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Abstract

We show that ω(n) and Ω(n), the number of distinct prime factors
of n and the number of distinct prime factors of n counted according
to multiplicity are good weighting functions for the pointwise ergodic
theorem in L1. That is, if g denotes one of these functions and Sg,K =∑

n≤K g(n) then for every ergodic dynamical system (X,A, µ, τ) and

every f ∈ L1(X)

lim
K→∞

1

Sg,K

K∑

n=1

g(n)f(τnx) =

∫

X

fdµ for µ a.e. x ∈ X.

This answers a question raised by C. Cuny and M. Weber who
showed this result for Lp, p > 1.
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1 Introduction

In [1] C. Cuny and M. Weber investigated whether some arthimetic weights
are good weights for the pointwise ergodic theorem in Lp. In this paper we
show that the prime divisor functions ω and Ω are both good weights for the
L1 pointwise ergodic theorem. The same fact for the spaces Lp, p > 1 was
proved in [1] and our paper answers a question raised in that paper. Recall
that if n = pα1

1 · · · pαk

k then ω(n) = k and Ω(n) = α1 + ... + αk. We denote
by g one of these functions. Given K we put

Sg,K =
∑

n≤K

g(n).

We suppose that (X,A, µ) is a measure space and τ : X → X is a measure
preserving ergodic transformation. Given f ∈ L1(X) we consider the g-
weighted ergodic averages

Mg,Kf(x) =
1

Sg,K

K∑

n=1

g(n)f(τnx). (1)

We show that for g = ω, or Ω these averages µ a.e. converge to
∫
X
fdµ, that

is g is a good universal weight for the pointwise ergodic theorem in L1. See
Theorem 6.

For some similar ergodic theorems with other weights like the Möbius
function, or its absolute value, or the Liouville function we refer to the papers
of El Abdalaoui, Ku laga-Przymus, Lemańczyk and de la Rue, [3], and of
Rosenblatt and Wierdl [8].

2 Preliminary results

We recall Theorem 430 from p. 72 of [5]

∑

n≤K

ω(n) = K log logK + B1K + o(K) and (2)

∑

n≤K

Ω(n) = K log logK + B2K + o(K). (3)
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Hence, for both cases we can assume that there exists a constant B (which
depends on whether g = ω, or g = Ω) such that

∑

n≤K

g(n) = K log logK
(

1 +
B

log logK
+

o(K)

K log logK

)
. (4)

From this it follows that there exists Cg > 0 such that for all K ∈ N

( ∑

n≤K

g(n)
)⌊log logK⌋

= (Sg,K)⌊log logK⌋ > Cg(K⌊log logK⌋)⌊log logK⌋. (5)

We need some information about the distribution of the functions ω and
Ω. We use (3.9) from p. 689 of [6] by K. K. Norton which is based on a
result of Halász [4] which is cited as (3.8) Lemma in [6]. Next we state (3.9)
from [6] with δ = 0.1 and z = 2 − δ = 1.9.

Proposition 1. There exists a constant C̃H such that for every K ≥ 1
∑

n≤K

1.9ω(n) ≤
∑

n≤K

1.9Ω(n) ≤ C̃HK exp(0.9 · E(K)), where (6)

E(K) =
∑

p≤K
1
p
.

Recall that by Theorem 427 in [5]

E(K) =
∑

p≤K

1

p
= log logK + B1 + o(1). (7)

The constant B1 is the same which appears in (2). The way we will use this
is the following: there exists a constant CP such that for K > 3

E(K) =
∑

p≤K

1

p
< CP log logK. (8)

Combining this with (6) we obtain that for g = ω, or Ω we have for K > 3
∑

n≤K

1.9g(n) < C̃H ·K ·exp(0.9·CP log logK) ≤ CH ·K exp(0.9·CP ⌊log logK⌋),

(9)
with a suitable constant CH not depending on K.

In [1] a result of Delange [2] was used to deduce Theorem 2.7 in [1]. The
result of Delange is the following

3



Theorem 2. For every m ≥ 1 we have

∑

n≤K

g(n)m = K(log logK)m + O(K(log logK)m−1).

