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Abstract: We utilize known exact analytic solutions of perfect fluid hydrodynamics to
analytically calculate the polarization of baryons produced in heavy ion collisions. Assuming local
thermodynamical equilibrium also for spin degrees of freedom, baryons get a net polarization at their
formation (freeze-out). This polarization depends on the time evolution of the Quark-Gluon Plasma
(QGP), which can be described as an almost perfect fluid. By using exact analytic solutions, we thus
can analyze the necessity of rotation (and vorticity) for non-zero net polarization. In this paper we
give the first analytical calculations for the polarization four-vector. We use two hydrodynamical
solutions; one is the spherically symmetric Hubble flow (a somewhat oversimplified model, to
demonstrate the methodology). The other solution which we use is a somewhat more involved one
that corresponds to a rotating and accelerating expansion, and is thus well suited to investigate some
main features of the time evolution of the QGP created in peripheral heavy-ion collisions (although
there are still many numerous features of a real collision geometry that are beyond the reach of this
simple model). Finally we illustrate and discuss our results on the polarization.
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1. Introduction

Our aim is to give analytical results for the polarization four-vector of massive spin 1/2 particles
produced in heavy-ion collisions, from hydrodynamical models. The motivation for this work is the
recently observed non-vanishing polarization of Λ baryons at the STAR experiment [1,2] that hints at
local thermal equilibrium also for spin degrees of freedom in the Quark Gluon Plasma (QGP) produced
in heavy-ion collisions. The assumption of thermal equilibration for spin is at the core of the current
understanding of polarization of particles produced from a thermal ensemble (such as the QGP), and
almost all studies aimed at describing it in terms of collective models utilize the formula derived from
this assumption by Becattini et al. [3].

Although many numerical hydrodynamical models do indeed predict non-zero polarization
of produced spin 1/2 particles [4–7], a clear connection between the initial state, the final state and
the observable polarization is to be expected from analytical studies, on which topic we do the first
calculations here (to our best knowledge).

The observable quantities at the final state of the hydrodynamical evolution can be described by
utilizing kinetic theory. At local thermodynamical equilibrium, for spin 1/2 particles such a description
can be based on the the Fermi–Dirac distribution:

f (x, p) ∝
1

exp
(

pµuµ(x)
T(x)

− µ(x)
T(x)

)
+1

, (1)

where pµ is the four-momentum of the produced particle, and uµ(x), µ(x) and T(x) are the
four-velocity, the chemical potential, and the temperature field of the fluid, respectively.
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Assuming local thermal equlibrium for the spin degrees of freedom, for the space-time– and
momentum-dependent polarization four-vector 〈S(x, p)〉µ of the produced particles the following
formula is given in Ref. [3]:

〈S(x, p)〉µ =
1

8m
(
1− f (x, p)

)
εµνρσ pσ∂νβρ, (2)

where m is the mass of the investigated particle, and the inverse temperature field βµ=uµ/T(x) is
introduced. Here εµνρσ is the totally antisymmetric Levi-Civita-symbol; the ε0123 = 1 convention is
used. In this paper we use this formula to calculate the polarization four-vector at the freeze-out from
analytical relativistic hydrodynamical solutions.

The general consensus is that the appearance of polarization strongly depends on the rotation
of the expanding QGP fireball. However, the Equation of State (EoS) of the QGP influences the
rotation, thus by measuring the polarization, we can get information about the EoS of the QGP.
Analytic hydrodynamic calculations may provide special insight by yielding analytic formulas for the
connections of the aforementioned physical quantities.

We investigate two hydrodynamical solutions: the spherically symmetric Hubble flow [11,12]
and a rotating and accelerating solution (first reported in Ref. [14], then in a different context in [15]).
We expect to obtain zero polarization in the case of the spherical symmetric Hubble-flow as it has no
rotation, so the study of this solution can be regarded as a simple cross-check of our methodology.
The second one, however, being a rotating and expanding solution, could be a well usable model of
peripheral heavy-ion collisions, and it is expected that one gets non-zero polarization out of it. Thus
this rotating expanding solution constitutes the core point of the reported work.

