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ABSTRACT

We investigate the internal dynamics of anisotropic, rotating globular clusters with a multimass

stellar population by performing new direct N -body simulations. In addition to the well-known radial

mass segregation effect, where heavy stars and stellar remnants sink toward the center of the cluster,

we find a mass segregation in the distribution of orbital inclinations as well. This newly discovered

anisotropic mass segregation leads to the formation of a disk-like structure of massive objects near the

equatorial plane of a rotating cluster. This result has important implications on the expected spatial

distribution of black holes in globular clusters.

Keywords: Astrophysical black holes (98), Stellar mass black holes (1611), Globular star clusters

(656), Stellar kinematics (1608), Stellar dynamics (1596), Dynamical friction (422), N-body

simulations (1083), Astrophysical processes (104)

1. INTRODUCTION

Galactic globular clusters (GCs) are dense, ancient

stellar systems (> 10 Gyr) that in many cases exhibit a

significant amount of internal rotation (Lane, R. R. et al.

2011; Bellazzini, M. et al. 2012; Bianchini et al. 2013;

Fabricius et al. 2014; Kacharov, N. et al. 2014; Kimmig

et al. 2015; Lardo, C. et al. 2015; Boberg et al. 2017;

Jeffreson et al. 2017; Ferraro et al. 2018; Kamann et al.

2018; Lanzoni et al. 2018; Bianchini et al. 2018; Sollima

et al. 2019). These star clusters represent a unique place

for studying a variety of dynamical processes, such as

two-body relaxation, mass segregation, stellar collisions,

evaporation, and core collapse (Meylan & Heggie 1997).

Large number densities of stars facilitate close gravi-

tational encounters in GCs. This defines them as colli-

sional stellar systems in which pairwise encounters per-

mit the exchange of orbital energies and angular mo-

menta. This process, known as two-body relaxation,

leads to diffusion of the phase space distribution func-

tion. As a consequence of the relaxation, the entropy in-

creases and the system becomes inhomogeneous, form-

ing a small, dense core of heavy objects and a large,
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low-density halo of light objects (Binney & Tremaine

2008). This radial redistribution of stars, with respect

to their masses, is the well-known radial mass segrega-

tion in stellar systems. The timescale of two-body re-

laxation (t2b) is roughly proportional to the number N

(≈ 6×104−6×106), and the typical crossing time tcross

(≈ 105 − 106 yr) of stars in a Galactic GC (Baumgardt

& Hilker 2018; Binney & Tremaine 2008). The general

estimate is t2b ≈ 0.1N/ ln(N) · tcross ≈ 108−1010 yr. As

t2b is less than both the Hubble-time and the age of a

typical GC, two-body relaxation plays a vital role in the

dynamical evolution of GCs.

Several theoretical studies showed that rotation may

significantly affect the GCs’ evolution. In their pioneer-

ing papers Einsel & Spurzem (1999); Kim et al. (2002,

2004) investigated the dynamical evolution of rotating

stellar systems by Fokker–Planck models. In particu-

lar, Kim et al. (2004) studied rotating King models of

GCs with mass spectra and found that both dynami-

cal friction and initial rotation accelerate the dynamical

evolution of GCs leading to a rapid core collapse. They

showed that heavy objects segregate into the center as

long as dynamical friction dominates in the competition

with angular momentum exchange. The angular mo-

mentum of massive objects is sufficient to speed up their

rotation causing gravogyro instability, a process during
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which angular momentum is transported outwards by

the stellar dynamical analog of viscosity (Hachisu 1979,

1982). They found that the heavy objects rotate faster

than light ones in the center which leads to the suppres-

sion of mass segregation compared with the nonrotating

GCs.