We were unable to use this result since the constant in O(K(log logK)m−1)
cannot be chosen not depending on m ≥ 1.

Hence we use (9) in the proof of the following lemma.

Lemma 3. There exists a constant CΩ,max such that for all K ≥ 16

∑

n≤K

ω(n)⌊log logK⌋ ≤
∑

n≤K

Ω(n)⌊log logK⌋ < K(CΩ,max⌊log logK⌋)⌊log logK⌋.

(10)

We remark that the assumption K ≥ 16 implies that log logK > 1.01 >
1.

Proof. Since ω(n) ≤ Ω(n) the first inequality is obvious in (10),
We assume that K ≥ 16 is fixed and for ease of notation we put ν =

⌊log logK⌋. Set

Nl,K = {n ≤ K : 2lν ≤ Ω(n) < 2l+1ν}. (11)

By (9) Nl,K · 1.92lν < CHK exp(0.9 · CPν). This implies that

Nl,K < CHK · exp((0.9 · CP − 2l log 1.9)ν). (12)

Since log 1.9 > 0.6 we can choose l0 such that for l ≥ l0

0.9 · CP − 2l log 1.9 + (l + 1) log 2 < −0.5 · 2l = −2l−1. (13)

From (12) and (13) we infer

∑

n≤K

Ω(n)ν < K · (2ν)ν +

∞∑

l=1

Nl,K(2l+1ν)ν ≤ (14)

K ·(2ν)ν+

l0−1∑

l=1

K(2l+1ν)ν+

∞∑

l=l0

CHKνν exp(((log 2l+1)+0.9CP−2l log 1.9)ν) <
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(using (13) with a suitable constant CΩ,1 > 2 we obtain)

Cν
Ω,1Kνν +

∞∑

l=l0

CHKνν exp(−2l−1ν) <

(recalling that ν = ⌊log logK⌋ ≥ ⌊log log 16⌋ = 1, with a suitable constant
CΩ,max we have)

Kνν
(
Cν

Ω,1 + CH

∞∑

l=l0

exp(−2l−1)
)
< Cν

Ω,maxKνν =

K(CΩ,max⌊log logK⌋)⌊log logK⌋.

We need the following (probably well-known) elementary inequality to
which we could not find a reference and hence provided the short proof.

Lemma 4. Suppose K, ν ∈ N, b1, ..., bK are nonnegative numbers and we

have permutations πj : {1, ..., K} → {1, ..., K}, j = 1, ..., ν. Then

bπ1(1) · · · bπν(1) + ... + bπ1(K) · · · bπν(K) ≤ bν1 + ... + bνK . (15)

Proof. Without limiting generality we can suppose that 0 ≤ b1 ≤ ... ≤ bK .
First observe that if A > B ≥ 0 and C > D ≥ 0 then

from (A− B)(C −D) ≥ 0 it follows that AC + BD ≥ AD + BC. (16)

Set πj,1(k) = πj(k) for j = 1, ..., ν and k = 1, ..., K. If πj,l is defined for an
l ∈ N then set

M
∗
l = max

k
bπ1,l(k) · · · bπν,l(k).

We want to define a sequence of permutations such that for every l

bπ1,l−1(1) · · · bπν,l−1(1) + ... + bπ1,l−1(K) · · · bπν,l−1(K) ≤ (17)

bπ1,l(1) · · · bπν,l(1) + ... + bπ1,l(K) · · · bπν,l(K).

