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Abstract. We present a general framework for modeling a wide selection of flocking

scenarios under free boundary conditions. Several variants have been considered -

including examples for the widely observed behavior of hierarchically interacting units.

The models we have simulated correspond to classes of various realistic situations.

Our primary goal was to investigate the stability of a flock in the presence of noise.

Some of our findings are counter-intuitive in the first approximation, e.g., if the

hierarchy is based purely on dominance (an uneven contribution of the neighbors to

the decision about the direction of flight of a given individual) the flock is more prone

to loose coherence due to perturbations even when a comparison with the standard

egalitarian flock is made. Thus, we concentrated on building models based on leader-

follower relationships. And, indeed, our findings support the concept that hierarchical

organization can be very efficient in important practical cases, especially if the leader-

follower interactions (corresponding to an underlying directed network of interactions)

have several levels. Efficiency here is associated with remaining stable (coherent and

cohesive) even in cases when collective motion is destroyed by random perturbations.

The framework we present allows a the study of several further complex interactions

among the members of flocking agents.

1. Introduction

Collective behaviour is a very important aspect through which small or large groups

of organisms optimize their living [1]. It involves collective decision making an various

contexts, such as such as searching for food [4], navigating towards a distant target

[4, 2, 3, 5] or deciding when and where to go [4, 6, 7]. Flocking is perhaps the most

common and spectacular manifestation of collective behaviour not only in nature since

recently has gained attention in the context of collective robotics as well [8, 9, 10]. Most

of the experimental and modeling approaches aimed at describing flocking by assuming

egalitarian interactions among the members of a flock.

http://arxiv.org/abs/1904.09584v1
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However, just as flocking is a widespread behavioural pattern of a collective, the

hierarchical structure of the interactions among the members of groups is also very much

common [11]. Thus, starting with a trend-setting paper of Couzin et al [12] the question

of leadership during flocking has attracted increasing interest. Early works assumed a

two-level hierarchy while recent experimental observations involving some sophisticated

animal groups such as pigeons or primates point towards the possibility of significantly

more complex internal organization principles during group motion [2, 7, 13, 14]. In

socially highly organized groups beyond a given size (dozens or so) the roles related

to leadership do not seem to be simply binary, but several levels of hierarchy can be

identified. In particular the available few experimental results indicate that many co-

moving groups have an internal system of interactions which can be best interpreted

in terms of pairwise hierarchical levels of interactions. Perhaps the best quantitatively

evaluated hierarchical group motion was carried out for pigeon flocks [2, 15] in which a

hierarchically distributed set of interactions was demonstrated using GPS tracks and a

velocity correlation-delay method [2].

On the other hand, in spite of its relevance, there have been no realistic models

proposed and studied devoted to the understanding of the conditions under which

hierarchical flocking can be optimal. The only vaguely related original model is in

a beautiful work by Shen [16], but the assumptions are quite arbitrary and the effect of

the hierarchy on the performance of the flock is not investigated.

Therefore, our goal here is to design a general framework which allows the treatment

of questions related to hierarchical leader-follower interactions in a general setting,

when the flock is freely moving (in the present study in two dimensions). We also

discuss the various variants allowed by our approach and characterize the efficiency

of the behavioral rules by determining to what level a flock is stable against external

perturbations. Hierarchy is thought to be prevalent because it can be shown to result

in more efficient group performance [7, 11].

The present work is the first one in which a flexible and plausible framework

is introduced to model hierarchical flocking. It turns out that introducing pairwise

interactions satisfying a realistic hierarchical dynamics is far from being trivial. After

introducing the model the main aspect we investigate is the stability of a flock moving

freely in a border-less two-dimensional space. We shall associate with stability the

tendency of a flock not to break into parts under external perturbations.

2. Definitions used in our model

For an egalitarian system, every particle is believed to be the same, while for a

hierarchical system, individual difference exists. Any complex multi-agent system can

be classified as egalitarian or hierarchical according to the set of pairwise relationships

between any two individuals. For each pair of particles in an egalitarian system, both

of them have the same ability/contribution to the influence on the decision for the next

time step. Meanwhile, for each pair of particles in a hierarchical system, when making a
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decision, they may have different level of contribution to the decision (weight) or have a

directed information flow relationship, like the leader-follower mechanism (follower has

no influence on the behavior of the leader).