Ernst et al. (2007) performed direct N -body simula-

tions of rotating GCs with both equal-mass and two-

mass stellar populations. Their equal-mass models con-

firmed that rotation accelerates the dynamical evolu-

tion through the gravogyro instability, causing a faster

contraction of the core due to the outward transport

of angular momentum. They found that rotation acts

in the opposite direction in the two-mass systems as it

slows down radial mass segregation, which is in agree-

ment with the findings of Kim et al. (2004). Shortly

after, Kim et al. (2007) also confirmed the acceleration

of the core collapse in single-mass systems due to ro-

tation. Later, Hong et al. (2013) published an exten-

sive study on direct N -body simulations of GCs with

different initial rotations with a two-mass model that

showed qualitative agreement with the abovementioned

Fokker–Planck method results, and showed evidence for

systematic angular momentum exchange between differ-

ent mass components. Tiongco et al. (2016) have shown

that the evolution in an external tidal field may natu-

rally generate some rotation in GCs. Recently, Tiongco

et al. (2017); Tiongco et al. (2018) broadened the above

investigations by including velocity anisotropies with a

range of external tidal field configurations and inclina-

tion angles with respect to the GC’s internal angular

momenta (see also Breen et al. 2017). They found a

variety of complex features in the evolution of the GCs’

rotational properties including the possible formation of

twisted differentially rotating geometries and counter-

rotation between the inner and outer regions.

In a recent study, Meiron & Kocsis (2018) investigated

the relaxation and mixing of stars in N -body simula-

tions of GCs, and found that persistent mutual gravita-

tional torques can accelerate the relaxation of the orbital

planes’ distribution. This process, known as vector res-

onant relaxation (VRR), has been previously examined

in the context of nuclear star clusters because there the

competing two-body relaxation process is greatly sup-

pressed due to the high velocity dispersion caused by

the supermassive black hole (Rauch & Tremaine 1996;

Hopman & Alexander 2006; Eilon et al. 2009; Kocsis &

Tremaine 2011, 2015; Fouvry et al. 2019a). VRR clearly

dominates the evolution in nuclear star clusters as it is

two to four orders of magnitude faster than general two-

body relaxation (Kocsis & Tremaine 2011, 2015). As

a consequence, the system can reach a thermodynamic

equilibrium (Roupas et al. 2017; Takács & Kocsis 2018;

Fouvry et al. 2019b) that facilitates the formation of in-

ternal steady-state structures. Using statistical physics

methods (i.e. Monte Carlo Markov Chains) Szölgyén &

Kocsis (2018) showed that VRR can lead to the forma-

tion of disk-like equilibrium structures of massive ob-

jects e.g. disks of heavy stars and stellar black holes in

nuclear star clusters. This stochastic process is driven

by resonant dynamical friction and causes anisotropic

mass segregation (Rauch & Tremaine 1996). During

VRR, massive objects tend to relax to a “disky” config-

uration, while the distribution of low-mass objects be-

comes more spherical. The necessary condition for the

formation of a massive stellar disk is the existence of an

initially anisotropic multimass stellar population. Stan-

dard formation channels of galactic nuclei e.g. episodes

of in-situ star formation and the infall of GCs can pro-

vide such anisotropy (Szölgyén & Kocsis 2018).

Motivated by these results, we explore if anisotropic

mass segregation similarly operates in stellar clusters

without a central massive object such as in GCs, partic-

ularly due to rotation. We construct eight independent

realizations of isolated GCs drawn from the distribu-

tion functions of rotating King models (Longaretti &

Lagoute 1996) with different rotation parameters, num-

ber of particles, and mass spectra. We compare our re-

sults with a simulation without rotation and anisotropy

to show that anisotropic mass segregation develops as a

consequence of the clusters’ internal rotation. In addi-

tion, we examine the evolution of an initially anisotropic

cluster comprised of two counterrotating subsystems

with which we demonstrate that anisotropic mass seg-

regation may develop even in systems with zero-net ro-

tation if it is initially anisotropic.

Using such toy models, we intentionally neglect the

complexities of real systems (such as a realistic time-

evolving mass function, stellar evolution, and binary

evolution) in order to keep the uncertainties under con-

trol and to make a clean interpretation on the dynam-

ical origin of anisotropic mass segregation. We follow

the time evolution of the clusters using direct N -body

simulations. We show that anisotropic mass segregation

clearly appears in all initially anisotropic GCs.

2. METHODS

We run a series of simulations using the phiGRAPE

code (Harfst et al. 2007), which is a direct-summation

N -body code that uses the Hermite integration scheme

with block timesteps (Makino 1991). We adopt rotating

King models to generate initial conditions. This distri-

bution function is defined as a functions of energy E and
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the z-component of angular momentum Lz:

f(E,Lz) ∝
(
e−βE − 1

)
e−βΩ0Lz . (1)

There are two free parameters of the model: the angular

velocity Ω0, and β ≡ 1/(mσ2), where m is the average

stellar mass, and σ is the velocity dispersion of stars

at the center of the cluster (Einsel & Spurzem 1999).

