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A B S T R A C T   

The ‘standard’ fluid-mosaic membrane model can provide a framework for the operation of the photosynthetic 
and respiratory electron transport systems, the generation of the proton motive force (pmf) and its utilization for 
ATP synthesis according to the chemiosmotic theory. However, this model, with the bilayer organization of all 
lipid molecules, assigns no function to non-bilayer lipids – while in recent years it became clear that the two 
fundamental energy transducing membranes of the biosphere, chloroplast thylakoid membranes (TMs) and inner 
mitochondrial membranes (IMMs), contain large amounts of non-bilayer (non-lamellar) lipid phases. 

In this review, we summarize our understanding on the role of non-lamellar phases in TMs and IMMs: (i) We 
propose that for these membrane vesicles the dynamic exchange model (DEM) provides a more suitable 
framework than the ‘standard’ model; DEM complements the ‘standard’ model by assuming the co-existence of 
bilayer and non-bilayer phases and their interactions, which contribute to the structural dynamics of the 
membrane systems and safe-guard the membranes’ high protein:lipid ratios. (ii) Non-bilayer phases play pivotal 
roles in membrane fusion and intermembrane lipid exchanges – essential processes in the self-assembly of these 
highly folded intricate membranes. (iii) The photoprotective, lipocalin-like lumenal enzyme, violaxanthin de- 
epoxidase, in its active state requires the presence of non-bilayer lipid phase. (iv) Cardiotoxins, water-soluble 
polypeptides, induce non-bilayer phases in mitochondria. (v) ATP synthesis, in mammalian heart IMMs, is 
positively correlated with the amount of non-bilayer packed lipids with restricted mobility. (vi) The hypothesized 
sub-compartments, due to non-lamellar phases, are proposed to enhance the utilization of pmf and might 
contribute to the recently documented functional independence of individual cristae within the same mito-
chondrion. Further research is needed to identify and characterize the structural entities associated with the 
observed non-bilayer phases; and albeit fundamental questions remain to be elucidated, non-lamellar lipid 
phases should be considered on a par with the bilayer phase, with which they co-exist in functional TMs and 
IMMs.  
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ETC, electron transport chain; FF-EM, freeze-fracture electron microscopy; FSM, flexible surface model; IMM, inner mitochondrial membrane; LHCII, light-harvesting 
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1. Introduction 

In the past decades it became clear that there are important capa-
bilities of biological membranes that require the presence of non-bilayer 
lipids. In this review, we focus on structural and functional roles of non- 
bilayer lipids and non-bilayer (or non-lamellar) lipid phases of chloro-
plast thylakoid membranes (TMs) and the inner mitochondrial mem-
branes (IMMs). TMs and IMMs are membrane vesicles that form highly 
organized structurally flexible networks; they separate the inner and 
outer aqueous phases and contain all components of the light-energy 
(TM) and the chemical-energy (IMM) transducing machineries. Brief 
general information about these membrane systems is provided in the 
Supplementary Material, focusing on some remarkable similarities of 
TMs and IMMs, as opposed by their strikingly different protein (and 
lipid) compositions and the essentially opposite-direction energy 
conversion. 

In TMs, the major lipids are galactolipids: monogalactosyldiacyl-
glycerol (MGDG) and digalactosyldiacylglycerol (DGDG) account for 
about 50% and 30% of the total lipid content, respectively; they also 
contain sulfoquinovosyldiacylglycerol (SQDG) (~5–12%) and a phos-
pholipid, the phosphatidylglycerol (PG) (~5–12%) [1]. As part of the 
adaptive response of TMs to different stress conditions, the lipid 
composition depends significantly on environmental factors [2,3]. 

IMMs contain only phospholipids (and no galactolipids). The three 
major phospholipids, in mammalian (rat liver) mitochondria, are 
phosphatidylcholine (PC, 40%), phosphatidylethanolamine (PE, 34%) 
and cardiolipin (CL, a diphosphatidylglycerol, 18%); as minor lipids, 
they also contain phosphatidylinositol (PI, 5%) and phosphatidylserine 
(PS, 3%) [4]. Plant cell mitochondria possess very similar lipid 
composition, with dominance of PC, PE and CL [5] e.g. in cauliflower 
mitochondria these lipids represent, respectively, 44, 34 and 11 % of the 
total lipid content [4]. 

Although the (protein and) lipid compositions of the TMs and IMMs 
are markedly different, there are two common features shared by these 
membranes. First, their lipid-to-protein molar ratios are typically 

between 0.25-0.30 [4,6,7]. The other common, striking feature is that 
their major lipid species are non-bilayer lipids – MGDG, and PE and CL, 
respectively. These lipid species - in contrast to the cylindrically shaped 
bilayer lipids (DGDG, PG and SQDG in TMs and PC, PI and PS in IMMs) - 
due to their conical shapes [8] - prefer not to form lamellar phases in the 
presence of water (Fig. 1a). Instead, they assemble into non-bilayer 
phases, such as cubic, isotropic or inverted hexagonal (HII) phases 
These lipid phases exhibit characteristic 31P-NMR spectra (Fig. 1b). 

Information on the lipid polymorphism of membrane systems can be 
obtained by 31P-NMR spectroscopy, which is a sensitive non-invasive 
technique to fingerprint the phase behavior of the bulk phospholipids 
in vivo and in vitro [10]. Because of their restricted mobility compared to 
bulk lipids, this technique is largely insensitive to annular (or shell) 
lipids, constituting the first lipid layer around the membrane-intrinsic 
proteins, and even less to structure (or non-annular) lipids that are 
tightly bound to the proteins, and are typically found in cavities and 
grooves of protein hydrophobic regions [11]. In TMs about 60% of the 
lipids are found in the fluid-like, bulk phase [12]. 

In this review, first we examine different membrane models with 
regard to the organization of their bulk lipid molecules: the ‘standard’ 
fluid-mosaic membrane model, which is constituted of bilayer lipids, 
and its different modified forms which take into account the presence of 
non-bilayer lipids in biological membranes. We evaluate the applica-
bility of these models to TMs and IMMs, in which the major lipids are 
non-bilayer lipids and which contain non-lamellar lipid phases. We 
overview the presently available experimental data on lipid poly-
morphism of TMs and IMMs, and information concerning the origin and 
structural and functional roles of non-bilayer phases in these membrane 
systems. We also discuss future perspectives of research concerning the 
participation of non-lamellar phases in regulatory processes as well as in 
the energization of membranes and the ATP synthesis. 

Fig. 1. Lipid species of chloroplast thylakoid membranes (green) and the inner mitochondrial membranes (red), which spontaneously assemble into bilayer or non- 
bilayer structures, according to their cylindrical or conical shapes, respectively (a) and 31P-NMR signatures of the different lipid phases according to [9] (b). 
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2. Membrane models applicable to TMs and IMMs. Two bilayers- 
only models and a polymorphic vesicular-membrane network 
model 

Here, we assess the features of the ‘standard’ model and three 
membrane models which complement the ‘standard’ model by consid-
ering the presence of non-bilayer lipids in biological membranes. 
Applicability of these models to TMs and IMMs will be inspected here 
and in later sections. 