2. Basic equations and assumptions

We use the c=1 notation. Let us denote the space-time coordinate by xµ≡(t, r), and the
Minkowskian metric tensor by gµν=diag(1,−1,−1,−1). The convention for the Levi-Civita symbol is
ε0123=1. Greek letters denote Lorentz indices, Latin letters denote three-vector indices. For repeated
Greek indices we use the Einstein summation convention. We denote the space dimension by d; this
implies gµ

µ = d+1. In reality, d = 3, but it is useful to retain the d notation wherever possible, in
order to see if the reason for a specific numeric constant in the formulas is the dimensionality of
space. The four-velocity of the fluid is uµ=γ(1, v), where γ=

√
1−v2 is the Lorentz factor. The velocity

three-vector is then v=uk/u0. With pµ we denote the four-momentum of a produced particle; we
also use the three-momentum p, whose magnitude we simply denote by p (whenever there is no
risk of confusion). The energy of the particle is denoted by E; the mass shell condition then reads as
E =

√
p2+m2, with m being the particle mass.

The usability of hydrodynamics in heavy ion physics phenomenology relies on the assumption of
local thermodynamical equilibrium of the matter. For describing particles with spin 1/2, we use the
source function as written up in Eq. (1). Hadronic final state observables can be then calculated by
integrating over the freeze-out hypersurface; e.g. in the case of the invariant momentum distribution,
the driving formula is

E
dN
d3p

=
∫

d3Σµ(x)pµ f (x, p). (3)

Here d3Σν is the 3-dimensional vectorial integration measure of the freeze-out hypersurface; the
appearance of which is the so-called Cooper-Frye prescription [8] for calculating the invariant
momentum distribution. Of the two solutions (mentioned above) which we investigate in this work, in
the case of the rotating and expanding accelerating solution, we also calculate the invariant momentum
distribution, as this has not been done before.

The formula given in Ref. [3] for the polarization of spin 1/2 particles, as written up in Eq. (2), may
be utilized for any given βµ=uµ/T field that one gets from a given solution of the hydrodynamical
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equations. We are interested in calculating the polarization at the final state of the hydrodynamical
evolution, so we must integrate the 〈S(x, p)〉µ field over the freeze-out hypersurface. The formula to
be analyzed further, that is, that for the observed polarization 〈S(p)〉µ of particles with momentum p,
thus becomes

〈S(p)〉µ =

∫
d3Σν pν f (x, p)〈S(x, p)〉µ∫

d3Σν pν f (x, p)
, (4)

as written up e.g. in [7]. For being able to perform analytical calculations, we have to make some
assumptions. We use saddle point integration, in which one assumes that the integrand is of the form
f (r)g(r), where f (r) is a slowly changing function, while g(r) has a unique and sharp maximum; then
the integral can be calculated with a Gaussian approximation as

∫
ddr f (r)g(r) ≈ f (R0)g(R0)

√
(2π)d

det M
,

where Mij = ∂i∂jg(r)
∣∣
r=R0

,
and ∂kg(R0) = 0,

(5)

that is, R0 is the location of the unique maximum of g(r) and M is the second derivative matrix.
Another assumption concerns the expression of 〈S(x, p)〉µ, Eq. (2): if the exponent in

the Fermi–Dirac distribution is large (i.e. phase space occupancy is small), we can use the
Maxwell–Boltzmann distribution instead:

f (x, p)� 1 ⇒ f (xµ, pµ) =
g

(2πh̄)d exp
( µ(x)

T(x)
−

pµuµ

T(x)
)
. (6)

