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Effect of a laser dip in the semiclassical dynamics of bosonic Josephson junctions
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We consider the standard double-well setup extended with a laser beam in the center to create a “triple-well”
potential. The beam in the center is much narrower than the barrier, and it creates a tunable depth well which
can support a localized state in the middle. We show that the presence of the localized state in the central well
changes the sign of tunneling between the left and the right wells and therefore controls the fixed-point dynamics
of the bosonic Josephson junction.
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I. INTRODUCTION

A Bose-Einstein condensate of a dilute gas of alkaline
atoms in a double-well potential realizes the physics of
Josephson junctions, which was originally predicted in two
superconductors separated by an insulating layer [1]. The
bosonic realization of Josephson-junction physics has attracted
great interest both theoretically [2–10] and experimentally
[11–13] in recent years. On one hand the physics of Josephson
junctions can be described by the two coupled nonlinear
equations of a nonrigid pendulum, therefore its careful inves-
tigation is very tempting since the model and its mathematics
look fairly simple, whereas they are complicated enough in
order to help us understand some aspects of more elaborate
problems, such as the Bose-Hubbard model. In particular,
bosonic Josephson junctions (BJJs) may be regarded as a
two-site realization of the Bose-Hubbard model. On the
other hand the mesoscopic coherent dynamics of the Bose-
Einstein condensate has important issues of its own, such
as the validity of semiclassical dynamics and the use of
coherent states in a few mode and finite atom number systems
[7,8].

The tunneling dynamics of BJJs can serve as a basic tool
in interferometry applications [14–16]. The first experiments
with repulsively interacting Bose condensates revealed self-
trapping and plasma oscillations [11] and later, with an
experimental effort the ac Josephson effect was also observed
[12]. With the help of atomic Feshbach resonances it is
possible to change the magnitude and even the sign of the
parameter of the on-site interaction. Therefore it is in principle
possible to “quench” the dynamics of the BJJ and realize
the semiclassical dynamics around the stationary points of
the Josephson equations or change the dynamics governed
by one particular fixed point to a different one governed
by a different fixed point [13]. This way a setup for very
fast macroscopic entanglement generation can be achieved
[17,18].

The question naturally arises whether it is possible or
not to obtain some similar quenching not only with the
on-site interaction, but also rather by engineering the tunneling
amplitude of the junction? In this paper we give an affirmative
answer to this question. With the help of an external tightly
focused red-detuned laser beam one can create a tiny hole
in the middle of the double-well barrier. When the depth of

this dip is increased, at some point, a bound state localized
inside the dip potential appears, and by further increasing the
potential depth, the tunneling constant between the original
left and the right wells changes sign. The creation of such
a static obstacle is fairly simple and therefore gives another
knob on the system besides the standard Feshbach resonance
technique.

The plan of the paper is as follows. In Sec. II we consider the
single-particle problem where a dip potential is superimposed
on the standard double well. In Sec. III we apply the two-mode
approximation to the problem when the doublets formed by
the Wannier states of the left and right wells are sufficiently
separated from the other energy levels and consider the
Josephson dynamics. We summarize in Sec. IV. The stability
analysis of the stationary points of the dynamics is moved to
the Appendix.

II. DOUBLE WELL WITH A DIP IN THE MIDDLE

The double-well setup considered here consists of a
symmetric potential,

VDW(x) = 1
2mω2

Hx2 + V1e
−(x2/2w2), (1)

where m is the mass of the atoms, ωH is the frequency
of the parabolic confinement, V1 is the height, and w is
the width of the double-well barrier. We assume that the
double-well barrier is created by a focused Gaussian laser
beam with waist w, which is blue detuned from the atomic
transition. We consider tight confinement in the perpendicular
directions and treat the system as one dimensional. In addition
to the double-well potential there is another tightly focused
laser beam in the center, which is red detuned from the
atomic transition creating a further attractive potential for the
atoms,

VL(x) = −I0e
−(x2/2σ 2), (2)

where I0 is the strength and σ � w is the width of the optical
potential. The full single-particle Hamiltonian is

Ĥ = − �
2

2m

d2

dx2
+ VDW(x) + VL(x). (3)

