrics, called Pedersen type metrics by some authors, and the weakest
one is the class of geodesic metric spaces with convex capsules. (See the
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definitions in Section 2). Examples show that the inclusion among these
classes is proper.

Turning to the Hilbert geometry, it was proved ([3]) that for any strictly
convex domain, the Hilbert metric automatically satisfies the 2 last men-
tioned assumptions of non-positivity, namely, the Pedersen property and
having convex capsules. Alexandrov’s and Busemann’s assumptions are
more rigid [7]: if the Hilbert metric of a convex domain satisfies the Buse-
mann (or Alexandrov) nonpositivity property, then the domain is an ellip-
soid, and the metric is a Riemannian one, and equivalent to the Cayley-Klein
model of hyperbolic plane.

During the more than one-hundred years elapsed, a plenty of geomet-
rical properties of the Hilbert metric have been investigated from several
aspects. The reader may find a comprehensive survey of its history in [11]
by Papadopoulos.

It has been turned out that the Hilbert metric is also a special case of
Finsler geometry, which was introduced later (by P. Finsler in 1917), and
deeply analyzed by L. Berwald in the twenties-thirties of the last century.
Nevertheless, about 60 years later T. Okada ([10]) proved in a transparent
manner that the Hilbert metric is projectively flat, and its flag curvature is
negative constant.

In the sequel, we will present 4 concepts which are linked in our in-
vestigations. First, in Section 2 we give the basic definitions of 4 types of
non-positive curvature in geodesic metric spaces, some of their properties
and their general relationships. After defining the Hilbert metric of a con-
vex domain in Section 3, and listing some results important for the next
steps, we show that in the case of Hilbert metric, the first two concepts
of non-positivity are equivalent if and only if the domain is an ellipsoid.
Stepping to the analytical considerations in Section 4 we give some basics
of Finsler geometry, and especially, our special case called Berwald space.
Then we present those relationships and known results about these concepts
which are used to prove our result. Finally, we show that if the Finsler met-
ric induced by the Hilbert metric of a convex domain is Berwald, then the
domain should be an ellipsoid.
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2 Non-positive curvature concepts in metric spaces

Let (M,d) a metric space, and γ : [0, 1] → M a curve in M . The length of
γ is

ℓ(γ) := sup

{
n∑

i=1

d(γ(ti−1), γ(ti)) : 0 = t0<t1<...<tn = 1, n ∈ N

}
.

A curve γ : [0, 1] → M is called a geodesic if there exists ǫ > 0 such that

ℓ(γ↾[t1,t2]) = d(γ(t1), γ(t2)) whatever |t1 − t2|< ǫ, t1, t2 ∈ [0, 1].

This property is independent of the choice of parametrization, although the
value of ǫ may change. A geodesic γ : [0, 1] → M is called a shortest geodesic
if

ℓ(γ) = d(γ(0), γ(1)).

Definition 2.1. [6](Geodesic Length Space) A metric space (M,d) is called
a geodesic length space, or simply a geodesic space, if for any two points
x, y ∈ M there exists a shortest geodesic joining x and y. It is called locally
geodesic space if this property holds in an appropriate neighborhood of any
point.

For x, y ∈ M , we call m(x, y) a midpoint of x and y if

m(x, y) = γ(
1

2
)

for a shortest geodesic γ : [0, 1] → M from x to y, where γ is supposed to
be parametrized proportionally to arc-length.

Definition 2.2. [6] (Alexandrov Non-positive Curvature) A locally geodesic
space (M,d) is said to be an Alexandrov non-positive curvature space if for
every p ∈ M there exists δp > 0 such that for every x, y, z ∈ B(p, δp) and
any shortest geodesic γ : [0, 1] → M with γ(0) = x, γ(1) = z, we have for
0 ≤ t ≤ 1

d2(y, γ(t)) ≤ (1− t) d2(y, x) + t d2(y, z)− t(1− t) d2(x, z).

(Alexandrov non-positive curvature inequality).