These can be transformed into dimensionless quantities,

i.e., a rotation parameter ω0 ≡ Ω0

√
9/(4πGρc), where

ρc is the central density, G is Newton’s constant; and

the King parameter W0 ≡ −βm(Φ0 − Φt), where Φ0 is

the central potential and Φt is the potential at the outer

boundary of the model (Ernst et al. 2007). Our initial,

rotating GCs are generated from such f(E,Lz) rotat-

ing King distributions which are uniquely parameter-

ized by (W0, ω0) pairs. All rotating clusters are initially

flattened and the origin of the rotation is due to the

anisotropic velocity distribution of stars. We adopt N -

body units where the units of mass, length, and time are

M =
∑
imi, L = GM2/(−4E), T = GM5/2/(−4E)3/2,

where E is the mechanical energy. In these units, M , G,

and the virial radius (R = M−2
∑
i 6=jmimj/|ri − rj |)

are unity for a system in virial equilibrium (Hénon 1971;

Heggie & Mathieu 1986). The clusters are initially in

virial equilibrium but not in energy equipartition. We

examine four different experiments with different initial

conditions (see a summary of models in Table 1):

(i) We perform five independent simulations with dif-

ferent rotation parameters: ω0 = 0, 0.3, 0.6, 0.7, 0.8 with

the same W0 = 6, following Einsel & Spurzem (1999);

Kim et al. (2002, 2004); Kim et al. (2007); Hong et al.

(2013). This choice for W0 leads to a concentration pa-

rameter, c = log10(rt/r0) = 1.2 (Binney & Tremaine

2008), which is consistent with several GCs in the Har-

ris (1996) catalog. We have not explored models with
higher values of the rotation parameter because these

models quickly evolve out of the dynamically stable

regime showing a bar instability (Hong et al. 2013). In

each simulation, the number of stars is set to be 64k

(k = 1024), the masses are drawn randomly from a mass

distribution p(m) ∝ m−2 with a mass range defined by

mmax/mmin = 100, and we use different random seeds

for each realization. All five simulations are evolved up

to 1000 time units, which proved to be sufficiently long

to observe radial mass segregation due to two-body re-

laxation, and core collapse.

(ii) We investigate the dependence of the efficiency

of anisotropic mass segregation on the number of stars.

We generate four independent clusters with 32k, 64k,

128k, and 256k particles, with different random seeds

but with the same initial rotation and King parame-

ters (W0, ω0) = (6, 0.6), following Einsel & Spurzem

(1999); Kim et al. (2002, 2004); Kim et al. (2007); Hong

et al. (2013) which has vrot/σ ∼ 0.86 (Einsel & Spurzem

1999). The mass distribution is the same as in (i) above.

The simulations are evolved up to 2000 time units to

guarantee reaching the two-body relaxation times for

even the largest simulation (as it could be significantly

longer for the larger N runs).

(iii) We also examine how the index of the power-

law mass distribution affects the efficiency of anisotropic

mass segregation. Fixing (W0, ω0) = (6, 0.6), as well as

N = 64k, we compare the results of two models: one

with p(m) ∝ m−1, and another with p(m) ∝ m−2 mass

distribution in the same mmax/mmin = 100 ranges, such

that
∑
imi = 1.

(iv) Finally, we investigate a superposition of two

counterrotating King models. Both subclusters having

32k stars, (W0, ω0) = (6, 0.6) and p(m) ∝ m−2 mass

distribution, but the total angular momenta were cho-

sen to point in the opposite direction. Superimposing

them yields a cluster of 64k stars with zero-net rotation,

but with an axisymmetric initial structure.

