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Abstract: Glutathione peroxidases (GPXs) are non-heme peroxidases catalyzing the reduction of H2O2

or organic hydroperoxides to water or corresponding alcohols using glutathione (GSH) or thioredoxin
(TRX) as a reducing agent. In contrast to animal GPXs, the plant enzymes are non-seleno monomeric
proteins that generally utilize TRX more effectively than GSH but can be a putative link between the
two main redox systems. Because of the substantial differences compared to non-plant GPXs, use of
the GPX-like (GPXL) name was suggested for Arabidopsis enzymes. GPX(L)s not only can protect cells
from stress-induced oxidative damages but are crucial components of plant development and growth.
Due to fine-tuning the H2O2 metabolism and redox homeostasis, they are involved in the whole
life cycle even under normal growth conditions. Significantly new mechanisms were discovered
related to their transcriptional, post-transcriptional and post-translational modifications by describing
gene regulatory networks, interacting microRNA families, or identifying Lys decrotonylation in
enzyme activation. Their involvement in epigenetic mechanisms was evidenced. Detailed genetic,
evolutionary, and bio-chemical characterization, and comparison of the main functions of GPXs,
demonstrated their species-specific roles. The multisided involvement of GPX(L)s in the regulation
of the entire plant life ensure that their significance will be more widely recognized and applied in
the future.

Keywords: antioxidants; glutathione peroxidases; growth; reactive oxygen species; redox status;
stress responses; thiol peroxidases

1. Introduction

The generation of reactive oxygen species (ROS), such as superoxide radical (O2
•−), hy-

drogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (OH•), is a by-product
of aerobic life. These highly reactive compounds are constantly produced, essentially by
respiratory and photosynthetic electron transport chains, and can react with biomolecules
including lipids, proteins, and nucleic acids [1,2]. ROS and reactive nitrogen species (RNS)
may trigger several post-translational modifications, such as disulfide bond formation, thiol
oxidation to sulfenic/sulfinic/sulfonic acid, glutathionylation or nitrosylation. Since an
elevated ROS level can trigger damage or irreversible effects on development of tissues and
organs, different non-enzymatic antioxidants (such as ascorbate, glutathione, carotenoids,
tocopherols) and ROS-processing enzymes have evolved in aerobic organisms [2].

The extremely widespread and diversified H2O2 decomposing peroxidases (EC.1.11.1.x)
are present in all living organisms (reviewed, e.g., in [3]). They can be grouped based on
the heme cofactor [4,5]. According to the RedoxiBase database, more than 80% of known
peroxidase genes code heme peroxidases (https://peroxibase.toulouse.inra.fr, accessed
on 22 June 2022). In plants, the most widely known peroxidases—such as the ascorbate
peroxidase and catalase belonging to the intracellular Class I peroxidases and guaiacol
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peroxidases, the Class III peroxidases secreted to the extracellular space or transported into
the vacuole—are heme-containing enzymes that are in the peroxidase-catalase superfam-
ily [3,4,6]. The importance of non-heme peroxidases has emerged in the last decades [7–9].
The non-heme peroxidases comprise thiol peroxidases, alkylhydroperoxidase, haloper-
oxidases, NADH peroxidases and the pseudocatalase manganese catalases; but only the
members of thiol peroxidase superfamily have been described in plants (Figure 1) [4,6]
(https://peroxibase.toulouse.inra.fr, accessed on 22 June 2022). Among them, the ubiqui-
tous thiol peroxidases serve both as ROS scavengers and contributors of ROS signalling.
They are divided into two main enzyme families: peroxiredoxins (PRXs) or thioredoxin
peroxidases, and glutathione peroxidases (mostly abbreviated as GPXs or GPxs).
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Figure 1. Schematic representation of classification of plant peroxidases using information from the
RedoxiBase database (https://peroxibase.toulouse.inra.fr, accessed on 22 June 2022) and in [3,10].

GPXs (EC 1.11.1.9 for classical glutathione peroxidase and EC 1.11.1.12, phospholipid-
hydroperoxide glutathione peroxidase) differ substantially both for the oxidizing peroxides
and the reducing substrates [11]. They catalyze the reduction of H2O2 or organic hy-
droperoxides to water or corresponding alcohols and oxidize reduced glutathione (GSH,
γ-Glu-Cys-Gly) or thioredoxin (TRX) [12,13]. The first GPX was discovered in erythro-
cytes [14], but later several GPXs were described in all estimated eukaryotic organisms.
Some of the GPX isoenzymes contain the highly reactive selenocysteine (SeCys) residue
in their active site, while others contain Cys [15]. Both the seleno- or nonseleno GPXs are
considered to be central components of ROS-processing mechanisms in animals [13,16].
Mammals harbour eight GPX isoenzymes (GPX1-8), of which five (GPX1-4 and GPX6 in
human) contain SeCys in their active site, and three (GPX5, GPX7, and GPX8) employ
active-site cysteines [17–19]. They are crucial players in many biological processes, such
as fertility, anti-inflammatory and anti-carcinogenesis associated routes [18,20,21]. It was
suggested that the convergent expansion of mammalian GPXs in independent lineages
might be important for avoiding oxidative damages and the adaption to stressful environ-
ments [22]. GPX4, otherwise called phospholipid hydroperoxide glutathione peroxidase
(PHGPX) and originally peroxidation inhibiting protein (PIP), participates especially in the
maintenance of membrane integrity due to decreasing the amount of lipid peroxides, and
it has key role in the regulation of ferroptosis [23–25].