Suppose that M
∗
l < bνK . Select k∗ such that M

∗
l = bπ1,l(k∗) · · · bπν,l(k∗). Then

we can select j∗ such that bπj∗,l(k
∗) < bK and k∗∗ such that bπj∗,l(k

∗∗) = bK .
Set A = bK = bπj∗,l(k

∗∗), B = bπj∗,l(k
∗), C = bπ1,l(k∗) · · · bπν,l(k∗)/B = M

∗
l /B
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and D = bπ1,l(k∗∗) · · · bπν,l(k∗∗)/A. Then A > B ≥ 0 and C > D ≥ 0. Set
πj∗,l+1(k

∗∗) = πj∗,l(k
∗), πj∗,l+1(k

∗) = πj∗,l(k
∗∗), and for any other j and k set

πj,l+1(k) = πj,l(k). From (16) it follows that (17) holds with l replaced by
l + 1 and M

∗
l+1 > M

∗
l . Hence in finitely many steps there is l1 such that

M
∗
l1

= bνK .
After step l1 arguing as above we can still define the permutations πj,l so

that (17) holds at each step and can reach a step l2 such that M∗
l2

= bνK and
the second largest term among bπ1,l2

(k) · · · bπν,l2
(k), k = 1, ..., K equals bνK−1.

Repeating this procedure one can obtain (15).

We will use the transference principle and hence we need to consider
functions on the integers. Suppose ϕ : Z → [0,+∞) is a function on the
integers with compact/bounded support. Again g will denote ω, or Ω. Put

Mg,Kϕ(j) =
1

Sg,K

K∑

n=1

g(n)ϕ(j + n) for j ∈ Z.

First we prove a “localized” maximal inequality.

Lemma 5. There exists a constant Cg,max > 0 such that for any ϕ : Z →
[0,+∞), K ≥ 16 and k ∈ Z

K∑

j=1

(Mg,Kϕ(k+j))⌊log logK⌋ ≤
( 2K∑

j=2

ϕ(k+j)
)(Cg,max

K

2K∑

j=2

ϕ(k+j)
)⌊log logK⌋−1

.

(18)

Proof. Without limiting generality we can suppose that k = 0 and K ≥ 16
is fixed. We use again the notation ν = νK = ⌊log logK⌋. We put

g̃(n) = g̃K(n) =

{
g(n) if 1 ≤ n ≤ K

0 otherwise.
(19)

We need to estimate

K∑

j=1

( 1

Sg,K

K∑

n=1

g(n)ϕ(j + n)
)ν

=

1

Sν
g,K

K∑

j=1

K∑

n1=1

...

K∑

nν=1

g(n1) · · · g(nν) · ϕ(j + n1) · · ·ϕ(j + nν) =
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1

Sν
g,K

K∑

n′=1

2K∑

j1=2

...
2K∑

jν=2

ϕ(j1) · · ·ϕ(jν) · g̃(n′)g̃(n′ + j2 − j1) · · · g̃(n′ + jν − j1) =

1

Sν
g,K

2K∑

j1=2

...

2K∑

jν=2

ϕ(j1) · · ·ϕ(jν) ·

K∑

n′=1

g̃(n′)g̃(n′ + j2 − j1) · · · g̃(n′ + jν − j1) ≤

(using Lemma 4 and (19))

1

Sν
g,K

2K∑

j1=2

...
2K∑

jν=2

ϕ(j1) · · ·ϕ(jν) ·
2K−1∑

n′=−K+2

(g̃(n′))ν =

1

Sν
g,K

2K∑

j1=2

...
2K∑

jν=2

ϕ(j1) · · ·ϕ(jν) ·
K∑

n′=1

(g(n′))ν ≤

(by using Lemma 3)

K · Cν
Ω,maxν

ν 1

Sν
g,K

( 2K∑

j=2

ϕ(j)
)ν

<

(by (5))

K · Cν
Ω,maxν

ν 1

Cg(Kν)ν

( 2K∑

j=2

ϕ(j)
)ν

<

(with a suitable constant Cg,max > 0)

<
( 2K∑

j=2

ϕ(j)
)
·
(
Cg,max

1

K

2K∑

j=2

ϕ(j)
)ν−1

.