Graphs/networks represent a useful tool for visualizing these pairwise interaction

relationships of individuals belonging to one co-moving group. Therefore, we define

several matrices to describe the internal properties of the hierarchical mechanisms from

different points of view, in order to characterize the differences between the egalitarian

and hierarchical systems more clearly.

2.1. Contribution matrix

Contribution matrix CN = [cij ]N×N(cij > 0) is defined to describe the contribution

strength (weight) of each particle during the decision making process regarding the new

preferred directions of the particles.

(i) For an egalitarian system, every particle has the same contribution value, that is,

cij = q(q > 0), for i, j = 1, · · · , N . q is a constant.

(ii) For a hierarchical system, not all of these cij (i, j = 1, · · · , N) have the same

positive value. For example, cij = qi(qi > 0), for i, j = 1, · · · , N , or cij satisfies

some probability distribution(such as log-normal), for i, j = 1, · · · , N . We name

this kind of hierarchy as contribution driven hierarchical system.

2.2. Dominance Matrix

The dominance matrix BN = [bij ]N×N is defined to describe the direction of information

flow between each pair individuals.

(i) For each pair of particles i and j in an egalitarian system, their behaviors can

be influenced by each other, that is to say, the information between each pair

of particles is transmitted bidirectionally (corresponding to an undirected graph).

Thus, in an egalitarian system for each pairwise interaction bij = bji = 1,

∀i, j = 1, · · · , N .

(ii) If the information flow of paired particles is directional, that is, only one particle can

obtain the other particle’s information (directed graph), then we have a dominance

driven mechanism, which is another kind of hierarchy. For paired particle i and j,

if i is led by j, then we have bij = 1 and bji = 0, i, j = 1, · · · , N .

Leader-follower mechanism is a typical kind of dominance relation in hierarchical

organizations. For each pair of particles, leader particle does not take into account the

influence of the follower, but the follower considers the behavior of the leader particle

when makes decision on its behavior at the next step. This feature is represented by the

fact that the matrix BN is not symmetric. Without loss of generality, we number these

particles according to the level of dominance from 1 to N . Particle 1 is the strongest

one of the whole system, while particle N is the weakest one. Therefore, matrix BN is
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a complete and symmetric matrix for egalitarian systems, while matrix BN is a lower-

triangular matrix for dominance hierarchical system.

2.3. Egalitarian versus hierarchical systems

Now we can give a formal definition of egalitarian and several kinds of hierarchical

systems.

2.3.1. Egalitarian system For each pair of individuals, if both of them will use each

other’s information with the same weight to decide the behavior at the next step, we

say it is an egalitarian system. An egalitarian system satisfies the following two rules.

(i) cij = q, ∀i, j = 1, · · · , N , q is a positive constant;

(ii) bij = 1, ∀i, j = 1, · · · , N .

2.3.2. Contribution driven hierarchical system A contribution hierarchical system

satisfies the following two rules.

(i) cij follows some distribution for i, j = 1, · · · , N (thus, not all of these cij have the

same positive value);

(ii) bij = 1, ∀i, j = 1, · · · , N ,

2.3.3. Single-layer leader-follower hierarchical system (dominance driven hierarchical

mechanism) A single-layer leader-follower hierarchical system satisfies the following

two rules.

(i) cij = q, ∀i, j = 1, · · · , N , q is a positive constant;

(ii) bij = 1, i > j, i, j = 1, · · · , N ,

2.3.4. Double-layer leader-follower hierarchical system (contribution driven dominance

hierarchical mechanism) In case the weights in the contribution matrix are not equal,

we associate the system with the presence of dominance (the contribution of agents

having a larger weight dominate over the contribution by those with a smaller weight).