The plant GPXs exhibit the highest homology to the animal GPX4 isoenzyme; however,
the plant enzymes contain Cys instead of SeCys in their active site and generally prefer the
TRX regenerating system rather than GSH [8,17,26,27]. Due to their structural similarity to
animal GPXs, but different activities and substrate specificities, the glutathione peroxidase-
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like (GPXL) name was suggested for the Arabidopsis thaliana GPX isoenzymes [10]. Besides
keeping low ROS level, the ROS-processing antioxidant enzymes may even sense and
signal ROS availability and redox perturbations [28]. They are involved in control of
ROS gradients e.g., in the maintenance of stem cell niche or triggering differentiation in
the shoot and root apical meristems (SAM and RAM, respectively), and in the proper
zygote/embryo development [29–32]. In addition, using GSH and/or TRX as a reductant,
the GPX(L)s influence the redox status of these main redox compounds. They can modify
the thiol/disulfide balance and protein activity and moreover were considered to function
as redox sensors by linking ROS to functional redox signalling [27,33–36].

2. Phylogenetic Aspects of Plant GPXs

Since the GPXs present no linear evolution, and non-animal GPXs are very distinct
from most vertebrate GPXs, the original ancestor of the GPX gene family is uncertain [15,17].
Based on through robust phylogenetic studies and sequence analyses, Trenz et al. proposed
that all GPX-encoding genes share a monomeric common ancestor and the bacterial, animal
and the TRX-applying fungal and plant GPXs diverged early in evolution and diversified
independently in different kingdoms and phyla [15]. This might explain the findings that,
e.g., the Tetrahymena thermophila, a unicellular eukaryote (a ciliate) genome contains 12 GPX
genes [37], but the Chlamydomonas reinhardtii unicellular green alga employs two SeCys-
containing GPXs and three non-selenium GPXs (GPX3-5) [9,38]. Phylogenetic studies of
GPX genes from different plant species showed that their number varies between 2 and
25 [39–41]. For example, two GPX genes were identified in Physcomitrella patens [39] and
Panax ginseng [42], three in Hordeum vulgare [43] and Vigna radiata [44], four in Pinus tabulae-
formis [45] and Brachypodium distachyon [39], and five genes in Oryza sativa [16,39], Phoenix
dactylifera (date palm) [46], Populus trichocarpa [26], Ricinus communis [47], and Solanum
lycopersicum [39]. Six GPXs are encoded by Cucumis sativus [48], Citrullus lanatus [49] and
Lotus japonica [50] genome, seven genes were found in Sorghum bicolor [51] and Zea mays [52],
while there are eight in Arabidopsis thaliana [53] and Brassica oleracea [40]. It was concluded
that GPX genes showed duplication events in many plant species, e.g., in Arabidopsis [53]
and maize [52]. In most of the cases, a relatively higher number of GPX genes was found
in plants with polyploid genome [54]. For example, 12 genes were identified in Brassica
rapa [40] and Triticum aestivum [55], 13 in Gossypium hirsutum [54] and Glycine max [44], and
25 GPX genes in Brassica napus [40].

According to the conserved domain and gene structure analyses conducted on GPX(L)
genes from various species, the plant GPXs can be categorized into four or five main
groups [44,47,52,54–58]. Comparison of GPX genes belonging to distinct groups dis-
closed highly similar motifs and conserved exon-intron arrangement patterns within
each group [52]. This indicates that their structure and function might have been pre-
served during evolution, yet several differences were also discovered, like in R. communis
and Z. maize [47,52]. Generally, the number of exons ranges between four to six, and
introns numbers varied from four to ten but showed significant variability among species
(e.g., [44,52,54,55,58]. Deviations might be assigned to gene and whole-genome dupli-
cations. Evidence of tandem or segmental duplications has been found at several plant
GPXs [39,40,44,52,53]. It was suggested that the gene replication activities might play a
crucial role in gene evolution [40].

3. Structure, Biochemical Properties, and Main Activities of Plant GPX Proteins

Plant GPXs are monomeric proteins (Table 1). The conserved protein structure of GPXs
consists of central β-sheets surrounded by α-helices [59]. Most of the mammalian GPXs
possess an oligomerization loop between the α3 helix and β6 strand, and consequently
they form dimers or tetramers [60], however the monomer mammalian GPX4 (PHGPX)
and plant GPXs do not contain any oligomerization loop. Although it was reported that
P. trichocarpa GPX5 can also form a dimer, in this case the dimerization occurs due to
non-covalent bonds with the help of hydrophobic and aromatic residues [59].
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Table 1. Biochemical properties of GPXs. AlkylOOH: alkyl hydroperoxide, CumOOH: cumene
hydroperoxide, GSH: reduced glutathione, LOOH: lipid hydroperoxide, PCOOH: phoshatidylcholine
hydroperoxide, PUFAOOH: polyunsaturated fatty acids hydroperoxide, ROOH: organic hydroperox-
ide, SeCys: Selenocysteine, TRX: thioredoxin.

