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Abstract
A Gram-negative bacterial strain, named Kb82, was isolated from agricultural soil and a polyphasic approach was used for 
characterisation and to determine its taxonomic position. Based on 16S rRNA gene sequence analysis, the highest similarity 
was found with Flavobacterium artemisiae SYP-B1015 (98.2%). The highest ANI (83.3%) and dDDH (26.5%) values were 
found with Flavobacterium ginsenosidimutans THG 01 and Flavobacterium fluviale  HYN0086T, respectively. The isolate is 
aerobic with rod-shaped cells, positive for catalase and negative for oxidase tests. The DNA G+C content is 34.7 mol%. The 
only isoprenoid quinone is menaquinone 6 (MK-6). The major fatty acids are iso-C15:0, summed feature 3  (C16:1 ω7c/C16:1 
ω6c) and iso-C17:0 3OH. The major polar lipid is phosphatidylethanolamine. On the bases of phenotypic characteristics and 
analysis of 16S rRNA gene sequences, it is concluded that strain  Kb82T represents a novel species in the Flavobacterium 
genus, for which the name Flavobacterium hungaricum sp. nov. is proposed. The type strain of the species is strain  Kb82T 
(= LMG  31576T = NCAIM B.02635T).
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Introduction

The genus Flavobacterium was described by Bergey et al. 
(1923) emended by Bernardet et al. (1996), Dong et al. 
(2013), Kang et al. (2013) and Kuo et al. (2013). The genus 
belongs to the family Flavobacteriaceae, order Flavobac-
teriales, class Flavobacteriia, phylum ‘Bacteroidetes’.

This group of Bacteria is very diverse and strains have 
been isolated from a wide variety of habitats. The genus 
includes 257 validly published species with correct names 
(https:// lpsn. dsmz. de/ February 2022) (Parte et al. 2020) 
at the time of writing, the type species is Flavobacterium 
aquatile (Frankland and Frankland 1889). Culture-based 
and culture-independent studies indicate that Flavobacte-
ria are one of the most abundant group in soil, especially 
in the rhizosphere. Members of the Flavobacterium are 
often associated with the capacity to degrade complex 
organic compounds in soil. Many recent studies suggest 
that these bacteria have a plant growth-promoting prop-
erties, particularly in the early and intermediate growth 
stages (Kolton et al. 2016). Organisms that are able to 
break down biopolymers play a pivotal role in the turnover 
of various organic matter in the soil. Lignocellulose is a 
complex biopolymer consisting of cellulose, hemi cellu-
lose and lignin. In the background of chemical and biolog-
ical resistance stand chemical complexity and an arranged 
structure. The phenotypic, chemotaxonomic and genotypic 
properties indicate that strain  Kb82T represents a novel 
species within the genus Flavobacterium, for which the 
name Flavobacterium hungaricum sp. nov. is proposed. 
The type strain of the species is strain  Kb82T (= LMG 
 31576T = NCAIM B.02635T).

Materials and methods

Isolation and cultivation

Strain  Kb82T was isolated in the Great Hungarian Plain, 
from an agricultural field, after the maize was harvested. 
The soil with a pH moderately alkaline was fertilised. For 
the study, soil particles were homogenised by vortexing 
and serial dilutions were prepared with peptone water (1 g 
peptone, 9 g NaCl, in 1000 ml  dH2O). 100–100 µl of the 
third to the fifth member of the dilution series was spread 
onto Distillers Dried Grains with Solubles (DDGS) con-
taining agar (1 g  NaNO3; 1 g  K2HPO4; 3 g NaCl; 0.5 g 
 MgCl2; 0.5 g yeast extract; 0.5 g peptone; 3 g DDGS; 25 g 
agar; 1000 ml  dH2O). The plated were incubated at 10 °C 
for 5 days. Single colonies were taken from the plates and 
purified on the same medium. All similar phenotypes’ 16S 

rRNA gene were sequenced. The isolate was maintained 
on LB medium (DSM medium No. 381, www. dsmz. de) at 
28 °C and pH 7.5. but the novel strain also grows well on 
TSA, nutrient, R2A and minimal media with xylan, man-
nan and carboxymethyl cellulose (CMC) as the sole carbon 
source (1 g  NaNO3; 1 g  K2HPO4; 3 g NaCl; 0.5 g  MgCl2; 
4 g xylan/mannan/CMC; 25 g agar; 1000 ml  dH2O).