2.1. The ‘standard’, fluid-mosaic bilayer membrane model vs. the 
abundance of non-bilayer lipids in TMs and IMMs 

The requirement that TMs and IMMs insulate the inner aqueous 
phases from the outer aqueous phases can be warranted by organizing 
the bulk lipid molecules into bilayer structures – as in the ‘standard’ 
fluid-mosaic model [13,14] or the mosaic-like membrane model (con-
taining highly organized protein clusters) [15]. The lipid bilayer pos-
sesses low permeability to water and most water-soluble molecules and 
to ions, and protons, in particular. However, within the frameworks of 
the ‘standard’ model, it is not straightforward to organize TM and IMM 
lipids into bilayers. This is because the ‘standard’ model does not take 
into account the occurrence of non-bilayer lipids in the membrane 
[13,14]. This controversy has been known for decades, since the pio-
neering works of V. Luzzati and coworkers in the 1960s [16]. By using 
small-angle X-ray diffraction – a technique capable of monitoring the 
long-range organization of lipids – it has been shown that the lamellar 
phase represents only one of the large variety of phases adopted by 
hydrated lipid systems, and the IMM lipids CL and PE preferentially 
formed HII phases [17–19]. As early as 1973, MGDG was also shown to 
adopt HII phase –revealed by X-ray diffraction [20]. Polymorphism of 
membrane lipids has been explained in terms of the molecular shapes as 
the basic factor determining the phases that can be adopted by a given 
lipid species [21]. These seminal works inspired numerous studies 
concerning the role on non-bilayer lipids in TMs and in different bio-
logical membranes. However, it was difficult to extrapolate the phase 
behavior of lipid systems to biological membranes packed with proteins, 
which evidently stabilized the bilayer configuration [6,22,23]. For 
example, for TMs, on the one hand, it was established that TM lipid 
mixtures at molar ratios similar to those occurring in their native 
membranes adopted non-bilayer phases; on the other hand, the func-
tional state of TM was the bilayer and „non-bilayer configurations were 
difficult to reconcile with the need to maintain a stable semipermeable 
membrane system” [22]. In general, while non-bilayer lipids are present 
probably in all biological membranes, they are thought to be predomi-
nantly arranged as bilayers [15]. 

2.2. Lateral Pressure Model (LPM) and Flexible Surface Model (FSM) 

Two models, the Lateral Pressure Model (LPM), and the Flexible 
Surface Model (FSM), proposed in [24,25], respectively, “challenge[d] 
the ‘standard’ model (the fluid mosaic model) found in biochemistry 
texts” [25]. LPM and FSM postulate that the presence of conically sha-
ped non-bilayer lipids in the bilayer affect the structure and the func-
tional activity of membrane-intrinsic proteins. According to LPM, non- 
bilayer lipids increase the lateral pressure in the hydrophobic region 
of the bilayer membranes and decrease it in the region of lipid head-
groups. This pressure profile is proposed to “keep the [proteins] in a 
functional state, whereas in the absence of such force the proteins 
become less efficient or nonfunctional” [24]. FSM predicts that “the non- 
lamellar-forming tendency of the membrane lipids modulates the pro-
tein energetics” due to variations in the curvature elastic energy [25]. 
According to these models, non-bilayer lipids enhance the structural 
plasticity of membranes and lend dynamics to membrane-embedded 
proteins [26,27] – in line with the notion that „the bilayer must not 
be too stable because that would tend to limit protein dynamics” [28]. 

Recently, perturbation of membrane morphologies due to the presence 
of non-bilayer lipids has also been proposed to modify protein properties 
[29]. 

It is important to stress that in these models the occurrence of non- 
bilayer lipid phases in the bilayer membranes is restricted only locally 
and transiently (see also [27]). Neither LPM nor FSM consider persisting 
non-bilayer lipid phases inside the bilayer membrane or associated with 
it. 

2.3. Dynamic Exchange Model (DEM) 

An alternative model, the Dynamic Exchange Model (DEM) [30,31], 
postulates that – in membranes composed of lipid molecules of high non- 
bilayer propensity – bilayer and non-bilayer lipid phases coexist and are 
in dynamic equilibrium with each other. DEM is based on two sets of 
premises: (i) the ability of membrane-intrinsic proteins to force non- 
bilayer lipids into the bilayer – this has been documented by in vitro 
experiments using molecular macro-assemblies of purified CL and cy-
tochrome c oxidase [32] and isolated MGDG and LHCII [33]; and (ii) 
that when large protein-free membrane patches are exposed to water, 
the lipid molecules readily form transient structures, which are then 
segregated out from the membranes [6,19,34,35]. (LHCII, light- 
harvesting complex II, the most abundant membrane protein of plant 
TMs.) 

There are two additional features of DEM when applied for TMs and 
IMMs: (iii) TMs and IMMs are closed membrane vesicles, and (iv) that 
they are arranged into highly organized, extended networks. 

With regard to TMs and IMMs as vesicles, (iii) it is important to stress 
that their inner aqueous phases are fully packed with proteins [36–39], 
some of which, especially those belonging to the class of lipocalins (or to 
lipocalin-like proteins), are capable to bind lipid molecules [40–43]. 
Lipocalins are also present in the outer aqueous phases, e.g. the 
zeaxanthin-epoxidase enzyme of TMs [43]. They are found probably in 
all prokaryotic and eukaryotic cells and are associated with many 
important biological processes [43]. These water-soluble proteins may 
hold (at least transiently) some of the excess lipids that are expelled from 
the bilayer membrane. 

As to the network formation of TMs and IMMs and their structural 
dynamics, (iv) the roles of membrane fusion and fission, and thus the 
involvement of non-lamellar phases, are well established. Indeed, 
numerous in vitro and in vivo data have shown that non-bilayer lipids and 
non-lamellar lipid phases play key roles in the fusion of membranes and 
intermembrane exchange of lipids [19,44,45]. It has recently been 
shown that isolated granum and stroma TMs spontaneously form 
extended networks – interconnecting, via narrow channels, the protein- 
rich membrane domains embedded in the bilayer membrane [46]. 

DEM was proposed to maintain the homeostasis of the energy- 
converting membranes [30,31] – via a mechanism based on the capa-
bility of their lipids to enter (forced in) the membrane (i) and to 
(spontaneously) segregate from it (ii). By this means the lipid-to-protein 
ratio of TMs and IMMs can be self-regulated [30]. Dilution of these 
membranes, i.e. the presence of excess lipids in the bilayer, could easily 
hamper cooperative interactions between proteins and protein clusters 
and would probably seriously perturb the migration of the excitation 
energy in TMs and the operation of the photosynthetic and respiratory 
electron transport chains (ETCs) [47]. On the other hand, the lack of 
sufficient amounts of lipids in the bilayer membrane could easily impede 
the mobility of the quinone molecules [48]. It can be inferred from 
protein crowding data and theoretical considerations [49] that TMs 
operate close to the percolation threshold of membrane proteins and 
near the diffusion limit of small lipophilic molecules like plastoquinone 
and xanthophyll pigments. (For the macroorganization of proteins in 
TMs and IMMs, see Supplementary Information.) 