Protein
Structure

Active Site
Cys/SeCys Reducing Agent Substrate References

Animal GPXs tetramer, dimer,
or monomer SeCys or Cys GSH, TRX,

NADPH H2O2, LOOH, ROOH [11,12]

A. thaliana GPXLs monomer Cys TRX

AlkylOOH
CumOOH
PCOOH

PUFAOOH

[27]

GPXs from other
plant species

monomer
(dimer) Cys TRX, GSH

AlkylOOH
CumOOH
PCOOH

PUFAOOH

[26,32,52,61,62]

Sub-cellular localization analyses in various species revealed that the GPXs are localized
in chloroplasts, mitochondria, cytoplasmic, extracellular and nuclear regions [16,51,52,54,55].
Although it was proposed that in other cellular compartments, such as peroxisomes and
endoplasmic reticulum (ER), other antioxidant enzymes are the main ROS scavengers [52],
Attacha et al. proved that AtGPXL3 is a luminal protein that can be anchored to the ER
and Golgi membranes [10]. The presence of a transmembrane domain was reported too for
example in corn ZmGPX4 enzyme [52].

The catalytic mechanism of glutathione peroxidases is the following:

2 GSH + H2O2 → glutathione disulfide + 2 H2O

2 GSH + lipid hydroperoxide→ glutathione disulfide + lipid + 2 H2O

It was suggested that the monomer structure allows the direct reduction of membrane-
bound lipid peroxides [20,63], thus the main proposed role of plant GPXs was in the
maintenance of membrane integrity, especially under different stress conditions. Recent
results of the molecular docking studies performed on maize proteins with three lipid
hydroperoxides also strengthen this function [52]. Interestingly, the reduction activity of
purified Arabidopsis, sunflower, and tomato GPXs with H2O2 were similar or even 2–7-
times higher than those with organic hydroperoxides using Escherichia coli TRX [27,61]. In
contrary to the yeast GPX, among the investigated recombinant plant GPXs (AtGPXL1, −2,
−5, −6, HaGPX1, SlGPX1 and one B. rapa GPX) none of them utilized GSH for reduction of
H2O2. These enzymes showed generally higher preference towards lipid hydroperoxides
as electron acceptors and, except for A. thaliana and B. rapa GPX(L)s, they accepted GSH as
electron donor (Table 1), but showed very low activity [27,61]. These results, together with
the similar function of GPXs in model and crop plants (detailed later in Sections 4 and 5)
may justify the use of the GPXL name and abbreviation for all plant GPX proteins [10,64].
Interestingly, the levels of the lipid peroxidation marker malondialdehyde (MDA) and/or
H2O2 were increased in several Arabidopsis gpxl mutants [65–67], indicating that these en-
zymes in vivo participate both in conversion of lipid hydroperoxides to less toxic molecules
and are involved in the H2O2 homeostasis.

During the reduction of peroxides, the catalytic CysP-S- is oxidized to a sulfenic acid
(CysP-SOH). The main difference between the distinct classes of non-heme peroxidases
is the mechanism of regeneration of the CysP-SOH, which can be reduced directly (1-Cys
mechanism) or by involving a second, so-called resolving Cys residue (CysR-SH) of the
enzyme (2-Cys catalytic cycle) [7]. Trenz et al. suggested that the ancestral GPX protein
contained both the peroxidatic and resolving cysteines [15]. In plant GPXs, the sulfenic acid
forms an intramolecular disulfide with a second Cys. However, beside the two catalytic
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cysteines, the plant GPXs contain a third conserved Cys residue outside of the classical
catalytic site, but its function is still not clear. In some cases, both the second and the
third Cys can be responsible for disulfide bridge formation, as it was reported in Chinese
cabbage [62], while in poplar the third Cys is the resolving type [26]; nevertheless, these
are not general features of plant GPXs.

The 2-Cys disulfide can be reduced by GSH or by TRX [68]. Kinetic characterization of
recombinant proteins originating from diverse sources revealed that the activity (depending
on the used peroxide substrates and plants) was much higher in the presence of TRX
than that of GSH [26,27,61,62]. The investigated Arabidopsis enzymes were able to reduce
the peroxide only with TRX [27]. The intramolecular rearrangement, catalytic cycle and
regeneration of plant GPXs are similar to that of the peroxiredoxins, thus they were even
suggested to be considered as the fifth group of PRXs [7,26].

In vivo activity measurements conducted on different Arabidopsis T-DNA insertion
mutants revealed that the single mutation of AtGPXL genes could significantly decrease
the TRX activity especially in shoots both under control conditions and after applying
salt stress [64]. Interestingly, in the AtGPXL5 overexpressing plants (OX-AtGPXL5), the
glutathione peroxidase and thioredoxin peroxidase activities (GPOX and TPOX, respec-
tively) were not elevated compared to the wild type under the above conditions [67,69]. It
should be noted that the most numerous, plant-specific classes of the diverse glutathione
transferase (GST) enzyme family exhibit more GSH-dependent peroxidase activities than
GPXs against H2O2 and organic peroxides [70]. In addition, GPXs possess some functional
overlaps with the PRXs, thus GPXs were suggested to be a putative link between the
glutathione- and the thioredoxin-based detoxifying systems [53,56,62].