Physiology and chemotaxonomy

For the chemical and molecular studies, biomass was pre-
pared by cultivation in shaker flasks in LB medium at 28 °C 
for 32 h. The colony morphology of the strain was studied on 
LB agar medium by directly observing single colonies. Pres-
ence of flexirubin type pigment (by 20% KOH), production 
of brown diffusible pigment on l-tyrosine agar, absorption of 
Congo red degradation of agar, casein, chitin, pectin, DNA, 
l-tyrosine, production of  H2S and gliding motility (by the 
hanging-drop technique) were estimated according to the 
minimal standards for describing novel taxa in the family 
Flavobacteriaceae (Bernardet et al. 2002) and Barrow and 
Feltham (2004). Cell morphology of the strain was observed 
by electron microscopy. Gram reaction was studied with the 
non-staining method of Buck (1982). Oxidase activity was 
determined with OXI oxidase test strip (Diagnostics s.r.o.). 
Catalase production was shown according to Barrow and 
Feltham (2004). The effects of different temperatures (from 
4 to 50 °C) on the growth of the bacterium, NaCl (0–4% 
w/v) and pH (pH 4–10, using increments of 0.5 pH units) 
tolerances were determined in LB medium. API 50 CH, API 
20 NE and API ZYM kits (BioMérieux) were used accord-
ing to the manufacturer’s instructions for determining acid 
production from different carbon sources, the assimilation of 
different substrates and the enzymatic activities of the strain. 
The API 50 CH and 20 NE tests were read after 24–48 h 
incubation at 28 °C. Growth under anaerobic and microaero-
philic conditions was checked on LB medium with the help 
of Anaerocult A and C systems (Merck). The physiological 
characteristics were compared to the closely related Fla-
vobacterium compostarboris JCM  16527T by side-by-side 
analysis.

Chemotaxonomic traits were analysed by DSMZ Identi-
fication Service (DSMZ, Braunschweig, Germany). Active 
growing cultures of the strain on LB agar were used in the 
analysis of the fatty acid profiles of the strain. According to 
the DSMZ Identification Service, fatty acid methyl esters 
(FAMEs) were obtained following the methods of Miller 
(1982) and Kuykendall et al. (1988). Gas chromatography 
was used for the separation of FAMEs, which were detected 
by a flame ionisation detector using the Sherlock Microbial 
Identification System (MIS) (MIDI, Microbial ID, New-
ark, DE 19711 U.S.A.). FAMEs were identified by using 
the TSBA6 6.10 database of the Microbial Identification 

https://lpsn.dsmz.de/
http://www.dsmz.de
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System. GC/MS was used for the identification of summed 
feature components thereafter.

Respiratory quinones were extracted from freeze-dried 
material and silica-based solid phase extraction method was 
used for purification. The purified samples were further ana-
lysed by HPLC and UHPLC-ESI-qTOF systems (Tindall 
1990a, b; dsmz.de). Polar lipids were determined based on 
the methods of Tindall et al. (1990a, b; Tindall et al. 2007; 
dsmz.de).