Exchange of lipid molecules also occurs between the bilayer mem-
brane and plastoglobuli which bud from the outer leaflet of TMs and 
“actively participate in thylakoid function from biogenesis to 
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senescence” [50]. Trafficking of lipids between TMs and plastoglobuli 
might participate in maintaining a constant lipid:protein ratio in TMs 
[51] – probably as part of a long-term regulatory mechanism. However, 
plastoglobuli are highly unlikely to contribute to the lipid polymorphism 
of TMs – because they contain only trace amounts of TM lipids [52]. 

3. Structural roles of non-bilayer lipids and non-lamellar lipid 
phases in thylakoid membranes 

It has been thoroughly documented that non-lamellar lipid phases 
can relatively easily be induced not only in model systems using isolated 
TM lipids (reviewed in [6]) but also in different TM preparations. 
Freeze-fracture electron microscopy (FF-EM) data have shown that the 
extrusion of lipids from isolated TMs – instigated by high concentrations 
of co-solutes such as sugars or betaine [53] or by storing the isolated 
membranes for days at non-cryogenic low temperature [54] – leads to 
the formation of an HII phase. Similar, highly ordered tubular structures 
were observed in TM preparations isolated from spinach leaves grown at 
low light intensity [55]. Non-bilayer lipid phases were also induced in 
lyophilized and reconstituted TMs, and in TMs at high temperatures and 
upon removing their oxygen evolving complex (OEC) – these phase 
transitions were revealed by 31P-NMR spectroscopy [56]. Although PG is 
a minor lipid of TMs (see Introduction), it can be used to monitor the 
phase behavior of TMs because it is laterally evenly distributed in the 
membrane [57]. Also, molecular dynamics simulations of thylakoid 
lipids have shown “a well-mixed system in both the lamellar and 
inverted hexagonal state” [35]. 

In fully functional isolated TMs, the presence of a non-bilayer, 
isotropic phase, in addition to the bilayer, and interacting with it, was 
first demonstrated in [58] using 31P-NMR spectroscopy. Recent, high- 
resolution 31P-NMR spectroscopy on freshly isolated TMs, as well as 
on granum and stroma TM fractions, have revealed the co-existence of 
the bilayer phase with three non-lamellar phases, an HII phase and (at 
least) two isotropic phases [59,60] (Fig. 2a). 31P-NMR spectroscopy 
data, the integrated areas associated with different lipid phases, show 
that only about 40% of the bulk lipids are found in the bilayer phase and 
the rest of them are located in non-bilayer phases, with largest (>~40%) 
contribution from the HII phase (Dlouhy et al. 2021a; see also Figure 2a). 
The polymorphic lipid-phase behavior of isolated TMs has also been 
substantiated by time-resolved fluorescence spectroscopy using TMs 
stained with merocyanine 540 [60–62]. 

Regarding the origin of the different lipid phases, we emphasize that 
the presently available data allow only tentative assignments [60] 

(Fig. 2b). The HII phase was proposed to originate from membrane- 
extruded lipid molecules – in accordance with the above cited works. 
However, in freshly isolated TMs, the lipid molecules appeared not to 
form large, ordered tubular assemblies like those observed earlier on 
different samples with FF-EM [53]. In isolated digitonin-fragmented 
granum and stroma TMs, which also exhibited sizeable HII phases, 
detected by 31P-NMR spectroscopy [59], some loosely ordered lipid 
assemblies were identified using FF-EM and electron tomography [63]. 
These assemblies could be responsible for the HII phase but, unlike pu-
rified MGDG [33], displayed no small-angle X-ray scattering signature 
[46]. This suggests that the extruded lipid molecules do not assemble 
into large tubular structures with long-range order (cf. [65]). In this 
context it is to be noted that formation of large, ordered lipid aggregates 
are spatially hindered in the lumen because its narrow width and also 
because this aqueous phase is fully packed with proteins [36,66]. 

As to the isotropic phases, they were proposed to be given rise by (i) 
membrane fusions and (ii) lipocalin:lipid molecular assemblies in the 
aqueous phases. In more detail: (i) Fusion of membranes has been 
thoroughly documented to involve non-bilayer phases via hemifusion 
stalk (Fig. 2c, d). In fact, TM lipids have been shown to readily form 
stalks (Fig. 2e, f) [35]; also, plant TM systems contain regions where 
membranes appear to fuse together, e.g. at the junction of the granum 
and stroma TMs as well as in the regions where adjacent stroma TMs 
(belonging to neighboring grana) are jointed [67] (see also Supple-
mentary Material, Fig. S2); fusion of isolated subchloroplast TM parti-
cles has also been demonstrated [46]. (ii) As far as lipocalin:lipid 
assemblies are concerned, the activity of the lipocalin-like lumenal 
enzyme, violaxanthin de-epoxidase (VDE) has been shown to require the 
presence of non-bilayer lipid phase – both in vitro and in vivo [63,68–70] 
(see also 5.1). VDE plays key role in photoprotection of the photosyn-
thetic machinery of plants and algae [70–74]. Similar to VDE, in vitro 
assay shows the association of thylakoid lipids with the plastid lipocalin 
LCNP (Jingfang Hao and Alizée Malnoë, personal communication). 
LCNP is located in the lumen and participates in qH, the sustained non- 
photochemical quenching of the excess excitation energy [40,75]. This 
lipocalin protects thylakoid lipids against stress-induced peroxidations 
[41]. 

Different water-soluble proteins have also been shown to closely 
interact with the TM lipids. The 30 kDa inner membrane-associated 
protein (IM30; aka vesicle-inducing protein in plastids 1, VIPP1), is 
tightly bound to lipids of TMs and is crucially involved in the biogenesis, 
stabilization and maintenance of TMs of cyanobacteria, algae and higher 
plants [76,77]. Further, heat-shock proteins have been proposed to 

Fig. 2. Typical 31P-NMR spectrum of isolated spinach thylakoid membranes and their spectral components arising from different lipid phases; inset shows the 
isotropic region (a); schematic model of thylakoid membranes with tentative assignments of the different lipid phases (b); scheme of the formation of hemifusion 
stalk (c, d); and a molecular dynamic model of the spontaneous transition of thylakoid lipids from bilayer state to a stalk (e, f). In Panels (a) and (b), the isotropic 
phases are marked as I1, I2 and Ii and Iso, respectively; in Panel (b): bl, bilayer, lamellar phase; VDE, violaxanthin de-epoxidase. Panels (a) and (b) were copied from 
[63,60], respectively. Panels (c) and (d), and (e) and (f) were cropped from [64,35], respectively. 
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stabilize the membrane via counteracting the formation of thermally- 
induced non-bilayer structures [78,79]. In general, membrane lipids 
have been shown to be involved in thermo-sensing in different organ-
isms [80,81]. Recently, thermo-sensing of plants was proposed to 
depend on lipid phase transitions [82]. Our observations – the strong 
temperature dependence of the polymorphic phase behavior of isolated 
plant TMs [58,63] and the enhanced thermally-induced segregation of 
lipid molecules from the bilayer in dgd1 mutant TMs with high MGDG/ 
DGDG ratio [83] – support this hypothesis. 