However, the involvement of GPXs is indicated not only in ROS detoxification but
also in protection of cellular redox homeostasis by regulation of the thiol/disulfide bal-
ance and protein functions [27]. Meyer et al. [56] proposed that thiol peroxidases link
ROS to functional redox signalling [36]. GPXs can oxidase Cys-containing proteins in-
volved in the signalling, such as phosphatases, kinases, and transcription factors, thus
regulating different pathways [27,56,71,72]. Even more, the significance of ER-localized
GPXL3 in oxidative protein folding, in disulfide bridge formation and/or regeneration of
the participant enzymes, at the same time processing the H2O2 arose locally, were impli-
cated [10,36]. As a summation, plant GPXs might have innumerable roles in stress tolerance
and development [41].

4. Involvement of GPXs in the Signalling Crosstalk under Abiotic Stress Responses

Investigation of the spatiotemporal expression levels of plant GPX genes revealed
that they are mainly induced, but some of them are downregulated in response to var-
ious stresses [16,33,52,56,64]. The literature evidence hints that alteration of GPXs gene
expression levels under different environmental stresses, such as salt stress, drought stress,
temperature stress (high and cold), metals stress, as well as under biotic stress, was re-
ported in several plant species [26,53,58,73]. The possible contribution of GPX isoenzymes
in abiotic and biotic stress tolerance of plants was also indicated mostly by upregulation of
enzymatic and non-enzymatic antioxidant defense mechanisms [34,64,67,74].

Glutathione peroxidase enzymes might be involved in the signalling crosstalk during
abiotic stress responses via redox signal transduction, epigenetic regulation, transcription
factors and direct protein–protein interactions. Based on the literature, GPXs can interact
with other proteins and therefore they are considered to have signalling functions [33,75].
For example, AtGPXL3 interacts with 2C type protein phosphatase abscisic acid insensitive
1 and 2 (ABI1 and 2), therefore it acts an oxidative signalling transducer in ABA and drought
stress signalling by stimulating the stomata closure via the activation of plasma membrane
Ca2+ and K+ channels [33]. Recently, Paiva and co-workers confirmed the role of OsGPX3
in antioxidants defense, regulation of redox homeostasis and ABA signalling pathway in
the rice plants [76]. Alternatively, AtGPXL3 also interacts with other transcription factors
such as dehydration-responsive element-binding protein (DREB2A and DREB2B) via CEO1
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interacting protein that controls the genes involved in plant responses to dehydration and
heat stress [33]; ultimately, GPXL3 could act as a redox modulator of other proteins, influ-
encing various critical metabolic processes. In O. sativa, the involvement of mitochondrial
GPX1 and GPX3 in signalling between respiration and photosynthesis processes under
normal and salt stress conditions were described [74,77]. Silencing of OsGPX1 triggered
impairment of photosynthesis, elevated H2O2 and decreased GSH contents, and in parallel
reduced shoot growth and seed numbers were detected compared to wild type plants [77].
The OsGPX3-silenced plants showed decreased chlorophyll content, photosystem II activ-
ity, CO2 assimilation rate, stomatal conductance, intercellular CO2 partial pressure and
higher H2O2 content in roots [78]. It was suggested that mitochondrial GPX deficiency
resulted in redox changes, and OsGPX1 and−3 can act as a molecular regulator of crosstalk
between chloroplasts and mitochondria due to altering the redox status [78]. Some reports
in Arabidopsis have evidenced that chloroplastic GPXL isoforms are important to regulation
of redox homeostasis and protection against oxidative stress generated by salinity [53]. It
has been reported that GPXL7 maintained the photosystem II in A. thaliana plants via inter-
acting with putative high chlorophyll fluorescence protein (HCF244), which participated in
the biogenesis of PSII under high light-induced photooxidative stress [79]. In gpxl7 mutant,
the accumulation of HCF244 and D1 proteins were downregulated, and furthermore the
plant became hypersensitive to H2O2 treatment [79]. Gaber et al. [67] described that the
nucleus-localized AtGPXL8 isoenzyme not only protects the cellular compartments against
oxidative damage, but was also involved in redox modification of proteins, therefore taking
part in nucleus signal transduction [80].

Beside their role in stress tolerance and ABA signalling, GPXs also regulate the epige-
netic processes. For instance, OsGPX3 might have a possible role in epigenetic regulation
due to DNA methylation [78]. In A. thaliana, methylation of GPXL1 histone by PRMT4b sub-
sequently enhanced the expression of GPXL1, and the encoded antioxidant enzyme helped
in the alleviation of paraquat-induced oxidative stress [81]. Interestingly, in rice plants, a
proteomic approach revealed that silencing of OsGPX3 negatively regulates the histone
synthesis level, histone acetylase enzyme, and main enzymes responsible for further DNA
processing, such as methylation, demethylation, assembly and remodelling of chromatin
via induction of the S-glutathionylation of a putative protein (Uniprot code Q6Z8S7). This
protein acts as a signal transducer and thus regulates the histone modification in the Oryza
sativa plants [76]. Furthermore, Yang et al. [69] reported a new type of post-translational
modification known as lysine decrotonylation, which occurred at the positions of Lys 220
of GPX1, increasing the glutathione peroxidase activity and thus minimizing the oxidative
damage via reducing the level of cold-induced ROS, hence alleviating the cold stress in
Chrysanthemum morifolium [82]. Mallikarjuna et al. [52] showed that four ZmGPX proteins
(ZmGPX1, -3, -6, -7) have splice variants. Their differential expression in stress tolerant and
sensitive genotypes under drought and waterlogging stresses indicates that the splicing
mechanism targeted ZmGPX RNAs participate in the efficient stress responses [52,83].