Genome features

DNA was extracted from  Kb82T liquid culture grown in 
LB medium. Genomic DNA isolation and 16S rRNA gene 
amplification were performed according to Tóth et  al. 
(2017). Sequencing of the genome of the strain was done 
with Illumina MiSeq sequencing technology according to 
Szuroczki et al. (2019). Genome assembly was performed by 
SPAdes v. 3.9.1; CLC NGS Cell v. 11.0. Genome complete-
ness and contamination values were studied by TypeMet tool 
of MiGA server (http:// micro bial- genom es. org/) (Rodriguez-
R et al. 2018). ANI and digital DNA–DNA hybridisation 
(dDDH; identities/HSP length) values were determined 
using the OrthoANI algorithm (www. ezbiocloud. net/ 
tools/ ani) (Yoon et al. 2017) and Genome-to-Genome Dis-
tance Calculator service of DSMZ (http:// ggdc. dsmz. de/) 
(Meier-Kolthoff et al. 2013). Annotation of the genome was 
performed by NCBI Prokaryotic Genome Annotation Pipe-
line v4.4 with Best-placed reference protein set and Gene-
MarkS + methods (Tatusova et al. 2016; O’Leary et al. 2016) 
and Rapid Annotation using Subsystem Technology server v. 
2.0 (RAST; https:// rast. nmpdr. org) (Aziz et al. 2008).

To identify the secondary metabolite biosynthesis gene 
clusters, the anti-SMASH server was used (Blin et al. 2019).

Phylogeny

The partial 16S rRNA gene sequence of the strain was 
compared with the EzTaxon EzBioCloud Database (http:// 
www. ezbio cloud. net/ taxon omy) (Kim et al. 2012a, b) for an 
approximate phylogenetic affiliation. After Sanger sequenc-
ing of the 16S rRNA gene, a genome sequencing project of 
 Kb82T was carried out, which revealed that there is only 
one 16S rRNA gene copy in the genome. Phylogenetic trees 
were built by using the neighbor-joining (Saitou and Nei 
1987) and maximum-likelihood (Felsenstein 1981) meth-
ods with Kimura’s two-parameter calculation model and 
the maximum-parsimony algorithm (Kimura 1980) using 
MEGA version 10.0 (Kumar et al. 2018). Tree topologies 
and distances were evaluated by bootstrap analysis based on 
1000 replicates. For phylogenomic studies TYGS (https:// 
tygs. dsmz. de/) (Meier-Kolthoff and Göker 2019), MiGA 

(http:// micro bial- genom es. org/) (Rodriguez-R et al. 2018) 
and GGDC (http:// ggdc. dsmz. de/) (Meier-Kolthoff et al. 
2013) webservers were used.

Results and discussion

Phenotypic and biochemical characterisation

Distinctive physiological and biochemical characteristics of 
the isolate are given in Table 1. List of all negative traits 
from API tests is presented in Online resource 1. The other 
morphological and physiological characteristics are listed in 
the species description.

Chemotaxonomic characteristics

The predominant cellular fatty acids of the strain were found 
to be iso-C15:0 (32.6%), summed feature 3  (C16:1 ω7c/C16:1 
ω6c, 14.6%) and iso-C17:0 3OH (11.6%). The fatty acid 
profile is similar to that of related strains, in accordance 
with the description of Flavobacterium genus (Kang et al. 
2013), though the ratios of the different components are 
different. The complete fatty acid composition is shown in 
Online resource 2. The only respiratory quinone of  Kb82T 
is menaquinone-6 (MK-6). Strain  Kb82T exhibits a complex 
polar lipid profile consisting of one phosphatidylethanola-
mine (PE) as the dominant element, two aminolipids (AL), 
three phospholipids (PL), one aminoglycolipid (GNL) and 
seven uncharacterised lipids (L) (Online resource 3).

Whole‑genome sequence analysis

The completeness and contamination values of the genome 
are 97.2 and 1.9%, respectively. Other quality labels of 
genome sequencing and assembly are as follows: 155-fold 
genome coverage, contig N50 = 1,261,348 bp, number of 
contigs are 12. The genome size and G + C content of  Kb82T 
are 5,872,517 bp and 34.7 mol%, respectively. According 
to the annotation, there are 5178 genes, 5088 CDSs and 90 
RNA genes in the genome. The coding density is 87.0%. 
The genomic traits of the strain and related type strains are 
summarised in Table 2.