Here g is the spin-degeneracy factor; for spin 1/2 baryons, g = 2.
In high energy heavy ion phenomenology (when the collision energy is high enough, say for

collisions at RHIC or LHC), the µ/T factor can (and usually is) neglected; we use this approximation
here1. With this we have

f (xµ, pµ) = C0 exp
(
−pµβµ(x)

)
, where βµ(x) =

uµ(x)
T(x)

, and C0 =
g

(2πh̄)d . (7)

If the Maxwell-Boltzmann approximation is justified, it means that f (x, p)� 1 indeed, and then also
Eqs. (2) and (4) become simpler:

〈S(x, p)〉µ =
1

8m
εµνρσ pσ∂νβρ, (8)

and in the saddle-point approximation, the polarization of particles with momentum p becomes simply

〈S(p)〉µ ≈ 1
8m

εµνρσ pσ∂νβρ

∣∣∣
r=R0

, (9)

since in the saddle-point approximation, in the numerator of Eq. (4), 〈S(x, p)〉µ can be considered the
„smooth” function, and the determinant factors cancel.

1 The vanishing of µ can also be interpreted as an absence of a conserved particle number density n. All our conclusions
would change only by a proportionality factor if we said µ/T = const instead of µ/T = 0; if µ 6= 0, we would have had
to introduce n. Depending on the equation of state of the matter (one that also contains the conserved particle density n),
one could write the f (x, p) function in another form, where the normalization

∫
dp f (x, p) = n(x) is evident. For example,

if one chooses an ultra-relativistic ideal gas, with p = nT, ε = κp, with κ = d as EoS, one has g
(2πh̄)d eµ/T = n

4πT3 . Indeed,

in the solutions discussed below, µ/T =const is satisfied, which means n ∝ Td, which is the well-known condition for an
adiabatic expansion.
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3. Some exact hydrodynamical solutions and polarization

In this section we first specify and recapitulate the investigated hydrodynamical solutions, then
give the analytical formulas for the polarization four-vector calculated from them. The equations of
perfect fluid relativistic hydrodynamics utilized here are

(ε+p)uν∂νuµ = (gµν − uµuν)∂ν p (Euler equation),

(ε+p)∂µuµ = −uµ∂µε (energy conservation equation),

n∂µuµ = −uµ∂µn (particle number/charge conservation),

and we specify the simple ε = κp equation of state here. (The notations: ε, p and n are the energy
density, pressure and particle number density, respectively.) Concerning the n density: if it is assumed
to be non-vanishing, we set the EoS as p = nT. However, the solutions presented below are valid also
if n = 0 (ie. if µ = 0). So the expressions for n that we recapitulate for the solutions can be regarded as
supplemental to the solutions that work for µ = 0.

We also note that there is recent development on taking the effect that polarization of the
constituents of the fluid has on the fluid dynamics itself [9], along with some numerical calculations of
how this modified hydrodynamical picture affects final state polarization [10]. We do not investigate
this possibility here; we restrict ourselves to the simple and well-known basic equations witten up
above.

3.1. Hubble flow

We do not go into the details about the method to find or verify that the solutions presented
below are indeed solutions of the perfect fluid hydrodynamical equations; we refer back to the original
publications of the solutions.

We investigate the Hubble-like relativistic hydrodynamical solution first fully described in
Ref. [11]. This solution has the following velocity, particle density and temperature fields:

uµ =
xµ

τ
, n = n0

(τ0

τ

)d
, T = T0

(τ0

τ

)d/κ
, (10)

where τ =
√

t2 − r2, and κ is the inverse square speed of sound (constant in the case of this
exact solution). The κ=3 case corresponds to ultrarelativistic ideal gas, κ=3/2 corresponds to a
non-relativistic gas; however, this solution is valid for any arbitrary constant κ value2.