model N ω0 vrot/σ γ W0

M32.6.2 32k 0.6 0.86 −2 6

M64.0.2 64k 0.0 0.00 −2 6

M64.3.2 64k 0.3 0.48 −2 6

M64.6.1 64k 0.6 0.86 −1 6

M64.6.2 64k 0.6 0.86 −2 6

M64.7.2 64k 0.7 0.97 −2 6

M64.8.2 64k 0.8 1.06 −2 6

M128.6.2 128k 0.6 0.86 −2 6

M256.6.2 256k 0.6 0.86 −2 6

M64.6.2x 2 × 32k 0.6,−0.6 0.00 −2 6

Table 1. Summary of N -body models examined in this pa-
per. N is the number of stars in a cluster, ω0 is the rotation
parameter of the model, vrot/σ is the ratio of the root-mean-
squared rotational velocity to the velocity dispersion corre-
sponding to the given ω0 (Einsel & Spurzem 1999; Ernst
et al. 2007), γ = d ln p/d lnm, where p is the mass distri-
bution, and W0 is the King parameter. Model M64.6.2x is
composed of two counter-rotating M32.6.2.

In all experiments, the clusters were initialized with

no binaries. The gravitational interactions were soft-

ened with a softening length of 3 × 10−4 length units

in order to prohibit the formation of binaries with a

separation smaller than this length. This also helps to

better conserve the energy of the system at the level of

∆Etot/Etot = 0.019. The system conserves scalar angu-

lar momentum at the level of ∆Ltot/Ltot = 2 × 10−5,

and its direction by 10−6 rad.
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3. RESULTS

3.1. The Average Mass Enhancement

To detect anisotropic mass segregation at any ‘snap-

shot’ of the time evolution, we measure the enhance-

ment of average mass. This quantity is the average stel-

lar mass in a bin of radius, r, and inclination cosine

cos i = Lz/|L|, divided by the average stellar mass in

the spherical shell at radius r. It can be written as

ε(r, cos i) ≡ m̄(r, cos i)

m̄(r)
, (2)

where m̄(r, cos i) is the average mass of stars in a seg-

ment of a spherical shell around r, and cos i; while m̄(r)

is the average mass in a spherical shell around r. This

essentially normalizes out the effect of radial mass segre-

gation, revealing the relative effectiveness of anisotropic

mass segregation for different values of r.

To improve the statistics, we average the ε(r, cos i) of

the last 300 snapshots out of 500 which means stack-

ing snapshots together (corresponding to between 400

and 1000 time units). We note that this is reasonable,

because as we show in Section 3.2, the system reaches

equilibrium by this time.

The enhancement of average mass is shown in Fig-

ure 1 for the N = 64k model with (W0, ω0) = (6, 0.6)

and an m−2 mass function. The horizontal axis of Fig-

ure 1 shows the distance from the cluster’s center as the

Lagrangian radius1; this presentation has the advantage

that the number of particles per radial bin is roughly

constant by construction, and different models (as well

as different snapshots in time for the same model) can be

more easily compared. For this model, there is a signif-

icant enhancement of average mass at cos i & 0.7 which

is most prominent at cos i & 0.9 around the 20% La-
grangian radius, but which extends up to ∼ 60%. This

is a clear evidence of anisotropic mass segregation in

N -body simulations of rotating GCs.

To examine the properties of anisotropic mass seg-

regation further, we calculate the relative enhance-

ment of average mass separately for three mass groups.

To do so, we divide the stellar population into three

mass groups uniformly on a logarithmic scale (i.e.

m
(4−i)/3
min m

(i−1)/3
max ≤ m < m

(3−i)/3
min m

i/3
max for the three

groups with i = 1, 2, 3, respectively). We measure

ε(r, cos i) for each group separately. With such separa-

tion 85.5% of the stars are in the light group, 12.2% in

the intermediate, and 2.3% in the heavy group, given

1 Lagrangian radius expressed in percentage is corresponding to
a physical radius of a sphere which encloses the given percentage
of the total mass of the cluster

0% 20% 40% 60% 80% 100%

r [Lagrangian radius]

−1.0

−0.5

0.0

0.5

1.0

co
s
i

−0.50

−0.25

0.00

0.25

0.50
ln
ε

Figure 1. Enhancement of average mass with respect to
the average mass in spherical shells defined by Lagrangian
radii in the M64.6.2 model of a rotating globular cluster; see
Equation (2) and Table 1. The cluster is in an equilibrium
state with respect to the distribution of inclinations. To
improve statistics, this diagram is a stacking of snapshots
between 400 and 1000 time units where the distribution of
inclinations already reached an equilibrium.

the m−2 mass spectrum. Figure 2 shows that strong

anisotropic mass segregation is present within the heavy

population, it is weaker within the intermediate popu-

lation, and nearly absent in the the light population.