The perturbing potential VL(x) opens up a narrow dip in
the center of the double-well barrier as illustrated in Fig. 1.
When varying the strength I0, one can interpolate between
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FIG. 1. (Color online) Top panel: the potential landscape with the energy eigenvalues for various laser intensities I0. Bottom panel: the
wave functions corresponding to the lowest three energies. The blue (solid) line corresponds to v1(x), i.e., the ground-state wave function,
the red (dashed) line corresponds to v2(x), the wave function of the first excited state, and the green (dotted) line stands for v3(x), which is the
second excited state. From left to right parameter I0 varies as 0.0, 2.0, 4.0, and 8.0.

a symmetric double-well potential and a triple-well one. For
I0 = 0, with our choice of parameters (for 87Rb), which is
close to experimental applications (m = 87 amu, ωH = 2π ×
15 Hz, w = 5 μm, V1 = 5mω2

Hw2, and σ = 0.5 μm), the
lowest two energy eigenvalues are almost degenerate, and they
form the low-energy doublet of the double-well problem. The
corresponding wave functions are the symmetric and antisym-
metric combinations of the Wannier orbits, which themselves
are localized states around the left and right energy minima of
the potential. Other energy eigenvalues are much higher, and
one can rely on a two-mode approximation when treating the
problem.

When I0 is increased gradually as shown in the subsequent
plots in Fig. 1, a central well starts to form in the middle of
the potential barrier. For small values of I0 the central well
does not support a localized state, and its effect is just a small
perturbation of the energy eigenvalues and an even smaller one
for the wave functions. The three lowest-energy eigenvalues
are plotted in Fig. 2. One eigenvalue of the doublet is basi-
cally unchanged by the perturbation, namely, the one which
corresponds to the antisymmetric wave function, which has a
node at the position of the perturbation. The other eigenvalue
is shifted a little bit downwards. As I0 increases, the central
well deepens, and the third energy eigenvalue approaches the
low-energy doublet. As this third energy eigenvalue comes
closer and closer, the two-mode description becomes more
and more inaccurate. One can observe an avoided crossing in
the three lowest-energy eigenvalues. For small values of I0,
the lowest two eigenvalues form the doublet of the symmetric
and antisymmetric combinations of the Wannier orbits. On the
other side of the crossing, i.e., for large values of I0, the single
lowest-energy eigenvalue corresponds to the state localized
in the central well, whereas the next two eigenvalues form
now the doublet of the antisymmetric and symmetric combi-
nations of the Wannier orbits localized at the left and right
valleys.

III. BOSONIC JOSEPHSON JUNCTION

When the splitting of the low-energy doublet is much
smaller than the energy difference between the doublet and the
closest other energy eigenvalue, the two-mode approximation
gives a sufficiently accurate description of the tunneling
dynamics between the left and the right wells. In this limit
the other states are nonresonant, and energy conservation
decouples them from the tunneling dynamics. With the present
parameters it means approximately either I0 < Ic,1 ≈ 6 or
I0 > Ic,2 ≈ 7.

When I0 < Ic,1 the Wannier functions are given by w1(x) =
[v1(x) + v2(x)]/

√
2, w2(x) = [v1(x) − v2(x)]/

√
2 for the left

and right wells, respectively. For I0 > Ic,2 the first and
second excited states give the Wannier functions, and they
read as w1(x) = [v2(x) + v3(x)]/

√
2 and w2(x) = [v2(x) −

FIG. 2. (Color online) The three lowest-energy eigenvalues plot-
ted as a function of I0. One can observe an avoided crossing. The
second energy level is unaffected by the perturbing potential, whereas
the lowest-energy and the third energy eigenvalue tilt down with
increasing I0.
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FIG. 3. (Color online) The tunneling ratio as a function of the
depth of the central well I0.

v3(x)]/
√

2 for the left and right wells, respectively. In the
second quantized form the noninteracting Hamiltonian (3) can
be cast to the following form:

Ĥ0 = ε(b̂†1b̂1 + b̂
†
2b̂2) − J (b̂†1b̂2 + b̂

†
2b̂1), (4)

where the parameters are given by ε = 〈w1|Ĥ |w1〉 and J =
−〈w1|Ĥ |w2〉. In the two-mode approximation the total atom
number N̂ = b̂

†
1b̂1 + b̂

†
2b̂2 is a constant of motion, therefore

the first term in Eq. (4) can be dropped. The parameter J

shows a resonancelike behavior as a function of I0 as illustrated
in Fig. 3. We note that the central part of the figure where
the crossing of the energy levels takes place is not reliable
since the two-mode approximation breaks down. Nevertheless,
the tunneling amplitude changes sign at the crossing, and the
lower-energy orbital of the doublet changes from ungerade to
gerade symmetry.