To calculate the polarization four-vector, as of now we investigate the simplest case, the spherical
symmetric expansion. For the freeze-out hypersurface the τ=τ0=const. hypersurface is chosen (which
in the case of the investigated solution equals the constant temperature freeze-out hypersurface), and
a given point of this hypersurface can be parametrized simply by the r coordinate three-vector, and

2 We note that a more general class of solutions is possible [11–13] in which the temperature and density fields are
supplemented with an arbitrary V function of a „scaling variable” S:

n = n0

( τ0

τ

)d
V(S), T = T0

( τ0

τ

)d/κ 1
V(S) ,

and the S variable is any function of Sx , Sy, and Sz:

S ≡ S(Sx , Sy, Sz), where Sx ≡
r2

x

Ẋ2
0 t2

, Sy ≡
r2

y

Ẋ2
0 t2

, Sz ≡
r2

z

Ẋ2
0 t2

, for example: S =
r2

x

Ẋ2
0 t2

+
r2

y

Ẏ2
0 t2

+
r2

z

Ż2
0 t2

.

Here Ẋ0, Ẏ0 and Ż0 are arbitrary constants. In the given example, the S = const surfaces are ellipsoids, and Ẋ0, Ẏ0, Ż0 are
time derivatives of the principal axes of them
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the time coordinate on the hypersurface is t(r)≡
√

τ2
0+r2. The integration measure and the resulting

expression for the Cooper–Frye formula can then be written as

d3Σµ =
1

t(r)

(
t(r)

r

)
d3r ⇒ E

dN
d3p

= C0

∫
d3r

Et(r)−pr
t(r)

exp
(
−Et(r)−pr

T0

)
. (11)

As we are discussing massive particles, this integral always exists. The T0 constant (an arbitrary
parameter of the solution) can be taken simply as the temperature at freeze-out; we did so.

The position of the saddle-point (R0) as well as the second derivative matrix Mkl is calculated as

∂k
Et−pr

T0

∣∣∣
r=R0

!
= 0 ⇒ R0 =

τ0

m
p. Mkl ≡ −∂k∂l

Et− pr
T0

∣∣∣
r=R0

=
m

T0τ0

(
δkl −

pk pl
E2

)
. (12)

With this we can get an approximation for the invariant single-particle momentum distribution:

det M =
m2

E2

(
m

T0τ0

)3
⇒ E

dN
d3p

=
n0

4

√
πτ3

0

mT3
0

exp
(
−τ0m

T0

)
. (13)

The formula is independent of momentum. This was expected because this hydrodynamical solution
(in the V(S)=1 case) is boost invariant.

To use (9) to determine the polarization four-vector in the hydrodynamical solution of the
Hubble-flow, first we give the expression for the ∂νβρ derivative:

∂νβρ = ∂ν

 rρ√
τ2

0+r2T0

 =
gνρ√

τ2
0+r2T0

+
rνrρ

(τ2
0+r2)3/2T0

. (14)

Then for the time component we get:

〈S(p)〉0 =
1

8mT0
ε0ikl pl∂iβk

∣∣∣∣
r=R0

=
1

8mT0
εikl pl

 gik√
τ2

0+r2T0

+
rirk

(τ2
0+r2)3/2T0

 ∣∣∣∣∣
r=R0

= 0, (15)

as ε0ikl is antisymmetric whereas gik and rirk are symmetric to the change in the i↔ k indices.
Similarly for the spatial coordinates:

〈S(p)〉i = 1
8mT0

(
− εikl pl∂0βk + εikl pl∂kβ0 − εikl p0∂kβl

)∣∣∣∣∣
r=R0

= 0. (16)

In conclusion, the polarization four-vector in the spherical symmetric Hubble-flow is

〈S(p)〉µ =

(
0
0

)
, (17)

which is consistent with our expectations.
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3.2. Rotating and accelerating expanding solution

Another hydrodynamical solution of particular interest to us is a rotating and accelerating
expanding solution, first written up in Ref. [14]. This solution has the following velocity, temperature
and particle density profiles:

v =
2tr+τ2

0 Ω×r
t2+r2+ρ2

0
, T =

T0τ2
0√

(t2−r2+ρ2
0)