We consider such systems whose behavior is determined through a contribution driven

mechanism. Then, the particle with larger weight contribution is named as leader, while

the other one is named as follower. A double-layer leader-follower hierarchical system

satisfies the following two rules:

(i) cij meets some distribution for i, j = 1, · · · , N (but not all of these cij have the

same positive value);

(ii) bij = 1, i > j, i, j = 1, · · · , N ,

The above systems can be characterized by their intersection matrix cij ∗ bij ,

i, j = 1, · · · , N . For an egalitarian system, it is a complete matrix with the same

elements. For contribution hierarchical systems, it becomes a complete matrix with
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various elements. For single-layer leader-follower hierarchical system, it is a lower-

triangular matrix with the same lower-triangular elements. For double-layer leader-

follower hierarchical system, it becomes a lower-triangular matrix with varying lower-

triangular elements.

Besides, in a more general model, cij and bij can be time-dependent. If cij and bij is

not time-dependent that means everyone in the system has fixed a set of relationships. If

cij(t) and bij(t) are time-dependent, then the relationships among these particles changes

with time. Other different variants can thus be defined according to the contribution

matrix cij(t) and dominance matrix bij(t). Here, we only discuss the case that when cij
and bij are constant.

3. Hierarchical model for flocking

We consider in this paper N particles moving continuously (off lattice) in a free area

without any boundary limitation. As shown in Figure 1, the position and direction of

N particles at the beginning are generated randomly, while over time these particles are

expected to move coherently (ordered state). The figure is for the noiseless case.

Figure 1. initial configuration vs the ordered phase of collective motion.

Suppose that the time interval between two updates of the directions and positions

is ∆t = 1. This assumption can be made without loosing generality since ∆t occurs

only in combination (being multiplied by it) with velocity terms. At t = 0, N particles

were randomly distributed within an area of a given size and have the same absolute

velocity υ as well as randomly distributed directions θ. At each time step, the position

of the ith particle is updated according to

xi(t+ 1) = xi(t) + vi(t)∆t (1)

In each time step, the velocity of a particle vi(t+1) is updated according to the following

equation

vi(t+ 1) = v
align
i (t) + v

rep
i (t) + vadh

i (t) (2)
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where v
align
i (t) is the alignment term, vrep

i (t) is the repulsion term, and vadh
i (t) is the

attraction term.

The alignment term was constructed to have an absolute value υ and a direction

given by the angle θaligni (t + 1). The angle was obtained from the expression

θaligni (t + 1) =< θi(t) > +∆θ(t) (3)

where ∆θ(t) represents noise, which is a random number chosen with a uniform

probability from the interval [−η/2, η/2]. < θi(t) > denotes the average direction of

the velocities of neighbors of the given particle i. The average direction is given by the

angle

< θi(t) >= arctan











N
∑

j=1
lij(t)sin(θj(t))

N
∑

j=1
lij(t)cos(θj(t))











. (4)

The matrix LN(t) = [lij(t)]N×N describes the neighbor relationships of particles at time

t, where

lij(t) = cij ∗ bij ∗ aij(t), ∀i, j = 1, · · · , N. (5)

The definition of adjacency matrix AN(t) = [aij(t)]N×N is

aij(t) =

{

1, i = 1, · · · , N, j ∈ Ni(t)

0, otherwise
, (6)

where Ni(t) = {j|‖xi(t)− xj(t)‖ < r. Here, r denotes the interaction radius. Using the

above expressions the alignment term can be written as

v
align
i (t+ 1) = calignυei(t) (7)

where calign is the coefficient of the alignment term. ei(t) is a unit vector with direction

angle θaligni (t).

The repulsion term exists only when the distance between any two particles is

smaller than the repulsive radius rrep. And the repulsion term is defined as

v
rep
i (t+ 1) = crep

N
∑

j=1

lij(t)

(

rrep − ‖xij(t)‖
rrep

• xij(t)

‖xij(t)‖

)

, (8)

where ‖xij(t)‖ < rrep and crep is the coefficient of the repulsion term.