The lower panels of Figure 2 also show the axis ratios

of these three mass groups as a function of time within

the 50% Lagrangian radius (where anisotropic mass seg-

regation is the most prominent). We exclude escapers

which are only 0.2% of the whole cluster. Axes a ≥ b ≥ c
are defined as the eigenvalues of the quadrupole moment

tensor of the mass distribution. The fact that b/a ∼ 1

indicates that throughout the simulation the system re-

mains axisymmetric and no significant triaxiality devel-

ops. The growth in c/a for the light group indicates

that the light subsystem becomes more spherical than

initially, while the drop in c/a for the heavy group indi-

cates that heavy subsystem becomes more oblate than

initially, which is consistent with the results drawn from

inspection of the enhancement factor ε. This result is

also in line with Kim et al. (2004), who showed that the

heavier component in their two-mass system evolved to

rotate faster than the light component (see their Fig-

ure 8), indicating that it was probably more oblate as

well. We also found that the dynamical evolution led to

a 6.7% increase in the total angular momentum within

the half-mass radius which means that the rotation of

the internal part sped up.
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0.0

0.2

0.4

0.6

0.8

1.0
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Time in N -body units
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Time in N -body units

0.0
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0.8
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ln
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Figure 2. Top panels are the same as in Figure 1, but the stellar population is divided into three mass groups: light,
intermediate, and heavy, shown in panels from left to right. Note that a more refined color scale is used here. Anisotropic mass
segregation is prominent in the intermediate and heavy groups. Bottom panels show the time evolution in the morphology of
the cluster within the 50% Lagrangian radius, particularly the ratios of the principal axes of the light, intermediate and heavy
subpopulations. Here the axes a ≥ b ≥ c are defined as the eigenvalues of the quadrupole moment tensor of the mass distribution
of the given mass group.

3.2. The Effect of Rotation

We can now characterize this diagram with a single

number, in order to be able to compare the importance
of anisotropic mass segregation in different models and

different times for the same model. We choose to first

marginalize over r by averaging the ε(r, cos i) with the

appropriate weights. We call the resulting quantity the

effective enhancement,

ε̃(cos i) ≡
∫ ∞

0

ε(r, cos i)w(r) dr, (3)

where the weight w(r) is the relative number of particles

in a spherical shell of thickness dr around r:

w(r) ≡ 2πr2

N

∫ π

0

n(r, θ) sin θ dθ. (4)

Here, n(r, θ) is the number density (as a function of the

radial distance r and polar angle θ) and N is the to-

tal number of stars. The effective enhancement has the

physical meaning of average mass of objects at inclina-

tion i. Objects are, on average, heavier on inclinations

where this quantity is higher.

We compare the result of the model shown in Figure 1

with other King models with different rotational param-

eters by measuring how ε̃(cos i) depends on the rotation

of clusters. In Figure 3, the averaged curves of ε̃(cos i)

are shown (as in the above subsection, the snapshots be-

tween 400 and 1000 time units are stacked to improve

the statistics) for N = 64k models with W0 = 6, an

m−2 mass function, and ω0 = 0, 0.3, 0.6, 0.7, 0.8. The

ε̃(cos i) is flat for the nonrotating King model, which

implies that there is no anisotropic mass segregation in

the (spherically symmetric) nonrotating King models.2

Faster rotation leads to a more prominent anisotropic

2 Since in the N -body realization ω0 = 0 model the net angular
momentum is not exactly zero due to Poisson fluctuations. We
define the inclination with respect to the plane defined by the
residual angular momentum.
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−1.0 −0.5 0.0 0.5 1.0

cos i

0.8

0.9

1.0

1.1

1.2

1.3

ε̃

ω0 = 0.0

ω0 = 0.3

ω0 = 0.6

ω0 = 0.7

ω0 = 0.8

Figure 3. Radially averaged effective enhancement of av-
erage mass as a function of inclination; see Equation (3).
Curves represent the following models: blue is nonrotating
(ω0 = 0), orange, green, red, and purple are rotating with
ω0 = 0.3, 0.6, 0.7, and 0.8, respectively. Similarly to Figure 1,
multiple snapshots are superimposed.

mass segregation. This fact can be seen as the slopes

of the ε̃(cos i) curves get steeper for higher values of ω0.