Remark 1. In some literature, the Alexandrov non-positive curvature spaces
are called CAT(0)–spaces as well. Furthermore, the complete CAT(0)–
spaces are the Hadamard manifolds, see [1].
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Definition 2.3. [6] (Busemann Non-positive Curvature) A locally geodesic
space (M,d) is said to be a Busemann non-positive curvature space if for
every p ∈ M there exists δp > 0 such that for all x, y, z ∈ B(p, δp)

d(m(x, y),m(x, z)) ≤
1

2
d(y, z).

(Busemann non-positive curvature inequality).

In other words, for any two shortest geodesic γ1, γ2 : [0, 1] → M , with
γ1(0) = x = γ2(0)) ∈ B(p, δp) and with endpoints of γ1, γ2 ∈ B(p, δp), we
have

d(γ1(
1

2
), γ2(

1

2
)) ≤

1

2
d(γ1(1), γ2(1)).

Now, define the distance of a curve γ and a point q ∈ M as

dist(γ, q) = inf{d(γ(t), q) : 0 ≤ t ≤ 1}.

Definition 2.4. [9] (Pedersen Non-positive Curvature) A locally geodesic
space is said to be a Pedersen non-positive curvature space if for every p ∈ M

there exists δp > 0 such that for any two shortest geodesic γ1, γ2 : [0, 1] →
B(p, δp) the function f : [0, 1] → R, defined by

f(t) = dist(γ1, γ2(t))

is quasiconvex, i.e., for every t ∈ [0, 1], f(t) ≤ max{f(0), f(1)}.
Let γ : [a, b] → M be a shortest geodesic and α > 0. Attached to γ and

α, we define the capsule as

Cγ(α) = {q ∈ M : dist(γ, q) ≤ α}.

Let M0 be a non-empty subset of M . The pair (γ, α) is said to be M0-
admissible if Cγ(α) ⊂ M0.

Definition 2.5. [9] (Convex Capsules) We say that a locally geodesic space
(M,d) has convex capsules if for every p ∈ M there exists δp > 0 such that
for every B(p, δp)-admissible pair (γ, α), the capsule Cγ(α) is convex.

Remark 2. In general, an Alexandrov non-positive curvature space is a Buse-
mann non-positive curvature space (see [6], Chapter 2). On the other side,
some initiative examples show that not all Busemann non-positive curvature
spaces are Alexandrov non-positive curvature spaces [6].
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Definition 2.6. [4] (Average Angle) Let γ1 : [0, a] → M and γ2 : [0, b] → M

be two shortest geodesics with p = γ1(0) = γ2(0). The average angle between
γ1 and γ2 at p is defined by

∡(γ1, p, γ2) = lim
n→∞

Aγ1,γ2(
a

2n
,
b

2n
),

if the limit of the sequence exists, where the comparison angle is given by

Aγ1,γ2(a, b) := arccos
a2 + b2 − d(γ1(a), γ2(b))

2

2ab
.

Let q be an inner point of a shortest geodesic pr, and qs be a shortest
geodesic. It is clear that for an Alexandrov non-positive curvature space the
sum of adjacent average angles is at least π, i.e., ∡(p, q, s) + ∡(s, q, r) ≥ π.

Theorem 2.7. [4] In a locally geodesic space the Alexandrov and Busemann
non-positive curvature properties are equivalent if and only if the sum of
adjacent average angles ≥ π.

3 The Hilbert metric of a convex domain and its

curvature

Definition 3.1. Let K be a bounded convex open set in R
n (n ≥ 2).

The Hilbert metric dK on K is defined as follows. For any x ∈ K, let
dK(x, x) = 0. For distinct points x, y ∈ K, assume that the straight line
passing through x, y intersects the boundary ∂K at two points a, b such that
the order of these four points on the line is a, x, y, b as in Figure 1.

Denote the cross-ratio of the points by

[a, x, y, b] =
‖y − a‖

‖y − x‖

‖b− x‖

‖b− a‖
.

where ‖.‖ is the Euclidean norm of Rn. Then the Hilbert metric is

dK(x, y) =
1

2
ln[a, x, y, b],

and the metric space (K, dK) is called a Hilbert geometry.