Two putative GPX genes from T. aestivum were overexpressed in A. thaliana which
led to altered transcript levels of genes involved in salt stress responses (SOS1 and RbohD)
and ABA-related regulation (ABI1, ABI2), thus implying the role of GPXs in salt and ABA
signalling [84]. Our earlier results showed the alteration of the expression of transcription
factors such as DREB2A, DREB2B, MYC2 and that of 9-cis-epoxycarotenoid dioxygenase3
(NCED3) gene in Atgpxl1-8 mutants both under normal conditions and after applying salt
and osmotic stresses [64]. Alteration of several AtGPXL genes and selected stress-related
transcription factor genes in the investigated Atgpxl mutants indicated their possible
role in signalling to provide salt and osmotic stress tolerance [64]. The presence of cis-
acting elements related to various abiotic stresses, biotic stress, and hormones in the 5′

up-regulatory regions of the GPX(L)s were reported [40,46,47,53,56,85].
In corn, 63 types of cis-acting elements were identified in the promoter regions of the

seven ZmGPX genes, and among the regulating transcription factors were found C2H2,
DOF, GRAS, MIKC, MADS, TCP, TALE and WRKY transcription factors [52]. Aside from
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this, except for ZmGPX2 and ZmGPX5, the corn GPXs are targeted by regulatory miRNAs.
Seven miRNA families, i.e., miR166, miR169, miR172, miR395, miR529, miR1432, miR2275,
were shown to interact with ZmGPXs [52]. Induction of some of these miRNA genes was
related to H2O2 treatment or redox signalling (miR169 and miR395, respectively). It was in-
dicated that downregulation of ZmGPX genes may result in elevated H2O2 production [52].
Earlier, Li et al. [26] discovered five miRNAs from miR164 and miR396 families targeting
six BnGPX genes [40].

Comparison of the 5′ regulatory region of each Arabidopsis and T. salsuginea GPXLs
showed that they contain many cis-regulatory elements that were responsive to methyl
jasmonate (MeJA), gibberellin (GA), auxin, ethylene (ET), salicylic acid (SA), drought, low
temperature, and other abiotic stresses. Moreover, a greater number of cis-acting regulatory
elements related to stress and hormone response were found in the promoter region of the
salt-tolerant Thellungiella GPXLs compared to AtGPXLs [58]. Thus, GPXLs can be involved
via cis-acting regulatory elements related to stress and hormone signalling to confer high
stress tolerance to plants. In-silico-based prediction revealed that in the promoter region of
Ammopiptanthus nanus GPXs, 40 cis-acting elements occur mostly participating in (a)biotic
stress tolerance and hormone signalling [86]. Furthermore, Li et al. [40] observed cis-
elements in the promoter region of B. napus GPXs; among them, four, five and several other
cis-elements were linked with stress-responsive elements (drought, low-temperature, light,
and anaerobic induction), hormone-related elements (auxin, ABA, GA, MeJ, SA) and light-
related elements, respectively [40]. Similarly, conserved cis-acting elements associated with
(a)biotic stresses and hormone response were reported in the promoter region of Theobroma
cacao, Phoenix dactylifera, R. communis, G. hirsutum and Z. mays GPXs [46,47,52,54,85].

Hence, GPXs are involved in signalling during environmental stresses, and activity of
GPXs is regulated at both the transcriptional and post-translational level (Figure 2).
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Figure 2. Schematic summary of regulation and main roles of cytoplasmic and nuclear localized
plant glutathione peroxidases. (1) Transcriptional control of GPX gene expression via cis-regulatory
elements and transcriptional factors, (2) post-transcriptional regulation of GPX mRNAs by splicing
mechanisms, (3) GPX mRNAs can be targeted by different types of miRNAs, (4) Lys decrotonylation
can increase the GPX protein activity. Abbreviations: APX, ascorbate peroxidase; AsA, ascorbic
acid; CAT, catalase; DHA, dehydroascorbate; GPX, glutathione peroxidase; GR, glutathione reduc-
tase; GSH, reduced glutathione; GSSG, oxidized glutathione; GST, glutathione transferase; LOOH,
lipid peroxide/hydroperoxide; mRNA, messenger RNA; miRNA, microRNA; POD, guaiacol per-
oxidase; RNS, reactive nitrogen species; ROS, reactive oxygen species; TFs, transcription factors;
TRX, thioredoxin.
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5. GPXs Regulates the Growth and Development of Plants