For the highest values of ω0 shown in this work (be-

tween 0.6 and 0.8) the effect saturates, and models with

ω0 = 0.9 and above (not shown in the figure) a bar in-

stability occurs in the simulations (Hong et al. 2013).

0.0

0.1

0.2

S
lo

p
e

of
ε̃

ω0 = 0.0

ω0 = 0.3

ω0 = 0.6

ω0 = 0.7

ω0 = 0.8

0 200 400 600 800 1000

Time in N -body units

0.25
0.30
0.35
0.40

r 1
0%

Figure 4. Best-fitting linear slopes to the effective enhance-
ments ε̃ as a function of cos i as a function of time (upper
panel). Different colors represent different rotation parame-
ters as in Figure 3. The saturation of the curves represents
the statistical equilibrium state with respect to anisotropic
mass segregation. In the lower panel, the curves are the
10% Lagrangian radii as functions of time for comparison.
Anisotropic mass segregation saturates on the core collapse
timescale.

To determine the timescale of anisotropic mass seg-

regation to reach equilibrium from the adopted initial

conditions, we measure how the fitted slope of ε̃(cos i)

varies with time, as shown in Figure 4. When the slope

of ε̃(cos i) approaches a constant value, as a function of

time, the distribution of inclinations reaches the equi-

librium of anisotropic mass segregation. In Figure 4,

saturation is reached around 300 Hénon time units in

all simulations with different ω0 values. We have found

that this happens on the core collapse time scale which

is indicated by the contraction of the 10% Lagrangian

radii as functions of time, see the lower panel on Fig-

ure 4.

3.3. The Particle Number Dependence

0.00

0.05

0.10

0.15

0.20

S
lo

p
e

of
ε̃

32k

64k

128k

256k

101 102 103

Time in N -body units

0.1

0.2

0.3

0.4

r 1
0%

Figure 5. Same as Figure 4 but for simulations with 32k
(blue), 64k (orange), 128k (green), and 256k (red) stars with
ω0 = 0.6 rotation in each case.

We also investigate the efficiency of anisotropic mass

segregation with respect to the number of stars in a GC

with the same ω0 = 0.6 rotation. In Figure 5, results

show the rate of anisotropic mass segregation is roughly

linear with N , similarly to two-body relaxation.

Longer simulations (with respect to the half-mass re-

laxation time) show that after reaching the equilib-

rium state of anisotropic mass segregation, the effect

is slowly reduced (i.e., the heavier objects start to

isotropize). This is clearly seen for the N = 32k and

64k models in Figure 5. We found that the satura-

tion timescale of anisotropic mass segregation coincides

with the timescale of core collapse. The final degree

of anisotropic mass segregation (at equilibrium) is in-

dependent of the number of stars in these simulations

at a fixed net rotation, the slope of ε̃ curves all satu-

rate at around 0.2 for ω0 = 0.6. However, a significant

amount of anistropic mass segregation is present already

well before core collapse.
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3.4. The Effect of the Mass Function

We compare rotating King models with stellar mass

distribution p(m) ∝ m−1 (bottom-heavy model) and

p(m) ∝ m−2 (top-heavy model) to examine the depen-

dence of anisotropic mass segregation on the mass func-

tion. These models have the same rotation parameter

of ω0 = 0.6 and particle number N = 64k. The ra-

tio between the sum-squared mass of the bottom-heavy

and top-heavy model is ∼ 0.53. Figure 6 shows that

the saturation value, where anisotropic mass segrega-

0.0

0.1

0.2

S
lo

p
e

of
ε̃

m−1

m−2

0 200 400 600 800 1000

Time in N -body units

0.16

0.20

0.24

0.28

r 1
0%

Figure 6. Similar to

Figure 4 and 5 but for M64.6.1 and M64.6.2 models with m−1

(blue) and m−2 (orange). While the latter model reaches the
equilibrium at t ∼ 300, the former model does not within the
duration of the simulation (1000 time units).

tion reaches its equilibrium, correlates with the number

of heavy objects in a cluster. While the redistribution of

inclinations approaches the equilibrium within t ∼ 300

time units for the top-heavy model, the bottom-heavy

model has not saturated yet at t = 1000. Figure 6 also

shows that anisotropic mass segregation appears on the

same timescale as core collapse for N = 64k for different

mass spectra.