Concerning the curvature properties of the Hilbert metric, Busemann
([3], page 108) showed that for any strictly convex domain K, the Hilbert
metric dK satisfies the Pedersen non-positivity curvature property, and, con-
sequently, has a convex capsules.
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Figure 1: Hilbert geometry

Kelly and Straus published two papers on the curvature of Hilbert ge-
ometry in 1958 and 1968. They used the concept of Busemann non-positive
curvature, which is a pleasant geometric approach and weaker than Alexan-
drov’s one. Nevertheless in the case of Hilbert metric of a convex domain it
has a strong consequence, namely it implies the reduction of the domain to
an ellipsoid. In details, it was proved in [7]:

Proposition 3.2. If Hilbert metric (K, dK) has Busemann non-positive cur-
vature, then the domain K is an ellipsoid and the Hilbert metric dK is hy-
perbolic, i.e., Riemannian.

Corollary 3.3. (see [5, Corollary 5.6]) A Hilbert metric (K, dK ) satisfies the
Alexandrov non-positive curvature condition if and only if K is an ellipsoid.

Proposition 3.4. Let (K, dK) be the Hilbert metric of a convex domain K.
Then the Busemann non-positive curvature is equivalent to the Alexandrov
non-positive curvature.

Proof. First, it is true in general that all Alexandrov non-positive curvature
is Busemann non-positive curvature ([6]). Conversely, if the Hilbert metric
is Busemann non-positive curvature, then by a paper of Kelly and Straus
proved in 1958 ([7]) the domain is an ellipsoid, and the metric is a Rieman-
nian. The latter property, however, implies by the above corollary that the
Alexandrov non-positive curvature property is also satisfied.

Corollary 3.5. In Hilbert geometry, the sum of adjacent average angles is
≥ π.

Proof. Gu proved in [4] that the sum of adjacent average angles is ≥ π if and
only if the Alexandrov and Busemann non-positive curvature properties are
equivalent. Conversely, by our proposition, we get the corollary immediately.
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4 Finsler structure of the Hilbert metric

In this section, we recall briefly some known facts about Finsler and Berwald
spaces. For details, see [2].

Let M be an n-dimensional C∞ manifold and TM =
⋃

x∈M TxM the
tangent bundle. If the continuous function F : TM → R+ satisfies the
conditions that it is C∞ on TM \ {0}; F (tu) = tF (u) for all t ≥ 0 and
u ∈ TM, i.e., F is positively homogeneous of degree one; and the matrix
gij(u) := (12F

2)yiyj (u) is positive definite for all u ∈ TM \ {0}, then we say
that F is a Finsler fundamental function and (M,F ) is a Finsler manifold.

Every Finsler fundamental function naturally determines a metric dF as
follows: Let γ : [0, r] → M be a piecewise C∞ curve. Its integral length is
defined as

L(γ) =

∫ r

0
F (γ(t), γ̇(t)) dt.

For x0, x1 ∈ M denote by Γ(x0, x1) the set of all piecewise C∞ curves
γ : [0, r] → M such that γ(0) = x0 and γ(r) = x1. Define a map dF :
M ×M → [0,∞) by

dF (x0, x1) = inf
γ∈Γ(x0,x1)

L(γ).

Of course, we have dF (x0, x1) ≥ 0, where equality holds if and only if x0 =
x1; and dF (x0, x2) ≤ dF (x0, x1) + dF (x1, x2). In general, since F is only a
positive homogeneous function, dF (x0, x1) 6= dF (x1, x0), therefore (M,dF )
is only a non-reversible metric space, in general.

Let π∗TM be the pull-back of the tangent bundle TM by π : TM \{0} →
M. Unlike the Levi-Civita connection in Riemann geometry, there is no
unique natural connection in the Finsler case. Among these connections
on π∗TM, we choose the Chern connection whose coefficients are denoted
by Γi

jk (see [2, p. 38]). This connection induces the hh-curvature tensor,
denoted by R (see [2, Chapter 3]).