Non-bilayer lipids and non-lamellar lipid phases play pivotal roles in 
chloroplast differentiation; most particularly during the ontogeny of 
thylakoid network from a paracrystalline tubular prolamellar body in 
etioplasts to a mature TM system [84,85]. The role of delicate balance 
between the bilayer and non-bilayer lipids is also clearly demonstrated 
by the facts that galactolipid deficiencies disturb the TM ultrastructure 
[86]. 

With regard to the possible regulatory roles of non-bilayer lipids in 
the bilayer phase, it is interesting to point out that the profoundly 
different protein composition of granum and stroma TMs not only do not 
bring about different lipid compositions in these membrane fractions 
[57] but they display very similar lipid polymorphisms [46]. This, ac-
cording to LPM, would indicate that the same pressure profile is suited to 
PSII and PSI and the ATP synthase. (Granum TMs contain PSII (Photo-
system II) and LHCII, which are assembled into macrodomains with 
long-range, often semi-crystalline order; in contrast, PSI and the ATP 
synthase are found in the stroma TMs [87,88], see also Supplementary 
Material). However, non-bilayer lipids in the bilayer are unlikely to 
affect the structure and function of PSII and PSI supercomplexes; these 
highly organized multisubunit protein assemblies possess compact 
structures that are largely retained even after detergent solubilization 
[89,90]. The same reasoning might not apply to detached or loosely 
attached LHCII, the photophysical properties of which depend strongly 
on the physico-chemical environment of complexes [91], and possibly 
also on the local pressure variations in the TMs [92]. Indeed, as revealed 
by in vitro experiments, MGDG stabilizes the trimeric form of LHCII, 
which can be explained by “steric matching of conically formed MGDG 
and the hourglass shape of trimeric LHCII” [93]. In general, this type of 
negative-curvature stress has been proposed to play a key role in protein 
folding in the membrane [94]. Hence, we propose that curvature forces 
and lateral pressure variations in TMs, due to the presence of non-bilayer 
lipids in the bilayer [24,25], play roles in the assembly of the photo-
synthetic protein (super)complexes and the ontogeny of TMs – as also 
indicated by the facts that MGDG plays central role in the biogenesis of 
the TMs and the self-assembly of the 3D TM system [95–97]. However, 
these factors are unlikely to control the activity of the PSII and PSI 
supercomplexes in mature TMs. 

4. Structural roles of non-bilayer lipids and non-lamellar lipid 
phases in mitochondrial membranes 

4.1. Role of non-bilayer lipids in stabilization of protein complexes 

In mitochondria, non-bilayer lipids play specific roles in the assem-
bly and structural dynamics of the respiratory system [98]. The two non- 
bilayer phospholipids, CL and PE, greatly affect not only the membrane 
morphology but also the functional activities of IMM-embedded pro-
teins. CL and PE create asymmetrical mechanical stress in the mem-
brane, which thus requires less energy for creating folds in IMM and for 
inducing tubular membrane invaginations [99]. 

Although both PE and CL are required for a full activity of the 
mitochondrial ETC and the efficient generation of membrane potential 
[100], there are differences in their effects. CL is needed for the struc-
tural stability of the respiratory chain supercomplexes, the proper ac-
tivity of cytochrome c oxidase, and the stable membrane potential 
[100]. Indeed, CL can be used as a marker for inner mitochondrial 
membranes in plants [5]. Lack of PE decreases the membrane potential 

of IMM and the activity of cytochrome c oxidase. However, in the 
absence of CL, PE has been reported not to stabilize but to destabilize the 
respiratory-chain supercomplexes [100]. CL is needed for the dimer-
ization of the ATP synthases and for promoting the ribbon-like assembly 
of ATP synthase dimers – affecting the lateral organization and 
morphology of cristae membranes [101]. CL tightly binds not only to 
proteins of the ETC but also to cyt c and transporter proteins, including 
the ADP-ATP, pyruvate and phosphate carriers [102]. (Cyt c, cyto-
chrome c is a water-soluble protein found in the intermembrane aqueous 
space, which transfers electrons from the cytochrome b/c1 complex, 
ComplexIII (CIII) to CIV of the mitochondrial ETC. See Supplementary 
Material, Fig. S1b.) CL deficiency negatively impacts the activity and 
efficiency of these proteins while PE deficiency does not have the same 
effect [102]. It has been suggested that the role of PE primarily lays in 
preserving membrane integrity in the curved areas of IMM while CL 
serves in maintaining tight associations of proteins in the respiratory 
chain supercomplexes (Respirasomes), and ATP-synthase dimers and 
oligomers [100]. The two phosphate groups, the high flexibility of the 
four alkyl chains of CL and its conical shape facilitate the formation of a 
tight but flexible bond between proteins of the dimeric and oligomeric 
forms of the ATP synthase [103,104], and possibly proteins of Respi-
rasomes, in the highly curved IMMs. 

4.2. Role of non-bilayer lipids in mitochondrial ultrastructure, membrane 
fusion and fission 

CL is important for maintaining mitochondrial dynamics and 
remodeling, which occur via fission, fusion, shape transition, and 
intermembrane lipid exchange [105,106]. Efficient inner membrane 
fusion, one of the multiple steps in mitochondrial shape transitions, is 
promoted by close interactions of short and long OPA1 isoforms with CL, 
but not PE [105,106]. It seems that the higher non-bilayer propensity of 
CL compared to PE makes CL in the bulk phase an ideal phospholipid for 
supporting mitochondrial remodeling. 

Mitochondria are highly dynamic organelles. The dynamic ex-
changes between OMM and IMM, i.e. between the outer and the inner 
mitochondrial membranes, have been known for decades. A great di-
versity in the cristae architecture adapted for each type of cells, tissues, 
metabolic conditions, energy demands, and the states of health and 
diseases have been demonstrated in recent years [107,108]. For a long 
time, cristae were deemed as interconnected entities with conserved and 
static structure but recently it was discovered that they are independent 
bioenergetic units – with different ATP synthesis rates, and ETC activ-
ities different from that in different parts of the IMM [109] (see Sup-
plementary Material, Fig. S2d). 

Cristae have also been shown to be capable of dynamic remodeling in 
response to changes in the energy demands and physiological states of 
cells and tissues in a timescale of seconds [107,108,110,111]. As shown 
by electron tomography cristae membranes are not simply extended 
invaginations of the IMM but are ‘sub-organelles’ connected to the inner 
boundary membrane via slit-like structures, called crista junctions 
[112,113] (see Supplementary Material, Fig. S2c). Cristae and cristae 
junctions dynamically interact with each other. Remodeling of cristae 
membranes – their disappearance and formation of new cristae – can 
take place in a few seconds, as revealed by advanced optical microscopy 
techniques [107,111,114]. Cristae dynamics impacts the membrane 
potential of an individual crista, triggering significant effects on oxida-
tive phosphorylation, Ca2+ homeostasis and apoptosis [110,111]. 