2+4ρ2
0r2−τ4

0 (Ω×r)2
, n = n0

(
T
T0

)3
, (18)

where ρ0 and τ0 are arbitrary parameters and Ω is an arbitrary angular velocity three-vector that
indicates the axis and magnitude of rotation. The ρ0 parameter tells about the initial spatial extent of
the expanding matter, however, the τ0 parameter is just there for the sake of consistency of physical
units; in this way, the unit of Ω is c/fm, as it should be for an angular velocity-like quantity3, and T0 is
a temperature constant. In the case of Ω=0, we recover an acceleratingly expanding but non-rotating
spherically symmetric solution.

It is convenient to write up this solution with the following notation:

uµ

T
≡ βµ = aµ+Fµνxν+(xνbν)xµ− xνxν

2
bµ, (19)

with aµ=
ρ2

0
2T0τ2

0

(
1
0

)
, bµ=

1
T0τ2

0

(
1
0

)
, F0k=Fk0=F00=0, Fkl=εklm

Ωm

2T0
. (20)

To calculate final state observables, we choose the constant proper time (τ0 =const) hypersurface here
as well. The solution itself allows for a re-scaling of the arbitrary constants in the formulas; just as in
the previous case, here too we can treat the T0 quantity as the temperature at freeze-out (at the r = 0
center of the expanding matter). We use the notation introduced in Eq. (11) for the Maxwell–Boltzmann
distribution. To derive the saddle point for the calculation of the polarization four-vector, we shall use
the expression of the invariant momentum spectrum:

E
dN
d3p

= C0

∫
d3r

E− pr√
τ2

0+r2

 exp

−E(2r2+τ2
0+ρ2

0)−2
√

τ2
0+r2pr−τ2

0 r(p×Ω)

T0τ2
0

 . (21)

This integral always exists (in the case of massive particles). In order to utilize the saddle-point
integration method, we determine the position of the saddle point (R0) and the second derivative
matrix at the saddle point:

for R0 : ∇
{
− 1

T0τ2
0

(
E(2r2+τ2

0+ρ2
0)− 2

√
τ2

0+r2rp− τ2
0 r(p×Ω)

)}∣∣∣
r=R0

!
= 0, (22)

Mkl = ∂k∂l

{ 1
T0τ2

0

(
E(2r2+τ2

0+ρ2
0)− 2

√
τ2

0+r2rp− τ2
0 r(p×Ω)

)}∣∣∣
r=R0

. (23)

We leave the detailed calculations to Appendix .1; the results are the following. The R0 saddle point
(for a given p momentum) is in the plane spanned by the p and p×Ω vectors. In the following we use
the p̂ ≡ p/p notation for the unit vector pointing in the direction of p. For the saddle point we get

R0 =
τ0

2p

√
E−m
2m

√
τ2

0 (p̂×Ω)2(E−m)2 + 4p2 · p̂ + τ2
0

E−m
2p
· p̂×Ω. (24)

3 Here we changed the notation of Ref. [14]. The rather unfortunate B notation used there is now written as τ2
0 Ω.
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Concerning the second derivative matrix, we need it only for the calculation of the invariant momentum
distribution, where its determinant is invoked. It turns out that this quantity is

det Mkl =
32m2

T3
0 τ6

0
(E+m)p. (25)

Using this result, we get the invariant single-particle momentum distribution4 as

E
dN
d3p

∝

√
π3T3

0 τ3
0

32p(m+E)
exp

(
−Eeff

T0

)
, with Eeff = m+

ρ2
0E
τ2

0
+

τ2
0
4
(Ω2−(p̂Ω)2) (E−m) . (26)

Equivalently, by defining a “local slope” Teff, the result can be expressed as

E
dN
d3p

∝

√
π3T3

0 τ3
0

32p(m+E)
exp

(
− E

Teff

)
, with Teff =

T0

m
E +

ρ2
0

τ2
0
+

τ2
0
4 (Ω2−(p̂Ω)2)