The attraction term is only considered for the boundary particles [17] of the whole

system when the distance between two particles is between rrep and radh.

vadh
i (t+ 1) = catt

N
∑

j=1

lij(t)

(

rrep − ‖xij(t)‖
ratt − rrep

• xij(t)

‖xij(t)‖

)

, (9)

where rrep ≤ ‖xij(t)‖ ≤ radh and cadh is the coefficient of the attraction term. This term

is introduced in order to prevent the flock spreading (or, in other words, ”evaporating”)

due to perturbations.

Figure. 2 shows the neighbor matrix of several variants of flocks mentioned in the

last section. From Figure. 2, we can see more details on the difference among egalitarian

system and other hierarchical system more clearly.
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(a) bij = q, ∀i, j (b) bij 6= q, ∀i, j

(c) bij = q, ∀i, j and i > j (d) bij 6= q, ∀i, j and i > j

Figure 2. Neighbor matrix. (a)egalitarian system; (b)contribution driven hierarchical

system; (c)single-layer leader-follower Hierarchical system; (d)double-layer hierarchical

system.

4. Simulations and discussion

The simulations were carried out in a free two-dimensional area. We considered groups

of particles having various sizes ranging from 10 particles to 1280 particles. In order

to keep the continuity and comparability of these simulation results of different group

sizes, we chose the scale of the area for the random initial positions directly proportional

to the scale of group size N , and generated the initial angle from the interval (−π, π].

In this simulation, we use υ = 0.1, rrep = 0.5, radh = 2.2, and interaction radius r = 2.2.

We aimed at comparing the stability of egalitarian systems versus various hierarchical
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systems for varying levels of external disturbance (noise) and for different group sizes.

The alignment item of egalitarian flock model is much like the self propelled particle

model proposed by Vicsek et. al. in 1995 [18], where the definition of neighbors of

particle i includes itself and the contribution of the particles is the same. Thus, we

call the egalitarian model as VEM (E for egalitarian, M for model). The contribution

driven hierarchical model is called as CHM (C for contribution), while single-layer leader-

follower Hierarchical model is named by SHM (S for single-layer leader follower).

According to the definition of the dominance matrix BN , the neighbor matrix

of a hierarchical system has zero-value diagonal elements, that is, we have lii = 0,

∀i = 1, · · · , N for all hierarchical systems. lii = 0 means that the neighbor set of

particle i doesn’t contain itself. In the following under hierarchy, we always mean

hierarchical leader-follower kind of hierarchy. Therefore, we name the double leader-

follower hierarchical flock model with zero-s along the diagonal (lii = 0, ∀i = 1, · · · , N)

as ’Double Hierarchical Model with Zero-s (DHMZ)’, while when lii 6= 0, ∀i = 1, · · · , N ,

we call it ’Double Hierarchical Model(DHM)’.

4.1. VEM vs CHM/SHM

4.1.1. Order Parameter In this case we used the average normalized velocity is as the

order parameter, defined as

φave =
1

T

1

N

∫ T

0
‖

N
∑

i=1

vi(t)‖dt (10)

where T = 2000 is the simulation time for each experiment.

The error bar is defined as:

σ =
1√
n
φ̄ (11)

where φ̄ is the standard deviation of the order parameter values, and n > 0 is the

number of simulations for a given system size. The typical values of n were chosen as

follows:

n =



































1000, if N = 10

1000, if N = 20

500, if N = 40

200, if N = 80

100, if N = 160

(12)

4.1.2. Results We have compared the stability of VEM and some simple hierarchical

flocking systems, such as CHM and SHM. According to our results (see Figure. 3 and

Figure. 4), a simple dominance based system does not perform better than the much

studied egalitarian flock.

In this paper we primarily report on our results concerning leader-

follower systems. For more details about VEM versus CHM and SHM see

hal.elte.hu/ vicsek/downloads/papers/Trieste-poster-JYN-TV-final.pdf
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Figure 3. Quantitative comparison on VEM and CHM (lii 6= 0 for i ∈ 1, · · · , N)

in various of group sizes. cij satisfies log-normal distribution (whose mean is 0 and

standard deviation is 1) for the CHM system. Note that both Fig. 3 and 4. shows

that the egalitarian system is more stable then the simple dominance-based hierarchical

system.