Remodeling of cristae and formation of cristae junctions depend 
largely on MICOS, OPA1, ATP synthase and the lipid microenvironment, 
which is predominantly composed of CL [108,111,115,116]. Imbalance 
in remodeling leads to a wide range of diseases [110,115,117]. The non- 
bilayer propensity of CL also facilitates the formation of new cristae 
[110,116,117]. Membrane-bending activity of cristae is controlled by 
subunits of the MICOS complex (MIC60 and MIC10), which are located 
at cristae junctions and are surrounded by CL [108]. The width of cristae 

G. Garab et al.                                                                                                                                                                                                                                  



Progress in Lipid Research 86 (2022) 101163

6

is regulated by OPA1 bound to CL, while short and long forms of OPA1, 
also bound to CL, keep cristae junctions tight. It is believed that the two 
phosphate groups of CL are largely involved in keeping proteins in 
cristae junctions tight. ATP-synthase dimers, surrounded primarily by 
CL, along with the CL-rich lipid microenvironment in the inner leaflet of 
the cristae membrane, induce positive membrane curvature at the 
cristae tip [108]. Decline in CL concentration drastically changes not 
only the cristae architecture but also the landscape of OXPHOS com-
plexes [118], leading to neurodegeneration, cardiovascular pathologies 
and cancer [107,119]. The loss of mitochondrial CL in the cardiac 
muscle cells leads to highly interconnected or abnormally swollen 
cristae [120,121]. This causes substantial defects in skeletal and heart 
musculature [120]. 

We would like to stress that remodeling of cristae architecture is a 
dynamic process that involves membrane fusion and fission [122–125]. 
This is also evident from the formation of numerous cristae-membrane 
interconnections and their multiple junctions to the inner boundary 
membrane (see Supplementary Material, Fig. S2c). Disruptions in the 
mitochondrial fusion and fission dynamics, triggered by decreased levels 
of CL, caused by aging and diseases, leads to neurological and cardio-
vascular disorders and cancer [120,125]. Recent data also revealed that 
a reduced CL content of the IMM diminishes the coupling efficiency of 
the respiratory ETC to the ATP synthase, which can be restored by CL 
enrichment of the isolated mitochondria [126]. 

In the course of over three decades of research studies, conducted by 
one of the authors of this review paper, on membrane fusion and fission 
in model membrane systems mimicking the lipid composition of IMM, it 
was revealed that membrane fusion and fission are driven by CL- 
mediated bilayer to non-bilayer transitions [127–136]. Non-bilayer 
phospholipid structures in the model IMM systems were identified by 
31P-NMR spectroscopy, detecting lipid motions on the timescale of 10–2 

to 10–4 s. These data strongly suggested that the high propensity of CL to 
form non-bilayer structures in IMM was a key factor behind the pro-
cesses of the rapid cristae remodeling occurring in a timescale of sec-
onds. An excellent review on minimal model systems of cristae 
membranes also stresses the prominent role of non-bilayer lipids in 
fusion and fission of cristae membranes and cristae-shape dynamics 
[137]. 

In broad terms, these conclusions and data pointing to the role of CL 
in promoting mitochondrial fusion are in harmony with the mechanisms 
of membrane fusion via non-bilayer intermediates [19,44,45] (see also 
3.1.). 

4.3. Stimulation of bilayer to non-bilayer polymorphic phase transitions 
by special proteins 

The first studies on phase transitions of phospholipids in mitochon-
drial samples were commenced more than four decades ago by 
employing 31P-NMR spectroscopy [138]. 31P-NMR spectra from aqueous 
dispersions of rat liver mitochondrial PE revealed bilayer-to-HII phase 
transitions in the 10–37 ◦C temperature range. Under the same condi-
tions, isolated PC molecules retained their bilayer organization, whereas 
in the total lipid mixtures both bilayer and isotropic phases were pre-
sent. It was also observed, probably for the first time, that in intact rat 
liver mitochondria phospholipids at 37 ◦C co-existed in two phases: 
bilayer and non-bilayer. A fraction of bovine liver mitochondrial pro-
teolipids, predominantly composed of Fo protein subunits of the ATP 
synthase and tightly bound CL, was isolated more than a decade later 
[139]. The line shape of the 31P-NMR spectrum taken from the aqueous 
fraction of these mitochondrial proteolipids had a somewhat broad 
symmetrical signal with a resonance peak shifted by 6 ppm to the high- 
field side (hereafter referred to as the 6 ppm signal). It was suggested 
that this signal originated from non-bilayer packed CL molecules 
partially immobilized by binding to the Fo subunit; this was later 
corroborated by the results of computer modeling [103,104]. One more 
decade later, cobra venom cardiotoxins CTI and CTII, which 

phenocopied the ability of C8 subunit of Fo sector in bovine mitochon-
drial ATP synthase to form lipid-protein oligomers by binding strongly 
to CL [135], were used to probe phospholipid packing in cauliflower 
mitochondria. The 31P-NMR spectrum of intact cauliflower mitochon-
dria at 18 ◦C indicated that the phospholipids were arranged in bilayer 
structures but treatments with CTI and CTII induced two additional, 
non-bilayer peaks superimposed on the bilayer signal [135]. The non- 
bilayer signal peaking at 0 ppm could be assigned to phospholipids 
displaying rapid isotropic motion and the other peak, the 6 ppm signal, 
to non-bilayer arranged phospholipids with restricted molecular 
mobility. 

It should be noted here that non-bilayer phases have been observed 
in mitochondria not only by NMR spectroscopy. Small-angle neutron 
scattering technique also showed non-lamellar hexagonal lipid packing 
in rat heart mitochondria under conditions of osmotic swelling; and 
highly ordered hexagonal structures were detected in some mitochon-
dria using electron microscopy technique [140]. 

To study structural details of the interaction of cardiotoxins with 
cauliflower mitochondria and with model membranes mimicking these 
mitochondria, a set of powerful physical methods – including 1H-NMR, 
2H-NMR, EPR (electron paramagnetic resonance) of spin probes in ori-
ented phospholipid films and differential scanning calorimetry – were 
used in combination with 31P-NMR spectroscopy [135]. It was 
concluded that the 6 ppm signal arises from phospholipids, predomi-
nantly CL, found in the intermembrane junctions between the OMM and 
the IMM. It should be noted that the mobility of these lipid molecules 
differs from the mobility of annular lipids, which move slower than the 
31P-NMR time scale of 10–2–10–4 s and which thus remain silent. 