3 Main result

Theorem 6. For every ergodic dynamical system (X,A, µ, τ) and every f ∈
L1(X)

lim
K→∞

Mg,Kf(x) =

∫

X

fdµ for µ a.e. x ∈ X. (20)
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Proof. By Theorem 2.5 and Remark 2.6 of [1] we know that ω and Ω are
good weights for the pointwise ergodic theorem in Lp for p > 1. This means
that we have a dense set of functions in L1 for which the pointwise ergodic
theorem holds. In Theorem 2.5 of [1] it is not stated explicitely that the limit
function of the averages Mg,Kf is

∫
X
fdµ, but from the proof of this theorem

it is clear that Mg,Kf not only converges a.e., but its limit is indeed
∫
X
fdµ

(at least for f ∈ L∞(µ)). Indeed, from (2.2) in [1] it follows that Mg,Kf can
be written as the sum of an ordinary Birkhoff-average of f and an error term
which tends to zero as K → ∞.

Hence by standard application of Banach’s principle (see for example [7]
p. 91) the following weak L1-maximal inequality proves Theorem 6.

Proposition 7. There exists a constant Cmax such that for every ergodic

dynamical system (X,A, µ, τ) for every f ∈ L1(µ) and λ ≥ 0

µ{x : sup
K≥1

Mg,Kf(x) > λ} ≤ Cmax

||f ||1
λ

. (21)

Proof of Proposition 7. By standard transference arguments, see for example
[8] Chapter III, it is sufficient to establish a corresponding weak maximal
inequality on the integers with λ = 1 for nonnegative functions with compact
support. Hence, this proof will be completed by Proposition 8 below.

Thus we need to state and prove the following maximal inequality:

Proposition 8. There exists a constant Cmax such that for every ϕ : Z →
[0,∞) with compact support

#{j : sup
K∈N

Mg,Kϕ(j) > 1} ≤ Cmax||ϕ||ℓ1.

Proposition 8 can also be reduced further to the following Claim. Set
Ml = Mg,2l .

Claim 9. There exists a constant C ′
max such that for every ϕ : Z → [0,+∞)

with compact support

#{j : sup
l∈N

Mlϕ(j) > 1} ≤ C ′
max||ϕ||ℓ1. (22)
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Proof of Proposition 8 based on Claim 9. Given K ∈ N choose lK ∈ N such
that 2lK−1 < K ≤ 2lK . By (2), or (3) there exists a constant CR > 0 not
depending on K such that Sg,2lK ≤ CRSg,K . We have

1 < Mg,Kϕ(j) =
1

Sg,K

K∑

j=1

g(n)ϕ(j + n) ≤

Sg,2lK

Sg,K

·
1

Sg,2lK

2lK∑

n=1

g(n)ϕ(j + n) ≤ CRMg,2lKϕ(j).

Hence, 1 < Mg,Kϕ(j) implies 1
CR

< Mg,2lKϕ(j) = MlKϕ(j).
For any ϕ̃ : Z → [0,+∞) with compact support taking ϕ = CRϕ̃ by

Claim 9 we obtain

#{j : sup
K∈N

Mg,Kϕ̃(j) > 1} ≤ #{j : sup
l∈N

Mlϕ(j) > 1} ≤

C ′
max||ϕ||ℓ1 = C ′

maxCR||ϕ̃||ℓ1.

Proof of Claim 9. If 1 ≤ l ≤ 4 then consider the set El = {j : Mlϕ(j) > 1}
and the system of intervals Il = {[j + 1, j + 2l]∩Z : j ∈ El}. Then El + 1 ⊂
∪I∈IlI and hence #El ≤ # ∪I∈Il I. We can select a subsystem I ′

l ⊂ Il such
that no point of Z is covered by more than two intervals belonging to I ′

l and
∪I∈I′

l
I = ∪I∈IlI.

Suppose I = [j + 1, j + 2l] ∩ Z ∈ I ′
l ⊂ Il. Then Mlϕ(j) > 1 implies that

1 <
1

Sg,2l

2l∑

n=1

g(n)ϕ(j + n),

that is

Sg,2l ≤
2l∑

n=1

g(n)ϕ(j + n) =
∑

k∈I

g(k − j)ϕ(k).

Thus

1 ≤
Sg,2l

maxk≤2l g(k)
≤

∑

k∈I

ϕ(k).