Figure 4. Quantitative comparison of the VEM and SHM (lii 6= 0 for i ∈ 1, · · · , N)

for various of group sizes. cij satisfies log-normal distribution(whose mean is 0 and

standard deviation is 1) for the SHM system.

4.2. VEM vs DHM/DHMZ

4.2.1. Order Parameter As mentioned above, we shall associate the stability with the

tendency of a flock not to break into parts under external perturbations. In order to

measure the stability of the particle group, we used the following velocity correlation as

the order parameter

φcorr =
1

T

1

N(N − 1)

∫ T

0

N
∑

i=1

∑

j∈Ni(t)/i

vi(t)vj(t)

‖vi(t)‖‖vj(t)‖
dt, (13)

where j ∈ Ni(t)/i means j ∈ Ni(t) and j 6= i. This expression indicates the stability of

the flock under different conditions. We did not use the average velocity as the order

parameter, because the average velocity cannot give a right stability description when

the system is divided into two or more coherently moving subgroups.
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Figure 5. quantitative comparison on VEM and DHM (lii 6= 0 for i ∈ 1, · · · , N)

in various of group sizes. cij satisfies log-normal distribution(whose mean is 0 and

standard deviation is 1) for VDM system.

Figure 6. quantitative comparison on VEM and DHMZ (lii = 0 for i ∈ 1, · · · , N)

in various of group sizes. cij satisfies log-normal distribution(whose mean is 0 and

standard deviation is 1) for DHMZ system.
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4.2.2. Results We compare VEM with DHM and DHMZ separately. Figure. 5 shows

the comparison results of the VEM and DHM, while Figure. 6 shows the comparison

results of VEM and DHMZ.

According to Figure. 5, we can see that VEM is a little bit better (better meaning

that more ordered for the same amount of noise) than the DHM for different group size

under lower noise, while it seems that DHM is a little better than VEM under larger

noise. However, the advantage is so small that can be ignored. At the same time, it

seems that there exists no relevant difference among the simulation results for various

group sizes.

Figure. 6 demonstrates that the DHMZ hierarchical model is significantly more

stable than an egalitarian model for flocking, and the advantage is increasingly obvious

as the size of the system increases. However, the stability gap between an egalitarian

flock and a hierarchical flock stops increasing from 320 particles to 1280 particles. That

is to say, the difference in the performances between the egalitarian system and the

hierarchical system is increasing with system size, but only up to a given flock size and

is not changing as the group size reaches a certain threshold. This is quite along the

intuitive picture which suggests that hierarchy may play a relevant role only up to - at

most - a few hundred of flock members.

Let us consider twenty-eight particles, for example, Figure. 7 shows some important

scenarios during the flocking process (for a movie see Supplementary Material S1). The

color bar indicates the weight of the contribution of the given particle. For example,

the red particle is the strongest one, while the purple one is the weakest particle. The

contribution values of these particles belonging to the DHMZ system satisfy log-normal

distribution. That is, cij, i, j = {1, · · · , N}, i > j satisfy log-normal distribution, with

mean value 0 and standard deviation 1. At the same time, the contribution value of

each particle belonging to VEM system is equal, and the sum of the contribution values

of VEM system is equal to the sum of the contribution values of the DHMZ system.

The first picture in Figure. 7 displays the initial state of all the particles at start. The

second frame to the left depicts the structure of the VEM flock being less cohesive than

the DHMZ (the right one). The third picture shows a key moment when VEM results

in two separated groups while DHMZ results still in a single cluster. This can be taken

as an important evidence to demonstrate that leader-follower hierarchical systems are

more efficient regarding their stability against perturbations which the individual units

are subject to.
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(a) t = 1s

(b) t = 27s

(c) t = 53s

(d) t = 56s

Figure 7. VEM and DHMZ for twenty-eight particles flocking. For each scenario, the

left one is VEM, while the right one is DHMZ.(a) the scenario at time t = 1s. (b)

the scenario at first separate time t = 27s. (c) the scenario at time t = 53s. (d) the

scenario at the second separate time t = 56s.
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