The above findings suggested that the 6 ppm non-bilayer lipid as-
sembly could be induced by different mitochondrial proteins with 
structural motifs shared with the cardiotoxins CTI and CTII. The best 
studied potent cardiotoxin-like protein is the dicyclohexylcarbodiimide- 
binding protein (DCCD-BPF), which is part of the C8 rotor subunit in 
mammalian mitochondrial ATP synthase. This hydrophobic C8 rotor 
subunit of the Fo sector is embedded in IMM and is directly involved in 
proton shuttling through the Fo sector [141]. It has indeed been shown 
that DCCD-BPF and CTII share similar membranotropic properties 
[103,104,142]. Both DCCD-BPF and CTII triggered the formation of the 
6 ppm signal when reconstituted separately in multilamellar dispersions 
mimicking the phospholipid composition of bovine heart mitochondria. 
Further, it was shown that low concentrations of CTI and CTII stimulated 
the ATP synthesis parallel with the generation of the 6 ppm phase [143]. 
It is interesting to note that the C8-ring is proposed to be part of the 
mitochondrial permeability transition pore (MPTP) [144]. Hence, the 
ability of the DCCD-BPF to induce non-bilayer structures may be central 
in the process of inner and outer membrane fusion during the MPTP 
formation. 

Another protein with membranotropic behavior similar to DCCD- 
BPF or CTII might be cyt c. Cyt c, having large positive charge, elec-
trostatically interacts with the negatively charged CL phosphate groups 
and is known to stimulate the opening of toroidal lipid pores [145] and 
the formation of non-bilayer phase in model systems [146,147]. Cyt c is 
also known to form nanospheres with CL, which possess lipoperoxidase 
activity [148]. Taking into account that cyt c peroxidase is activated by 
reactive oxygen species [149], the formation of non-bilayer structures of 
cyt c with CL may play key role in mitochondrial stress signaling and 
apoptosis [150]. An additional potential phase-transition stimulating 
protein is the intermembrane protein creatine kinase. Its C-terminal 
lysines lead to preferential interaction with CL and stimulate lipid sep-
aration [151–153]. There are other natural and artificial substances, 
which may possess chemico-physical features dramatically affecting the 
lipid packing. It is possible that Szeto–Schiller CL-targeting peptides also 
phenocopy surface areas of DCCD-BPF, which may explain rejuvenation 
of mitochondrial functions by these peptides [154]. 
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5. Functional roles of non-bilayer lipid phases in TMs and IMMs 

Although our understanding about the physiological significance of 
the non-lamellar lipid phases in TMs and IMMs is still rudimentary, in 
recent years several important bioenergetic functions have been 
identified. 

5.1. Structural flexibility of TMs; modulation of the activity of a water- 
soluble enzyme 

The polyphasic lipid-phase behavior of TMs displayed large varia-
tions upon changing the temperature and the physico-chemical envi-
ronment (pH, osmotic and ionic strengths) of the membranes [60,62]. It 
has been observed that gradually increasing the temperature leads to the 
gradual destabilization of the bilayer phase and the increase of the 
isotropic phases and, as expected, the permeability of membranes [155]. 
The reversible temperature- and low-pH induced enhancements of the 
isotropic lipid phases of isolated TMs were correlated with the reversible 
enhancements of the activity of VDE [63]. Hence, these data provided 
evidence that, similar to what had been established earlier in model 
(PC/PE) membranes [69], the activity of this water-soluble enzyme in its 
native TM also depends on the presence of (a) non-bilayer lipid phase(s). 
At the same time, surprisingly, the activity of VDE negatively correlated 
with the ability of TMs to hold the transmembrane ΔpH and ΔΨ [63], 
despite the well-established fact that its activation requires the acidifi-
cation (<pH 5.8) of the lumen [70,71]. 

The role of non-bilayer lipid phases in the energization of mem-
branes as a function of temperature is controversial. Upon increasing the 
temperature from 5 to 25 ◦C both the electron transport rate and the rate 
of ATP synthesis increase [156,157]. Under the same conditions, how-
ever, the bilayer phase is destabilized, and the isotropic phases are 
enhanced, and the membranes become more permeable to ions, as re-
flected by the acceleration of the decay of ΔpH and ΔΨ [63], see also 
[158]. The accelerated decays evidently act against the utilization of 
ΔμH

+ for ATP synthesis. This controversy might be resolved, and the 
membrane permeability for ions might become less relevant, if – similar 
to cristae membranes – ATP synthesis would be occurring according to 
the model of local (or kinetic) coupling, e.g. when H+ ions are trans-
mitted directly from proton pumps to ATP synthase along the surface 
[159,160] or inside the membrane [161]. These problems, i.e. the 
localized versus delocalized proton gradients and their roles in the ATP 
synthesis in TMs, have been reviewed by R. Dilley [162]. It was pro-
posed that TMs switch between the localized and delocalized 
membrane-energization mechanisms and postulated that under certain 
conditions protons can be localized in membrane-sequestered domains 
formed by the lumen-exposed parts of thylakoid proteins which, e.g. 
LHCII proteins, might be part of the local H+ diffusion pathways. In this 
context, we note that the extended ordered arrays of PSII-LHCII super-
complexes might constitute the structural basis for such proton- 
conducting protein domains from PSII (in the granum) to the ATP syn-
thase (in the stroma region) (see Supplementary Material, section S3.). 

5.2. Role of non-bilayer lipid phases in mitochondrial ATP synthesis 

A refined mitochondria preparation procedure, in which phosphate 
contaminants of non-phospholipid nature were removed, produced fully 
functional mitochondria for 31P-NMR studies that allowed to assess 
phospholipid concentrations in various lipid phases with high accuracy 
[142]. This made it possible to relate the polymorphic transitions of 
mitochondrial phospholipids directly to ATP synthase activity. It was 
shown that the gradual increase in the temperature in bovine heart 
mitochondria from 15 to 40 ◦C resulted in gradual increase in the per-
centage of the non-bilayer 6 ppm signal. Application of a DANTE (delay 
alternating with nutation for tailored excitation) train of saturation 
pulses at the high-field peak of the lamellar spectrum has shown that 
these non-bilayers do not exchange with lamellar phospholipids in the 

31P-NMR time scale (Fig. 3 inset). Most importantly, the increase in the 
percentage of these immobilized non-bilayers was proportional to the 
increase of mitochondrial ATP production [142]. Additional experi-
ments – using CTI, CTII and phospholipase A2 [103,104,142] – provided 
further evidence for the correlation between the amount of non-bilayer, 
partially immobilized phospholipids in mitochondrial membranes and 
the rate of ATP production (Figure 3). To rationalize the strong de-
pendency of ATP synthesis on the partially immobilized non-bilayer 
lipid phase, in the following paragraphs we overview and evaluate 
literature data on the mechanisms and effects of cristae remodeling and 
membrane compartmentalizations in relation to OXPHOS pathways. 