(
1−m

E
) . (27)

Proceeding to the polarization of the produced baryons, we calculate the derivative of the inverse
temperature field for this solution from the form given in Eq. (19), then substitute it into the expression
of the polarization, Eq. (9). The result is

∂νβρ = Fρν+xαbαgνρ+xρbν−xνbρ ⇒ 〈S(p)〉µ =
1

8m
εµνρσ pσ

(
Fρν+xρbν−xνbρ

)∣∣∣
r=R0

. (28)

(The second term was cancelled owing to the symmetry of gνρ and the antisymmetry of εµνρσ, and
xµ is understood as the four-coordinate of the freeze-out hypersurface whose three-coordinate is the
r = R0 three-vector). Remembering the expression of the introduced Fµν tensor and bµ vector from
Eq. (19), in particular that F0k = 0, and bk = 0, we get the following expressions for the the time-like
and space-like components:

〈S(p)〉0 = − 1
8m

ε0klm pm(Fkl+xlbk−xkbl)
∣∣∣
r=R0

= − 1
16m

εklmεklq pm
Ωq

T0
=

1
8m

pΩ

T0
, (29)

〈S(p)〉k = 1
8m

(
εk0lr pr(Fl0+xlb0−x0bl)+εkl0r pr(F0l+x0bl−xlb0)+εklr0 p0(Frl+xrbl−xlbr)

)∣∣∣
r=R0

=

= − 1
8m

(
2b0εklmxl pm+Eεklmεmlq

Ωq

2T0

)∣∣∣
r=R0

=
1

8mT0

(
EΩ− 2

τ2
0

R0×p
)

k
=

=
mΩk+(E−m) p̂lΩl p̂k

8mT0
. (30)

Summarizing this result, the polarization four-vector for the investigated rotating and accelerating
expanding solution is the following:

〈S(p)〉µ =
1

8mT0

(
pΩ

mΩ + E−m
p2 (Ωp)p

)
. (31)

In the case of Ω = 0, there is no rotation, and we get 〈S(p)〉µ=0. In this model thus polarization is
very transparently connected to the presence of rotation.

4 This has not yet been calculated for this hydrodynamical solution.
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It is useful to transform the polarization four-vector into the rest frame of the particle. The result
is5, with (r.f. standing for “rest frame”):

〈S(p)〉µr.f. =
(

0
Sr.f.

)
, where Sr.f. =

1
8T0

Ω. (32)

We can also compute the helicity of the produced spin 1/2 particles in this solution from this formula
(the S polarization vector is taken in the laboratory frame):

H := p̂S =
E

8mT0
p̂Ω. (33)

4. Illustration and discussion

In this section, we would like to illustrate our simple analytic results for the polarization vector.
We use the same type of plots that was used to visualize some existing numerical simulations (e.g. those
presented in Ref. [7]). We plot the components of the polarization vector with respect to the momentum
components in the transverse plane (that is, w.r.t. px and py). On Fig. 1 we plot the polarization vector
in the laboratory frame. For the sake of plotting, the mass of the Λ baryon (mΛc2 = 1115 MeV)
was chosen. For the sake of this illustration, we chose a moderate value for the magnitude of the Ω

vector as |Ω| = 0.1 c/fm. In our case, as a special coincidence owing purely to the specific algebraic
form of the presented analytic solution, it turned out that the polarization in the rest frame of the
produced baryons is independent of momentum p; see Eq. (32). This coincidence is expected to be
relieved in the case of more involved (complicated) solutions (that are left for future investigations).
Fig. 2 nevertheless shows the value of the Sy component in the baryon rest frame. The helicity of
the produced baryons (being proportional to the pS scalar product), however, does depend on the
momentum, even in the case of our very simple solution. We plot it on Fig. 3; with the same parameter
values as in the foregoing two plots.