Besides their role in stress tolerance, GPXs regulate plant growth and development
under normal as well as in unfavorable conditions. The relevance of GPX(L)s in growth
and development came to light after reports of the high transcript amount of GPX(L) genes
in O. sativa and A. thaliana plants and that their expressions are dependent on tissues
and developmental stages (Figure 3) [16,34,56,67,74]. Elevated expression levels of the
AtGPXL2, AtGPXL3, and AtGPXL8 genes were reported during the process of Arabidopsis
seed germination, while the rest of them, such as AtGPXL1, AtGPXL4, AtGPXL5, AtGPXL6,
and AtGPXL7, were downregulated [56]. Passaia et al. [74] reported that the knockdown
of OsGPX1 or OsGPX3 severely affected the growth and development of rice plants [74];
furthermore, according to recent findings, they have crucial roles in development of zygotes
and embryos [32].
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Rattanawong et al. demonstrated that both GSH depletion and inhibition of GPX
activity resulted in high ROS accumulation in zygotic/embryonic nuclei, impairing the
proper early embryonic development. Their results indicate the cooperative roles of GSH
and OsGPX1 in quenching of nuclear ROS to promote developmental progression of the
zygote [32]. The regulator function of ROS was reported both in somatic tissues and re-
productive processes, such as megagametogenesis, programmed cell death in tapetum,
pollen–pistil interaction, pollen tube growth and early embryogenesis [29,31,32]. In addi-
tion, GSH regulates the division of the cell cycle, cell differentiation, and transition from
G1 to S phase, while the conversely higher amount of GSSG leads to hampering of the
cell proliferation further [89–91]. In the zygote, GSH can participate in decreasing the
H2O2 level directly as a co-substrate for OsGPX1 or as part of the “Foyer-Halliwell-Asada”
pathway [32]. Due to these ROS-related events, DNA integrity is achieved in the zygote,
thereby progressing to the next phase of the cell cycle and subsequent cell division. Interest-
ingly, the GPX1 activity is responsible for temporary accumulation of GSSG, which is also
essential in the early embryogenesis. Earlier it was reported that plant GPXs preferentially
utilize TRX as electron donor instead of GSH [27], and it has been demonstrated that GSH
exhibits compensatory activity when the TRX reduction system (NADPH-dependent TRX
reductase A and B genes) is impaired [92]. In contrary, convincing results of Rattanawong
and co-workers’ experiments indicate the use of GSH in the GPX-catalyzed H2O2 reduction
reaction in vivo in O. sativa zygotes [32]. Pagnussat et al. reported on similar functions
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of AtGPXLs: insertional Atgpxl5 knock-out mutant led to the abruption of endosperm
formation and considerable embryo lethality [93].

It is well established that cellular redox homeostasis, mainly depending on ROS,
GSH/GSSG and AsA/DHA redox couples and related enzymatic antioxidants, is one of
the key regulators of growth, development, organogenesis, and regeneration of cells in
plants [29,89,94–96]. As another example, the development of root architecture is also
determined by the differing redox status and the distribution of ROS in the meristematic
and other root regions [31,97]. GSH participates in the activation and maintenance of cell
division, especially in root apical cells [98–101]. The gene expression pattern analysis in
Arabidopsis GSH-deficient root meristemless 1-1 (rml1-1) mutant revealed altered expression
levels of redox-related genes, such as GSTs, glutaredoxins (GRXs), h-type thioredoxins
(TRXhs), and GPXLs [101]. During the acute shortage of GSH in Arabidopsis roots, a
higher degree of TRX utilization compared to GSH was suggested, a hint toward the
relationship between GSH and TRX systems [101]. The rml1-1 roots also possessed lower
transcript amount of PIN5 auxin transporter and higher transcript level of IAA20 that
caused root meristem collapse [102,103]. On the contrary, lower expression of RADIALIS-
LIKE SANT/MYB 1(RMS1) and HOOKLESS 1 (HLS1) genes were reported under GSH
depletion conditions that are responsible for the control of early photomorphogenesis in A.
thaliana plants [104]. Intriguingly, the shoot of rml1-1 mutant plants was not significantly
affected. This might be due to the thioredoxin-dependent control, since GSH and TRX
systems are interconnected, as has been previously suggested [90,101,105]. Maintaining the
reduced thiols homeostasis in plants by the TRX system is important for the regulation of
root architecture, but also for chloroplast biogenesis, and development of leaves [106,107].
For example, a mutation in TRXs can lead to hampering the development of chloroplast,
root, and leaves in Arabidopsis and tobacco plants [106–109].

Passaia and co-workers investigated the role of GPXLs in response to auxin, ABA, and
strigolactone (SL) hormones by using T-DNA insertion mutants (Atgpxl1-8) and found the
importance of these isoenzymes in the regulation of lateral root development through redox-
and hormone-mediated pathways [34]. The role of GPXL7 in the hormone-dependent
development of roots was proven by applying 1-naphtaleneacetic acid (NAA) and synthetic
SL [34]. Furthermore, gpxl7 knock-out mutants showed a significantly higher number of
rosette leaves reported in short-day and long-day photoperiods, respectively, verifying
the importance of AtGPXL7 in shoot development [34]. According to our recent results,
lack of AtGPXL5 enzyme activity negatively influenced the plant growth and development
by decreasing the length of primary roots, the biomass, the chlorophyll and anthocyanin
pigment contents, rosette size, and convex area of leaves as compared to wild types
and overexpressing lines under normal environmental conditions [67]. Additionally, the
importance of GPXL5 in the development and skotomorphogenesis process of dark-grown
Arabidopsis seedlings was demonstrated, as knock-down Atgpxl5 mutants showed defective
phenotypes, such as decreased growth of hypocotyl and radical compared to 4-day old
dark-grown wild type and AtGPXL5 overexpressing plants [69]. Although the elevated
ROS level and more oxidized redox status of the Atgpxl5 mutants can trigger the increase of
the ET production, changes in the ET-related gene expression pattern both in the insertional
mutant and the AtGPXL5-overexpressing plants indicate the crosstalk between AtGPXL5
and ethylene signalling [69].