In the current view, isolated cristae compartments may serve as the 
platform for oligomerization of OXPHOS proteins and for proton 
retention on the membrane surface [160]. The clustering of OXPHOS 
oligomers is mediated by the membrane raft-like structures with the 
high membrane surface curvature, which is triggered by interaction of 
CL with the ATP synthase and possibly with proteins of the ETC. Olig-
omeric clusters of OXPHOS in the apex of cristae that are capable of 
transferring protons along the membrane surface are optimal structures 
to provide kinetic coupling of the respiratory chain with ATP synthase 
[159,163]. The concept of H+ ions transmitted along the chain from 
complex to complex, without the formation of proton gradient between 
the bulk phases, was first proposed by R. Williams [164] and then 
confirmed on the octane-water model [165]. Now, it is clear that protons 
do not diffuse immediately to bulk water [166,167] but diffuse short- 
distance laterally along membrane surface from proton pumps to ATP 
synthases in model systems [168] and mitochondria [160,169,170]. 

Attraction of protons to phosphate groups of CL also increases the 
conical shape and inclination of CL to form non-bilayer structures. 
Hence, the extent of CL protonation, which depends on ATP synthase 
and Respirasome activity, may be the autoregulatory factor, controlling 
mitochondrial ultrastructure and thus OXPHOS efficiency. Similar effect 
on CL inclination to form non-bilayer structures can be exerted by cal-
cium ions [171], which, on the other hand, are known activators of the 

Fig. 3. Dependence of ATP synthesis on the percentage of immobilized non- 
bilayer lipids in mitochondria samples. The percentage of these lipids was 
varied by changing the temperature or by adding CTI, CTII or phospholipase A2 
(PLA2). Immobilized lipids were observed in 31P-NMR spectra at 6 ppm; this 
signal was retained after applying a DANTE train of saturation pulses at the 
high-field peak of the lamellar spectral component [142]. The ATP levels, 
expressed as μmol ATP synthesized per mg of mitochondrial proteins, were 
monitored by taking measurements on aliquots from the 31P-NMR sample tubes. 
The sizes of the markers overlap the error values. Data points were obtained 
from [142,143]. Typical 31P-NMR spectra are presented in the inset (the thin 
line below the main spectrum shows the 6 ppm signal remaining after 
DANTE train). 

G. Garab et al.                                                                                                                                                                                                                                  



Progress in Lipid Research 86 (2022) 101163

8

mitochondrial bioenergetic machinery [172]. The property of CL to in-
crease the membrane curvature on calcium binding may be a potential 
mechanism of known Ca2+ stimulating action on the ATP synthase, 
which is not yet fully resolved. The increase of the membrane curvature 
leads to electrostatic charge redistribution, pushing protons into the 
region of maximum curvature where ATP synthase dimers are located. 
This might be the reason why ATP synthases must be dimerized for 
maximum efficiency. It should be noted that clustering and degree of 
tightness of proteins in the OXPHOS changes dynamically in response to 
changes in the physiological state. When mitochondria respire actively, 
cristae membranes do not leak protons as the OXPHOS is tightly clus-
tered; in contrast, in resting mitochondria, cristae membranes leak 
protons as the OXPHOS proteins are more diffusely dispersed. This 
leakage is not considered as a waste, but a protection mechanism against 
the generation of reactive oxygen species [173]. 

The initial step in creation of compartments in the intra-cristae space 
is facilitated by intermembrane junction, which is driven by attraction of 
CL molecules on the internal sides of parallel membranes of cristae to a 
cationic peptide on the surface of opposite membrane of cristae (cf. 
[143,174]). The potency of CTII and similar proteins to stimulate 
membrane fusion was described above in detail. CTII is situated in the 
center of the junction and is predominantly surrounded by CL molecules 
forming inverted micelle. The center of inverted micelle is the initial 
point of intermembrane contact – the result of intermembrane attraction 
between cardiotoxin and CLs. Alkyl chains of inverted micelle are 

shielded from aqueous environment by two layers of phospholipids on 
both sides of the inverted micelle. CL molecules are found on the surface 
of phospholipid layers with the highest curvature, which may serve not 
only for creation of intermembrane junctions in intra-cristae space but 
also for cristae-membranes’ network interconnectivity (Fig. 4). The 
intermembrane junction in intra-cristae space could be created between 
two areas of maximum curvature protruding into the intra-cristae space. 

The resulting bridges (junctions) between adjacent cristae mem-
branes, which are likely to be made of non-bilayer packed phospholipids 
that surround cationic proteins like cyt c, creatine kinase or even mis-
folded DCCD-BPF (not incorporated into ATP-synthase c-rings), may 
prevent cristae adjacent membranes from tight packing (Fig. 4). This is a 
very important feature because nucleotide transport in mitochondria 
occurs in the intra-cristae space, where ATP is translocated from the 
matrix side by ATP/ADP carrier (AAC, ANT). In intra-cristae space 
creatine kinases transfer phosphate group from part of ATP molecules to 
the more light-weighted and mobile creatin molecules. The resulting 
ADP returns to the mitochondrial matrix for oxidative phosphorylation, 
while creatine phosphate serves as intermediate carrier of energized 
bond to the cytosol. Enough space is needed between the cristae mem-
branes to support efficient nucleotide and creatine diffusion, which 
seems to be a limiting factor affecting mitochondrial maximal activity 
[176]. 

The membrane curvature on a side of intra-cristate space caused by 
ATP-synthase dimers increases the density of protons near the Fo 

Fig. 4. Stabilization of cristae interconnections by non-bilayer junctions. Red arrows indicate the unidentified regions in the intra-cristae space which may represent 
intermembrane junctions with non-bilayer packed lipids as described in [143,174]. (a) An example of electron microphotography of rat heart mitochondria ultra-thin 
slice. The image is from the same data set part of which was previously published by coauthors of this review [175]. Mitochondria are fixed with glutaraldehyde and 
contrasted with osmium tetroxide. Orange lines outline the borders of the bilayer. (b) Simplified model of an intermembrane junction slice containing non-bilayer, 
inverted hexagonal (HII) or inverted micellar structure. The non-bilayer phase, stabilizing cardiotoxin-like proteins, are shown in orange. Panel (c) displays the 
magnified fragment of cristae from Panel (a) and with overlayed proposed positions of the ATP synthase dimers and the intermembrane junctions. The model is 
schematic, the scale and positions are not strictly sustained. 
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subunits as charges gather on the inner surface at a point of maximally 
curved membrane. In addition, the formation of compartments between 
two junctions in the intra-cristae space ‘squeeze’ H+ ions along the inner 
interface surface of compartments, which further increases the local 
concentration of protons on the membrane surface and promotes greater 
transport of protons via the Fo subunit of the ATP synthase [165]. This 
creates an additional capacity on the interface, which is used to meet the 
increased demand in ATP production or temporary substrate deficiency. 