The RAST analysis revealed the presence of 277 sub-
systems, the subsystem coverage was 17% (Online resource 
4). The genome of  Kb82T contains 10 putative biosynthetic 
gene clusters (Non-ribosomal peptide synthetase, Type I 
polyketide synthase, Type III polyketide synthase, betalac-
tone, arylpolyene, resorcinol, proteusin, siderophore, ter-
pene, Class I lanthipeptide clusters like nisin) in 9 genomic 
regions. Based on the RAST and the anti-SMASH server the 
strain encodes genes required for siderophore production. 

http://microbial-genomes.org/
https://rast.nmpdr.org
http://www.ezbiocloud.net/taxonomy
http://www.ezbiocloud.net/taxonomy
https://tygs.dsmz.de/
https://tygs.dsmz.de/
http://microbial-genomes.org/
http://ggdc.dsmz.de/
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The production of siderophores can promote plants health 
by the suppression of pathogens (Rana et al. 2020).

Using the genome annotation and the Pfam database 
(Mistry et al. 2020; http:// pfam. xfam. org/), several glyco-
side hydrolase (GH) genes in various GH families were 
found, which indicates that the strain  Kb82T specialises in 
the breakdown of complex plant-associated carbohydrates. 
Genome sequence analysis also revealed three genes from 
glycoside hydrolase families GH78 (GenBank accession: 
MBE8726248, MBE8726269 and MBE8726274) and 
one rhamnogalacturonan acetylesterase gene (GenBank 

accession: MBE8726158) which may play a role in rham-
nogalacturonan utilisation. Because this polymer is present 
only in terrestrial plants, these genes can only be found in 
the genomes of the terrestrial clade (Kolton et al. 2013). 
Cellulose degradation was proven by Congo red staining 
and the strain is able to grow on a minimal medium with 
polysaccharides as the sole carbon source. In the genome of 
the strain enzyme genes have been identified that may play 
a role in the breakdown of lignocellulose (http:// www. cazy. 
org/) (Lombard et al. 2014). We identified 100 GH genes in 
32 GH families (Online resource 5).

Table 1  Differential characteristics of  Kb82T (1) and the closely 
related Flavobacterium compostarboris JCM  16527T (2) Flavo-
bacterium artemisiae SYP-B1015T (3), Flavobacterium crocinum 

 HYN0056T (4), Flavobacterium quisquiliarum EA-12T (5)* Data are 
from Kim et al. (2012a, b), Zhao et al. (2018), Baek et al. (2018) and 
Zhang et al. (2017)

1 2 3* 4* 5*

Isolation source Soil Compost Rhizosphere Freshwater Activated sludge
Temperature range for growth (°C) 

(optimum)
10–30 (25) 15–30 (30) 5–34 (24–30) 4–40 (30) 15–37 (25)

pH range for growth (optimum) 5.5–8.5 (7.0) 5.5–8.0 (6.5) 5.0–8.0 (7.0) 5.0–11.5 (7.5) 5.0–9.0 (7.0)
Indole production − −  + − −
Hydrolysis of
 Esculin  +  + −  +  + 
 CM-cellulose  +  + − − −
 Starch  +  +  +  + −

Acid production from
 d-trehalose −  + nd nd nd
 l-arabinose − −  + nd  + 
 Maltose  +  + − nd  + 
 Potassium 5-ketogluconate  + − nd nd nd

Activity of
 N-acetyl-β-glucosaminidase −  + nd  +  + 

oxidase − − −  +  + 
DNA G + C content (mol%) 34.7 33.6* 33.5 34.0 36.1

Table 2  Genome sequencing 
summaries and general 
characteristics of strain  Kb82T 
and closely related type 
strains, and their pair-wise 
average nucleotide identity 
(ANI) and digital DNA–DNA 
hybridization (DDH) values

Strains: 1. Flavobacterium hungaricum  Kb82T (GCA_015182285.1), 2. Flavobacterium fluviale 
(GCA_003312915), 3. Flavobacterium crocinum  HYN0056T (GCA_003122385.1), 4. Flavobacterium gin-
senosidimutans (GCA_003254625.1)