The importance of GPX(L)s in the proper growth and development of model plants
has enabled researchers to apply this knowledge to crop plants. For instance, it was found
that a mutation in mitochondrial-localized OsGPX3 led to stunted growth of shoots and
roots and negatively regulates the photosynthesis and seed production in rice plants as
compared to wild types [74,77]. Another isoenzyme, OsGPX5 of rice plant, was studied
by Wang et al. [110] and they reported that knock-out mutation of OsGPX5 exhibited a
lower germination rate, decreased growth, and less filling of grains and seed setting than
the wild type plants (Figure 3) [110]. Recently, the tissue specific GPX gene expression
level was reported in several crop plants (Table 2.) [40,52,55,111]. Among the 25 BnGPXs
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genes, group II genes such as BnGPX1−14, −8, −18, −11, −25, −12, and −23 all were
upregulated in shoot, roots, leaves, flower, silique, and seeds, except for the downregulation
of BnGPX8, −12−18 in the seeds [40]. However, genes belonging to other groups were
downregulated instead of BnGPX2, −4, −15, −22, which were significantly higher in the
leaves, flower, seeds, and silique. The high GPX expression levels indicate that these genes
are very important in the developmental processes of rape seed [40]. During investigation
of the redox regulation of Dimocarpus longan fruit senescence, Wu et al. also identified a
GPX, which is involved in fruit senescence or quality deterioration of harvested D. ‘longan
fruit [88]. In C. lanatus the ClGPX1, −3 and −5 showed relatively high or moderate
expression in expanding and mature leaves or roots, respectively [49]. Extremely high
ClGPX1 expression was measured in fruits, but the high transcript level of another five
ClGPX genes in flowers and fruits indicated that the encoded proteins might play important
roles in various physiological and developmental processes of watermelon [49].

The involvement of GPXs in the shoot organogenesis was also shown [117]. Intro-
duction of transgenic lines with the overexpression of GPX from Citrus sinensis led to
unsuccessful regeneration of plants, which might be due to uncontrolled hunting of ROS
level by constitutive expressed GPX isoenzyme, as an optimum level of ROS is required for
regeneration of shoots at the early stage of plants [117]. In short, GPXs are important regu-
lators of the shoot and root development, but further clarification of their species-specific
functions is needed. Although the heme-containing Class I and Class III peroxidases are
much larger plant enzyme families, the non-heme GPX(L)s are also important ROS scaveng-
ing proteins; their species-specific functions may have more important signalling functions
due to locally fine-tuning the ROS level and redox homeostasis or modifying the activity of
interacting regulatory proteins (Table 3).
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Table 2. Main reported functions of relevant GPXs from different mammalian and plant species.

Enzyme
Reported Function/Involvement

Organism References
Stress Responses Redox Regulation/

Signalling Normal Metabolism Development

Animal GPXs

HsGPX1, -2, -3,
-5, -6

H2O2 and lipid hydroperoxide
processing, stress tolerance Insulin signalling

H2O2 and lipid
hydroperoxide
processing +

Male fertility Homo sapiens [112]

HsGPX4 Lipid peroxidation, protein
thiol oxidation

Cell death,
Ferroptosis Protein thiol oxidation Spermatogenesis,

chromatin condensation, Homo sapiens [23–25]

HsGPX7
General scavenging of ROS,

lipid peroxides
Anti-inflammatory

Anti-carcinogenesis Homo sapiens [18,21,113]

MmGPX4 Anti-carcinogenesis Spermatogenesis Spermatogenesis, male fertility,
embryogenic development Mus musculus [20]

A. thaliana GPXLs AtGPXL1-8
Diverse biotic and abiotic (heat,
cold, salt, drought, osmotic and

metal) stresses, ferroptosis

Maintenance of redox homeostasis,
oxidative signal transducer in ABA and

drought stress signalling,
Photosynthesis

Development in whole life cycle
(embryogenesis, germination, root, shoot
apical meristem, hypocotyl, root system,

rosette leaves, flowering, pollen tube
growth, fertilization, seed dormancy)

A. thaliana [33,36,41,53,58,64,
67,69,114,115]

GPXs from other
plant species

OsGPX1-5 Drought, salt, cold,
oxidative stresses

Redox signalling, participation in the
interaction between ER stress and

redox homeostasis,
crosstalk between mitochondria

and chloroplast

Photosynthesis and
cellular respiration

In development during the whole life cycle
(embryogenesis, germination, root-, shoot
apical meristem, hypocotyl, root system,

seedling development, rosette leaves,
inflorescence and silique, pollen tube

growth, seed setting, grain filling,
seed dormancy)

O. sativa [16,32,34,39,74,77,
87,110]

SlGPX1-5
(GSHPxle1-5) Heat stress, cold, light stress unknown unknown unknown S. lycopersicum [39,58,116]