Let (x, y) ∈ TM \ 0 and V a section of the pulled-back bundle π∗TM .
Then

κ(y, V ) =
g(R(V, y)y, V )

g(y, y)g(V, V )− [g(y, V )]2
,

is the flag curvature with flag y and transverse edge V . Here

g(x,y) := gijdx
i ⊗ dxj := (

1

2
F 2)yiyjdx

i ⊗ dxj
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is the Riemannian metric on the pulled-back bundle π∗TM (see [2, p. 68]).
When F is Riemannian, then the flag curvature coincides with the sectional
curvature. Let κ abbreviate the collection of flag curvatures

{κ(V,W ) : 0 6= V,W ∈ TxM,x ∈ M,V and W are not collinear}.

We say that the flag curvature of (M,F ) is non-positive if κ ≤ 0.
A Finsler manifold is of Berwald type if the Chern connection coefficients

Γk
ij in natural coordinates depend only on the base point (see [2, p. 258]).
Kristály et al. proved in [9] that all mentioned non-positivity properties

are equivalent to the analytical condition κ ≤ 0 in the case of Berwald space.

Theorem 4.1. [9] Let (M,F ) be a Berwald space where F is positively (but
perhaps not absolutely) homogeneous of degree one.The following assertions
are equivalent:

a) The flag curvature κ of (M,F ) is non-positive;

b) (M,dF ) is a Busemann non-positive curvature space;

c) (M,dF ) is a forward Pedersen non-positive curvature space;

d) (M,dF ) is a backward Pedersen non-positive curvature space;

e) (M,dF ) has convex forward capsules;

f) (M,dF ) has convex backward capsules.

The Hilbert metric dK of the convex open domain K naturally deter-
mines its Hilbert Finsler fundamental function FK as follows ([12]: First the
asymmetric Finsler metric, called Funk metric F̃K is defined by

p+
1

F̃K(u)
u ∈ ∂K for any u ∈ TpK, and p ∈ K,

and then FK is obtained by symmetrization:

FK(u) =
1

2
(F̃K(u) + F̃K(−u)).

Naturally, FK is a reversible Finsler metric, therefore the forward and back-
ward concepts coincide. It is easy to check that the induced distance of FK

is just the Hilbert distance dK defined above in Definition 3.1.
The flag curvature of the Hilbert metrics was computed in 1929 by Funk

in dimension 2 and by Berwald in all dimensions. Later T. Okada proposed
a more direct computation:
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Theorem 4.2. [10] The Hilbert metric (K, dK ) is projectively flat Finsler
space of negative constant curvature −1.

Proposition 4.3. If the Hilbert metric dK of a convex domain K is a
Berwald metric, then it reduces to a Riemannian metric, and the domain is
an ellipsoid.

Proof. By a theorem of Okada ([10]) the flag curvature is negative constant
for the Hilbert metric of a convex domain. Kristály and Kozma showed in
[9], among others, that for any Berwald space the non-positivity of the flag
curvature is equivalent to the property of Busemann non-positive curvature.
Moreover, Kelly and Straus proved in 1958 ([7]) that if the Hilbert metric
satisfies Busemann’s non-positive curvature property, then the domain is an
ellipsoid, and the metric is a Riemannian one.

From our proposition, we get immediately the next corollary, because all
Riemannian metric is Berwald.

Corollary 4.4. (see [12, Theorem 11.6])The Hilbert metric dK of a bounded
convex domain K ⊂ R

n with smooth strongly convex boundary is Rieman-
nian if and only if K is an ellipsoid.

Remark 3. Conversely, if the domain is not an ellipsoid, then dK is a non-
Berwaldian projectively flat metric.
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[9] A. Kristály, L. Kozma, Metric characterization of Berwald spaces of
non-positive flag curvature. J. Geom. Phys. 56 (2006), no. 8, 1257-
1270. MR2234441

[10] T. Okada, On models of projectively flat Finsler spaces of constant neg-
ative curvature. Tensor (N.S.). 40 (1983), no. 2, 117-124. MR0837784

[11] A. Papadopoulos, Metric Spaces, Convexity and Non-positive Curva-
ture, Second edition. IRMA Lectures in Mathematics and Theoreti-
cal Physics, 6, European Mathematical Society (EMS), Zürich, 2014.
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