Characteristic Strains 1 2 3 4

Number of contigs 12 1 1 82
Size (base) 5,872,517 4,839,571 5,877,431 5,483,841
DNA G+C content (mol%) 34.7 33.9 34.0 33.5
Total number of genes 5178 4183 4992 4694
Number of protein-coding genes 5033 4065 4879 4591
Number of tRNA genes 65 60 63 52
Digital DDH value (%,
below the diagonal)

ANI value (%, above the diagonal)
1 100 82.5 81.5 82.1
2 26.5 100 84.2 84.3
3 25.1 28.2 100 84.7
4 25.8 28.6 29.4 100

http://pfam.xfam.org/
http://www.cazy.org/
http://www.cazy.org/
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As a result of genome analysis, several genes involved in 
flavobacterial gliding motility (GldN, GldK, GldL, GldM, 
GldI, GldA, GldE, GldD, GldJ, GldB, GldC, GldH, GldG, 
GldF, SprA, SprE, SprF, SprT, ChiA, RemB) have been iden-
tified in  Kb82T genome (McBride and Nakane 2015; Pent-
tinen et al. 2018). A subset of these genes has been found to 
form a protein translocation system called type IX secretion 
system (T9SS) restricted to ‘Bacteroidetes’. T9SS has an 

important role in the secretion of gliding motility adhesins. 
Several studies indicate the significant role of Flavobac-
terium strains in soil and especially in the rhizosphere. In 
such highly competitive ecosystems, the large numbers of 
glycoside hydrolase genes and the special gliding mobility 
may help in the successful colonisation of niches (Kolton 
et al. 2016).

Flavobacterium tistrianum GB 56.1T (KT223144.2)

Flavobacterium phragmitis BLN2T (GU564236.1)

Flavobacterium ginsenosidimutans THG 01T (GU138377.1)

Flavobacterium ustbae T13T (MH593838.1)

Flavobacterium amnigenum I3-3T (MH013305.1)

Flavobacterium fluviale HYN0086T (MF991893.2)

Flavobacterium aquidurense WB 1.1-56T (AM177392.1)

Flavobacterium psychrophilum IFO 15942T (AB078060.1)

Flavobacterium quisquiliarum EA-12T (KU973600.1)

FFllaavvoobbaacctteerriiuumm hungaricum KKb8822T ( PRDM01000009.1)

Flavobacterium compostarboris JCM 16527T (GQ281769.1)

Flavobacterium defluvii EMB117T (DQ372986.1)

Flavobacterium crocinum HYN0056T (KY077156.2)

Sphingobacterium spiritivorum JCM 1277T (D14026.1)

79 Flavobacterium xinjiangense AS1.2749T (AF433173.1)

Flavobacterium anhuiense D3T (EU046269.1)

60 Flavobacterium artemisiae SYP-B1015T (KY038844.1)

70

64

Flavobacterium panici PXU-55T (MN594467.1)

51

55

Flavobacterium sharifuzzamanii A7.6T (MH396692.1 )

52

Flavobacterium nitrogenifigens NXU-44T (KP711654.1)

69

0.050

*
*

*

*

* 52

Flavobacterium chungangense CJ7T (EU924275.1)

Flavobacterium hydrophilum IMCC34758T (MG456810.1)

Fig. 1  Maximum-likelihood tree based on 16S rRNA gene sequences 
showing the phylogenetic relationships between strain  Kb82T and 
related taxa. Bootstrap values (>50%) are shown as percentages of 
1000 replicates. Branches with lower bootstrap values than 50% are 

uncertain. Branches signed with an asterisk occurred with every tree-
making algorithm used in the study. Bar, 0.05 substitution per nucleo-
tide position



 Archives of Microbiology (2022) 204:301

1 3

301 Page 6 of 8

Phylogenetic analysis

According to the comparisons with the complete 16S rRNA 
gene sequences in the EzTaxon database, the highest level 
of sequence similarity occurred with Flavobacterium arte-
misiae SYP-B1015T (98.2%) (Zhao et al. 2018), followed by 
Flavobacterium crocinum  HYN0056T (97.4%) (Baek et al. 
2018) and Flavobacterium compostarboris  15C3T (97.3%) 
(Kim et al. 2012a, b). The 16S rRNA gene based phylogeny 
tree suggests that strain  Kb82T forms a distinct phyletic line-
age within Flavobacterium genus (Fig. 1).