5. Summary and outlook

In this paper we gave the first analytical formulas for the polarization of baryons produced from
a thermal ensemble corresponding to rotating and expanding exact hydrodynamical solutions. These
arise as descriptions of the final state of non-central high energy heavy-ion collisions. We investigated
two exact relativistic hydrodynamical solutions. One was the spherically symmetric Hubble flow (an
overly simplistic one, the study of which can be regarded as a check of the methodology), in which the
polarization turns out to be exactly zero (as it is naturally expected from symmetry considerations).
The other solution we investigated is a one describing rotating and accelerating expansion. In this
case we got the first ever analytical formulas that connect dynamical quantities of the expansion
(i.e. magnitude of rotation, acceleration, etc) with the observable final state polarization of spin 1/2
particles (baryons), which turns out to be non-zero in this case.

Our results are simple and straightforward. Nevertheless, many more solutions (more involved
ones) as well as more complicated final state parametrizations can be investigated in the future. The
calculations presented here yield the first results in terms of exact formulas for the polarization; more
refined future studies are needed to disentangle the effects that rotation, acceleration and temperature

5 The Lorentz matrix performing this boost transformation is the following (in usual 1+3 dimensional block matrix notation):

Λµ
ν =

(
cosh χ − p̂l sinh χ
− p̂k sinh χ δkl+(cosh χ−1) p̂k p̂l

)
=

1
m

(
E −pl
−pk mδkl +

E−m
p2 pk pl

)
,

where E and p could be parametrized with the velocity parameter χ as E = m cosh χ and p = m sinh χ, respectively. It
indeed can be checked that this matrix takes the (E, p) four-momentum vector into (m, 0), as it should.
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Figure 1. The components of the polarization four-vector in the rotating and accelerating expanding
solution with respect to the momentum. Plots were made with the mass of the Λ baryon (mΛ = 1115
MeV/c2), and with |Ω| = 0.1 c/fm.

Figure 2. The only non-vanishing component of the polarization vector in the rest frame of the baryon
is Sy in the investigated simple solution; in this case its value is uniquely determined by the magnitude
of the Ω vector. More involved types of analytic solutions would yield some dependence on the
momentum components px and py. For the plotted value of Sy (a constant, as seen in the plot) the same
input parameters were used as above: mΛ = 1115 MeV/c2, and |Ω| = 0.1 c/fm.

gradient have on the observable final state polarization of baryons produced in heavy-ion collisions.
Such studies have the potential of a better understanding of what phenomenological implications can
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Figure 3. Helicity of the produced baryons calculated in the rotating and accelerating expanding
solution. Parameter values as above: mΛ = 1115 MeV/c2, |Ω| = 0.1 c/fm.

polarization measurements (such as recently done by the STAR experiment [1]) have on the properties
(such as the equation of state) of the strongly coupled Quark Gluon Plasma produced in heavy ion
collisions.
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Appendix .1 Additional calculations

Here we discuss some additional calculations used in Section 3.2 pertaining to the case of rotating
and accelerating solution.

For a given momentum p, the position of the saddle point R0 (to be applied in the approximate
calculation of the momentum spectrum and the polarization) was written up in Eq. (24); we provide
some additional details of the derivation of that formula here. The defining equation was Eq. (22), of
which the following equation for R0 is obtained:

4ER0 − 2
√

τ2
0+R2

0p− 2(pR0)√
τ2

0+R2
0

R0 − τ2
0 (p×Ω) = 0, (A1)

where R2
0≡R0R0. From this equation one readily sees that R0 must be a linear combination of p and

the p×Ω vector. We substitute this assumption into the equation above. We note that p and p×Ω are
orthogonal to each other, which leads to some intermediate simplifications, as well as enables us to
rearrange the obtained condition into the following form:

R0 := αp + βτ2
0 p×Ω ⇒ 2

{(
2E−αp2

A

)
α−A

}
p = τ2

0

{
1−2β

(
2E−αp2

A

)}
(p×Ω).
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where we temporarily introduced the A≡
√