3.5. Superimposed Counterrotating Clusters

Finally, we examine what happens when two rotat-

ing King models are superimposed such that their total

angular momenta are pointing in opposite directions,

creating a cluster with no net rotation but an aspheri-

cal shape and bimodal distribution of angular momenta.

To generate the initial condition, we superimpose two

(W0, ω0) = (6, 0.6) models with N = 32k each.

Figure 7 shows that two counterrotating structures

form. The one that has positive rotation is radially more

extended, but flattened (cos i & 0.8); in contrast, the

other one is less extended radially, but has wider spread

in inclination (cos i . 0.75). We note that this can be a

0% 20% 40% 60% 80% 100%

r [Lagrangian radius]
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−0.5

0.0

0.5

1.0

co
s
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−0.05
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0.10

0.15
ln
ε

Figure 7. Same as Figure 1 but for M64.6.2x model where
two subclusters are superimposed such that their total an-
gular momenta are pointing in opposite direction, creating a
cluster with no net rotation but an aspherical shape. This
cluster is in equilibrium state with respect to the distribution
of inclinations.

result of a statistical fluctuation because the system was

initially symmetric with respect to its equatorial plane.

4. CONCLUSIONS

In this paper, we examined the inclination distribution

of stellar orbits in direct N -body simulations of rotating

GCs with mass spectra. We found evidence of an equi-

librium state with anisotropic mass segregation. Our

results show that there is a statistical enhancement of

average mass for the lowest inclination orbits, beyond

the well-known radial mass segregation of the heaviest

objects. The rotating systems rapidly reach the equilib-

rium of anisotropic mass segregation, while the clusters

are still far from energy equipartition. The clusters did

not reach energy equipartition even after several two-

body relaxation times in agreement with Trenti & van

der Marel (2013). The average mass can be up to 2.7

times larger at the lowest inclination orbits (i . 25◦) be-

tween the 5% and 40% Lagrangian radii where the effect

is the most prominent; see Figure 1. This result implies

that the distribution of stellar mass black holes repre-

sents a thick disk near the centers of rotating GCs. This

prediction may have important implications for model-

ing black hole populations, black hole binary formations,

and gravitational wave emission rates in GCs which tra-

ditionally assumed to be isotropic (e.g. Rodriguez et al.

(2016); Askar et al. (2016); Wang et al. (2016); Park

et al. (2017)). If black holes follow a flattened distribu-

tion in the centers of GCs, this increases their number

density and decreases their velocity dispersion, which

may imply a higher dynamical encounter rate, and lead

to an enhanced black hole binary formation rate. Cal-

culating the binary formation rate, as well as predicting
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the gravitational merger rate, are beyond the scope of

the current work.

We emphasize that while anisotropic mass segrega-

tion reaches a steady state, the cluster itself actually

does not. The efficiency of anisotropic mass segregation

at equilibrium depends on the degree of rotation, and

the mass distribution in the cluster. The time it takes

for anisotropic mass segregation to reach equilibrium in

N -body units is approximately linear in the number of

stars and also depends on the mass distribution. We

found that this timescale coincides with the core collapse

timescale in simulations, although, a significant amount

of anistropic mass segregation is present already well

before core collapse (Figure 5). Anisotropic mass segre-

gation affects the distribution of high mass objects most

prominently (Figure 2), and takes place well within the

half-mass radius (i.e. between 0% and 60% Lagrangian

radii; see Figure 1), where two-body relaxation is more

efficient than in the outer regions; see Figure 3 in (Me-

iron & Kocsis 2018). In future work, we plan to ex-

plore how stellar evolution, binary evolution, galactic

tidal forces and possible mergers affect the appearance

and evolution of anisotropic mass segregation in rotat-

ing stellar clusters. Further analysis is also needed to

determine the relative contribution of two-body relax-

ation and VRR in driving anisotropic mass segregation

in GCs.
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