The multilayer structures of ions and counterions on the interfaces of 
porous electrodes are known to have extremely high electrical capacities 
(so-called ionistors or supercapacitors). We propose that mitochondrial 
lipid phases, which embed the ETC complexes generating the electro-
chemical potential gradient, possess the properties similar to those of 
supercapacitors (for more information about supercapacitors see [177]). 
Taking into account the previously reported ability of ATP synthase to 
use excess protons from the interface for the synthesis of ATP in the 
absence of a membrane and transmembrane gradient [165], it is evident 
that the interfacial protons but not the protons in the bulk phase are the 
intermediate energy carriers for ATP synthesis. Thus, when kinetic 
coupling of OXPHOS is realized, the surface capacity of the mitochon-
drial membrane fulfills the same buffering function as the well-sealed 
lumen of TMs, most probably performing according to the chemios-
motic model. This agrees well with mitochondria not having fully iso-
lated compartments or high buffer capacity of intermembrane space to 
implement efficient ATP synthesis and to support efficient transport of 
the reaction products such as substrates and nucleotides in bulk phases 
and protons on the interface. 

It should be noted that the non-bilayer junctions in the intra-cristae 
space are highly dynamic structures, which continuously undergo 
bilayer to non-bilayer transitions in response to changes in proton 
concentration on the membrane interface following the mechanism of 
reversible reactions. (Note that, in fact, reversible low-pH induced 
changes in the lipid phase behavior of TMs have been observed [63]). 
With the increase in local concentration of protons on the interface, 
conical shape of CL increases, leading to the formation of non-bilayer 
junctions, while a decrease in the local concentration of protons on 
the interface leads to the disappearance of non-bilayer junctions via 
transformation of non-bilayer junction to bilayer. Due to reversibility of 
the process, intermembrane junctions in intra-crista space do not 
interfere with the transport of substrates and nucleotides in the bulk 
phase and protons on the interface. It may be also proposed that under 
certain conditions non-bilayer junctions induce fusion of cristae mem-
branes, forming a channel connecting mitochondrial matrix on opposite 
sides of the crista. Such a process can occur during the transition from 
the lamellar structure of the cristae to the tubular structure. 

Overall, the presently available data related to IMM phospholipids 
with high non-bilayer propensity and the presence of non-bilayer 
structures in IMM allow us to conclude that non-bilayer lipids, and CL 
in particular, play very important roles in regulating the bioenergetics of 
mitochondria – via their involvement in the structural dynamics and 
remodeling of cristae and of the whole mitochondria, and in the stabi-
lization of the Respirasomes and the dimeric and oligomeric forms of 
ATP synthases. It becomes more and more obvious that non-bilayer lipid 
structures are essential in mitochondrial energy transduction – as they 
do not only facilitate mitochondrial remodeling through fusion and 
fission of cristae and IMM and OMM but also facilitate mitochondrial 
ATP synthesis via increasing the area of the proton-retaining interface 
and via preventing tight compression of cristae membranes to facilitate 
nucleotide diffusion. In addition, the main non-bilayer lipid of mito-
chondria – CL – serves as a "lubricant" for the work of the ATP synthase 
rotor [178], while its phosphate groups increase the negative charge of 
the membrane contributing to the accumulation and lateral diffusion of 
protons on the lipid-water interface. 

6. Conclusion and perspectives 

In this review we analyzed the role of non-bilayer lipids and the 
polymorphic phase behaviors of TMs and IMMs in the functions and 
molecular architectures of these two fundamental energy-converting 
membranes. Compared to the fact that the main lipid species of these 
membranes are non-bilayer lipids, relatively little attention has been 
paid to the structural and functional roles of the lipid polymorphisms of 
these membranes. This might be explained by the immense success of 
the ‘standard’ fluid-mosaic membrane model [13,14], which offers 
explanation for the most important properties of biological membranes. 
This model is based on the bilayer organization of the bulk lipid mole-
cules in the membranes and provides the simplest framework for the 
energy conversion mechanism according to the chemiosmotic theory. 
However, it does not take into consideration the presence of non-bilayer 
lipids, while by today, compelling evidence shows that fully functional 
TMs and IMMs contain non-bilayer lipid phases. 

Concepts concerning the roles of the non-bilayer phases that are 
present in TMs and IMMs are just about beginning to take shape. For a 
long time, it was assumed that the high concentration of integral pro-
teins in energy-converting membranes is enough to stabilize the lamellar 
membrane structure [179]. This is indeed partially true, and has been 
documented both for CL [32] and MGDG [33] (see Section 2.3). How-
ever, as revealed mainly but not exclusively by NMR spectroscopy 
lamellar structures co-exist with non-bilayer structures both in TMs and 
in IMMs. 

While numerous questions remain open, including the identity and 
plasticity of TM and IMM domains that are distinct from the bilayer 
membrane sections embedding the energy-converting machineries, it is 
safe to draw a few conclusions: (i) Non-bilayer lipids participate in the 
assembly and stabilization of pigment-protein complexes (most likely 
via exerting lateral pressure-variations in the membrane) and the 
ontogeny of TMs. (ii) Non-bilayer lipid phases are instrumental in fusion 
processes and junction formations, which play key roles in the self- 
assembly and remodeling of TMs and IMMs. (iii) In plant TMs, the 
functional activity of the water-soluble lumenal enzyme VDE is regu-
lated by the availability of non-bilayer isotropic lipid phase(s). (iv) In 
mitochondria, non-bilayer phases can be triggered by cardiotoxins, 
water-soluble polypeptides. (v) In IMMs (at least in mammalian heart 
IMM) ATP synthesis positively correlates with the percentage of a non- 
bilayer lipid phase with restricted mobility. 

Lipid polymorphism in TMs and IMMs are best described within the 
frameworks of DEM. This model is based on the ability of lipid mixtures 
with high non-bilayer propensity to segregate out and (re)enter the 
bilayer. By this mechanism, non-bilayer lipids can self-regulate the 
membrane homeostasis, safe-guarding their optimal, remarkably high 
protein-to-lipid ratio of TMs and IMMs. DEM explains the lipid poly-
morphisms of TMs and IMMs by taking into account that TMs and IMMs 
are membrane vesicles and that they form highly organized, structurally 
flexible networks – thereby, DEM predicts and rationalizes the (putative 
and observed) occurrence of non-bilayer phases in the inner and outer 
aqueous phases of vesicles and in domains responsible for membrane 
fusion and junctions. By these means, non-bilayer lipids contribute 
significantly both to the stability and to the structural plasticity of TMs 
and IMMs. 

In this work, we also state a number of hypotheses that should be 
tested more rigorously in the future. We propose that sub- 
compartmentalizing of TMs and IMMs by junctions, formed with the 
involvement of non-bilayer lipid phases may lead to localization of pmf 
to smaller regions. In fact, such subcompartments of IMMs, largely 
independently operating individual cristae, have been documented 
[109] and might be suspected also for granum-stroma TM assemblies, 
which are interconnected merely via narrow channels [67]. Non-bilayer 
junctions may additionally stabilize subcompartments ensuring optimal 
space for substrate diffusion. At the same time, isotropic lipid phases 
increase the surface of the lipid-water interface and thus the capacity of 
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the protons for ATP synthesis, which can be intermediately 
accumulated. 

Overall, data listed in this review show that non-bilayer structures 
play pivotal roles in many processes in TMs and IMMs and should not be 
ignored. Their further study might provide new understanding of 
important processes in these fundamental bioenergetic systems. 
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