9



If l ≤ 4 then we have #I/16 ≤ 1 ≤
∑

k∈I ϕ(k). Since no point is covered
by more than two intervals I ∈ I ′

l , that is,
∑

I∈I′

l
χI(j) ≤ 2, (j ∈ Z) we

obtain that for l ≤ 4

#El ≤ # ∪I∈I′

l
I ≤ 32||ϕ||ℓ1

and hence
#{j : sup

1≤l≤4
Mlϕ(j) > 1} ≤ 128||ϕ||ℓ1. (23)

Next suppose that l > 4. We consider the dyadic intervals (r2l, (r+1)2l]∩
Z, r ∈ Z. We say that r ∈ Rl,+ if

1

2l

r2l+2·2l∑

j=r2l+1

ϕ(j) >
1

100 · Cg,max

. (24)

Otherwise, if r 6∈ Rl,+ we say that r ∈ Rl,−.
For r ∈ Rl,− we use Lemma 5 and the negation of (24) to deduce that for

l > 4

2l∑

j=1

(Mlϕ(r2l + j))⌊log log 2
l⌋ <

( 2·2l∑

j=2

ϕ(r2l + j)
)
·
( 1

100

)⌊log log 2l⌋−1

≤ (25)

1002
( 2·2l∑

j=2

ϕ(r2l + j)
)
·
( 1

100

)log log 2l

≤

1002
( 2·2l∑

j=2

ϕ(r2l + j)
)
· exp(−(log 100) · log log 2l) ≤

1002
( 2·2l∑

j=2

ϕ(r2l + j)
)
·

6

l2
, where we used that

4.61 ≥ log 100 ≥ 4.60517 and log log 2 > −0.37 implies that

exp(−(log 100) · log log 2l) = exp(−(log 100)((log l) + log log 2)) =

exp(−(log 100) log log 2) · exp(−(log 100) log l) <
6

l2
.

Set M∗
l = {j : Mlϕ(j) > 1} and M∗ = ∪lM

∗
l .
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If r ∈ Rl,− then by (25)

#(M∗
l ∩ (r2l, (r + 1)2l]) ≤

2l∑

j=1

(Mlϕ(r2l + j))⌊log log 2
l⌋ ≤

6 · 1002 ·
1

l2

( 2·2l∑

j=2

ϕ(r2l + j)
)
.

Hence
#(M∗

l ∩
⋃

r∈Rl,−

(r2l, (r + 1)2l]) ≤

12 · 1002 1

l2
||ϕℓ1||

and

#
(⋃

l

(M∗
l ∩ ∪r∈Rl,−

(r2l, (r + 1)2l])
)
≤ 12 · 1002π

2

6
||ϕℓ1||. (26)

On the other hand,

∪l>4 ∪r∈Rl,+
(r2l, (r + 1)2l] ∩ Z ⊂ ∪l>4 ∪r∈Rl,+

[r2l, (r + 2)2l] ∩ Z. (27)

We can again select a subsystem I∗
+ of the intervals I+ = {[r2l, (r + 2)2l] :

l > 4, r ∈ Rl,+} such that
∑

I∈I∗

+

χI(j) ≤ 2 for all j ∈ Z and ∪I∈I+ I = ∪I∈I∗

+
I. (28)

From (24) it follows that if [r2l, (r + 2)2l] = I ∈ I∗
+ then

Cg,max · 400
∑

j∈I

ϕ(j) > 4 · 2l > #(I ∩ Z).

Thus, by (28)

#(∪I∈I+I ∩ Z) = #(∪I∈I∗

+
I ∩ Z) < Cg,max · 800||ϕ||ℓ1.

Hence, by (27)

#

(
∪l>4 ∪r∈Rl,+

(r2l, (r + 1)2l] ∩ Z

)
≤ Cg,max · 800||ϕ||ℓ1.

From this, (23) and (26) it follows that

#M∗ ≤ (128 + 12 · 1002π
2

6
+ 800Cg,max)||ϕ||ℓ1 = C ′

max||ϕ||ℓ1.
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