τ2
0+α2 p2 + β2τ4

0 (p2Ω2−(pΩ)2) notation. Because of the
orthogonality of p and p×Ω, both sides here have to vanish identically, from which we get

A = α

(
2E−αp2

A

)
, 4E−2αp2

A
=

1
β

. (A2)

One divides these equations to obtain a simple relation, the substituting back one gets a quadratic
equation for β, the solution of which is

α

β
= 2A ⇒ 4E−4βp2 =

1
β

⇒ β =
E

2p2 ±

√
E2

4p2 −
p2

4p2 =
E±m
2p2 , (A3)

where we used the E2=p2+m2 relation. To find α we substitute this back into the expression of A:

α=2βA ⇒ α2=4β2
{

τ2
0+α2 p2+β2τ4

0 (p2Ω2−(pΩ)2)
}
⇒ α=2βτ0

√
1+β2τ2

0 (p2Ω2−(pΩ)2)

1−4p2β2 .

Using the above expression of β (with the yet undetermined sign) we get 1−4p2β2 = − 2m
p2 (m±E), and

see that the expression for α will be valid only in the case when 1−4β2 p2 > 0, thus conclude that the
bottom sign is the proper choice. We thus arrive at the following expressions:

β =
E−m
2p2 , α = 2βτ0

√
1+β2τ2

0 (p2Ω2−(pΩ)2)

1−4p2β2 =
τ0

2

√
E−m
2m

√
τ2

0 (p̂×Ω)2(E−m)2 + 4p2. (A4)

From these formulas the expression of R0 shown in Eq. (24) readily follows. The other ingredient in
the saddle-point integration necessary for getting the momentum spectrum is the determinant of the
second derivative matrix of the source function. Here we outline the main steps of the derivation of
Eq. (25). From Eq. (23) the second derivative matrix itself turns out to be

Mkl =
1

T0τ2
0

{(
4E−2(pr)

A

)
δkl−

2
A
(pkrl+rk pl)+2(pr)

rkrl
A3

} ∣∣∣∣
r=R0

, (A5)

where we use the notation A as above. We should use the expression of R0 as calculated above.
The determinant of this M matrix is the product of its eigenvalues. In our case the particular

spatial directions are: p, p×Ω, and the vector orthogonal to both these, that is, p×(p×Ω). One
recognizes that the vector p×(p×Ω) is an eigenvector of the M second derivative matrix:

M
(
p×(p×Ω)

)
= · · · = 1

β
p×(p×Ω). (A6)

The corresponding eigenvalue is thus 1/β. Owing to the symmetric nature of M, the other two
eigenvectors must be in the orthogonal complementer subspace of this vector, so they are linear
combinations of p and p×Ω. Let us thus look for these eigenvectors in the form a=µp+νr, with yet to
be determined µ and ν coefficients. Substituting this expression, we get

M a = λa ⇒
(

4E−2(pR0)

A

)
a− 2

A

(
R0(ap)+p(aR0)

)
+2(pR0)

R0(aR0)

A3 = λa, (A7)
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where λ is the eigenvalue (the values of which we are looking for). By substituting the assumed form
of a and inferring the components of this equation in the p and p×Ω directions, we get the following
equation for the µ and ν coefficients:

2
A3

(
2EA3−2A2pR0 −A2R2

0
−A2 p2+(pR0)

2 2EA3−2A2pR0+R2
0pR0

)(
µ

ν

)
= λ

(
µ

ν

)
. (A8)

We immediately infer the product of the two λ1,2 eigenvalues as the determinant of this 2×2 matrix.
Taking the third eigenvalue (calculated above) into account, after some simplifications, we indeed get
the following expression for the determinant of the M matrix (the expression we used in Eq. (25)):

det M =

(
1

T0τ2
0

)3

32pm2(m+
√

p2+m2). (A9)
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