According to genome-based analysis, the closely related 
taxons found by MiGA are Flavobacterium ginsenosidimu-
tans  THG01T (Yang et al 2011) (GenBank assembly acces-
sion: GCA_003254625) (83.3% ANI) and Flavobacterium 
sharifuzzamanii A7.6 T (Debnath et al 2019) (GenBank 
assembly accession: GCA_003254585) (83.2% ANI). The 
p-value of taxonomic novelty at the species level is 0.00269.

The highest dDDH value (identities/HSP length) between 
 Kb82T and related strains was found with Flavobacterium 
fluviale  HYN0086T (Baek et al 2020) (GenBank assembly 
accession: GCA_003312915) (26.5%). Whole genome-
based tree generated by TYGS also confirmed the taxonomic 
position of  Kb82T within Flavobacterium genus as a novel 
species (Online resource 6).

According to the 16S rRNA based and whole genome 
based phylogenetic analyses,  Kb82T represents a novel 
species in genus Flavobacterium. The generally accepted 
species boundary for 16S rRNA gene similarity, ANI and 
dDDH values are 98.7, 95–96 and 70%, respectively (Chun 
et al. 2018). Obtained values for  Kb82T (98.2% for 16S 
rRNA gene similarity, 83.3% for ANI and 26.5% for dDDH) 
are all lower, confirming the results of phylogenetic treeing.

In conclusion, the phenotypic, biochemical, chemotaxo-
nomic and phylogenetic information of strain  Kb82T sup-
port its classification as a novel species of Flavobacterium, 
for which the name Flavobacterium hungaricum sp. nov. is 
proposed.

Description of Flavobacterium hungaricum 
sp. nov.

Flavobacterium hungaricum (hun.ga'ri.cum. M.L. neut. adj. 
hungaricum of or belonging to Hungary, where the type 
strain was isolated).

Grows well on LB, TSA, nutrient and R2A plates. Colo-
nies are circular, non-mucoid, smooth and have orange 
pigmentation on LB after 72 h incubation. Flexirubin-type 
pigment are present. Congo red is not absorbed by colo-
nies. Cells are motile by gliding, strictly aerobic, Gram-
reaction-negative, oxidase negative and catalase-positive 
straight rods. Cells are 0.5 µm in width and 1.5–2.0 µm in 

length. Individual cells form filaments. It grows at 10–30 °C 
(optimum, 25 °C), pH 5.5–9.0 (optimum, 7.0) and at NaCl 
concentrations of 0.0–2.0 w/v % (optimum, 0 w/v %). Able 
to degrade cellulose, casein, l-tyrosine and esculin, Posi-
tive for  H2S production and acid production from d-xylose, 
d-galactose, d-glucose, d-fructose, d-mannose, N-acetyl-glu-
cosamine, amygdalin, arbutin, esculin, salicin, d-cellobiose, 
d-maltose, d-lactose, starch, glycogen, gentobiose, l-fucose, 
potassium 5-ketogluconate, assimilation of d-glucose, l-ara-
binose, d-mannose, N-acetyl-glucosamine, d-maltose and 
β-galactosidase, alkaline phosphatase, leucine arylamidase, 
valin arylamidase, acid phosphatase naphthol-AS-BI-phos-
phohydrolase, β-glucosidase activity. The major fatty acids 
are iso-C15:0, summed feature 3  (C16:1 ω7c/C16:1 ω6c) and 
iso-C17:0 3OH. The only respiratory quinone is MK-6. The 
major polar lipid is phosphatidylethanolamine. The DNA 
G + C content is 34.7 mol%.

The type strain is  Kb82T (= LMG  31576T = NCAIM 
B.02635T) isolated from an agricultural field in the Great 
Hungarian Plain.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00203- 022- 02905-x.
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