HvGPX1-3 Oxidative stress, salt/osmotic
stress, norflurazon, and

paraquat resistance
unknown unknown unknown H. vulgare [43]

BoGPX1-8 Salinity, cold, waterlogging,
and drought

Bn
BoGPX genes might contribute to stress

responses and hormone
signaling pathways

unknown In development of root, seed, leaf, stem,
flower, and silique B. oleracea [40]

BrGPX1-12 Salinity, cold, waterlogging,
and drought

BrGPX genes might contribute to stress
responses and hormone

signaling pathways
unknown In development of root, seed, leaf, stem,

flower, and silique B. rapa [40]

BnGPX1-25 Salinity, cold, waterlogging,
and drought

BnGPX genes might contribute to stress
responses and hormone

signaling pathways
unknown In development of root, seed, leaf, stem,

flower, and silique B. napus [40]

GhGPX1-13 Salt stress, heat,
sulphate solution

Importance of GhGPXs in hormone
signalling, regulation of redox homeostasis unknown In regulation of plant growth

and development G. hirsutum [54]

TaGPX1-12 Heat, drought and/or a
combination, salt

Possible role of TaGPXs in development
and stress response, putative roles in

signal transductions

GSH biosynthetic and
metabolic processes, DNA

metabolic processes

Putative roles in plant growth and
development, in leaf developmental stages,

roots, stems, spikes, and grain
T. aestivum [55]

ZmGPX1-7 Drought, waterlogging Stress regulation through regulatory
elements and splicing mechanisms Growth, development Z. mays [52]



Antioxidants 2022, 11, 1624 12 of 18

Table 3. Comparison of the involvement of heme-containing Class III peroxidases and the non-heme
GPX(L) enzyme family in stress responses, growth and developmental processes and interactions
with auxin and ethylene hormones.

Function/Involvement in: Heme-Peroxidases
Family: Class III Peroxidases

Non-Heme Peroxidases Family:
Glutathione Peroxidases

ROS metabolism + +
Redox signalling + +
Defence against pathogen infection + +
Defence against abiotic stresses + +
Wound healing + −
Cell wall metabolism + −
Lignification and suberization + −
Defence of membranes − +
Growth and development + +

Seed germination + +
Growth of roots + +
Growth of shoots + +
Flowering + +
Fertilization, pollen tube growth + +
Embryogenesis, seed development + +
Fruit growth and ripening + +

Interaction with plant hormones + +
Auxin catabolism + −
Auxin transport − +
Ethylene biosynthesis + +
Ethylene signalling − +

6. Conclusions

While animal GPXs are well-estimated enzymes, less information is available on plant
GPXs. Although several enzymes have been purified and their biochemical properties
have been analyzed, their in vivo roles and significance is still unexplored. Earlier it was
thought that their main function is the conversion of lipid hydroperoxides into less toxic
compounds and thus the maintenance of membrane integrity, in recent years their in-
volvement in impacting the redox homeostasis and altering the H2O2 homeostasis and
thiol/disulfide balance has come to the fore. In the last decades, much research has proved
that plant GPX(L)s not only are essential elements of plant stress responses but are involved
in several processes that determine the growth and development even under normal con-
ditions. Thorough phylogenetic analysis of GPXs from different kingdoms has helped
us to understand that the independent evolvement of genes led to their heterogeneous
presence in genomes of plant relatives. Here we updated the main results of detailed
molecular, biochemical, genetic, or phylogenetic analysis performed on this enzyme fam-
ily from different plant sources that discovered several new interactions and functions
(Figure 1). Among these, for example, their regulatory role in epigenetic processes is mostly
unknown. In silico analysis of the promoter region of different plant GPX genes discovered
the presence of different hormone- and light-responsive cis-regulatory elements beside the
stress- and redox-associated sequences. Astonishing new findings were published related
to the control of their post-transcriptional and post-translational regulation (via splicing
mechanisms, miRNA driven silencing or Lys de-crotonylation, respectively) (Figure 1).
Their general involvement in stress responses and the results obtained by overexpression
of specific plant GPX genes foreshadow that these enzymes can be key players in the
establishment of plants with increased stress tolerance. Overexpression of GPX genes in
different plant species led to increased tolerance against different stresses, but also revealed
their importance in the growth and developmental processes. GPX overexpression may be
a promising approach in the molecular or traditional breeding to develop stress-resistant
crop plants, however there are many unresolved questions. Firstly, it will be important to
explore the species-specific roles and regulatory network of GPX(L)s in diverse crop plants
under normal and stress conditions. Secondly, the crosstalk between GPX(L)s and other
compounds of the antioxidant system and hormone signalling, though they influence stress
responses, growth and developmental processes, still requires further intensive research.
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For example, the significance of GPX activation by de-crotonylation, or their involvement
in the ferroptosis, are still unknown. Finally, it is also conceivable that due to their ability to
catalyze redox reactions of different lipid hydroperoxides, plant GPXs might be used in the
development of analytical and diagnostic kits, similarly to several members of the Class
III peroxidase enzyme family, such as horseradish peroxidase (HRP). The multifaceted
involvement in the regulation of physiological processes of the entire plant life ensures that
the significant plant GPXs will be more widely recognized and applied in the future.
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