At this point we note that the particular form of the
double-well potential we are using is not crucial in our analysis.
The concrete choice, of course, affects the positions of the
energy eigenvalues and the concrete form of the eigenstate
wave functions. However, the sign of J between the Wannier
states of the left and right wells is ultimately linked only to the
symmetry of the wave function of the lower eigenstate of the
low-energy doublet.

In the presence of interaction the Hamiltonian is modified
to Ĥ = Ĥ0 + ĤI with

ĤI = U

2
(b̂†1b̂

†
1b̂1b̂1 + b̂

†
2b̂

†
2b̂2b̂2), (5)

where U characterizes the on-site interaction. At sufficiently
low temperatures the bosons form a Bose-Einstein condensate,
and in the semiclassical approximation the atomic operators
are replaced with c numbers: bk = √

Nk(t)eiθk(t), where Nk(t)
is the atom number in well k at time t and θk(t) is the corre-
sponding phase. The total atom number N1(t) + N2(t) ≡ N is
constant. It is convenient to introduce the fractional population
difference of the two wells z(t) = [N1(t) − N2(t)]/N and the
relative phase θ (t) = θ2(t) − θ1(t). Using this substitution in
the Hamiltonian Ĥ one can arrive at the semiclassical energy
function [3],

H(z,θ ) = −2JN
√

1 − z2 cos(θ ) + U

2
N2z2, (6)

from which the semiclassical equations, known as the bosonic
Josephson-junction equations can be derived as

ż = − 1

N

∂H
∂θ

= −2J
√

1 − z2 sin(θ ), (7a)

θ̇ = 1

N

∂H
∂z

=
(

UN + 2J√
1 − z2

cos(θ )

)
z. (7b)

Here and from now on we work with � = 1. Equations
(7) have four stationary solutions ˙̄z = 0 and ˙̄θ = 0: They
have two zero imbalance solutions with X1 = (z̄ = 0, θ̄ =
0) and X2 = (z̄ = 0, θ̄ = π ). Furthermore there are two
finite imbalance solutions: X3 = [z̄ =

√
1 − (2J/UN)2, θ̄ =

0] and X4 = [z̄ =
√

1 − (2J/UN)2, θ̄ = π ]. By substituting
the stationary solutions into the semiclassical energy function
(6), one can immediately see that, for U > 0, the zero
imbalance solutions always have the lowest energy. Also
depending on the sign of J the minimal energy solution is
either with θ̄ = 0 for J > 0 or with θ̄ = π for J < 0. For
attractive interaction U < 0 the finite imbalance solutions
are energetically more favorable for (UN )2 > 4J 2, and the
tunneling dynamics exhibits self-trapping [4]. Thus, points
of (z̄,0) with z̄ �= 0 are stable fixed points for the ordinary
differential equations (ODEs) (7) only in the presence of
attractive on-site interactions U provided that U < −2|J |/N .
Under initial conditions [z(0),0]—with z(0) < (2/�)(� −
1)0.5 (� = |UN/2J |)—the solutions of these ODEs de-
scribe oscillations of the fractional imbalance and rela-
tive phase about a nonzero time-averaged value and zero,
respectively.

By suitably tuning I0, one can change the sign of J by mov-
ing from the left side of the resonance to the right side of it (see
Fig. 3). All the above conditions thus can be satisfied, and one
can quench between self-trapping and Josephson dynamics
(and vice versa), even with repulsive boson-boson interaction.
In Fig. 4, we illustrate the quench dynamics for a repulsive
Bose condensate prepared initially for [z(0) = 0.5, θ (0) = 0].
At t = 0 the the dip potential is turned off, and we have
a symmetric double-well potential with J > 0. The system
starts Josephson (plasma) oscillations. In panel (a) we show the
phase-space trajectories and fixed points of the semiclassical
Hamiltonian (6) for UN = 3.5J . The shading corresponds to
the energy where the central (orange) region is the energy
minimum and the outer (green) regions correspond to higher
energies. The thick line shows the trajectory of the initial
Josephson oscillation. In panel (b) we show the population
imbalance as a function of time, measured in units of |J |−1.
The system parameters are left unchanged for t = 10J−1. At
t = 10J−1 we switch on abruptly a dip potential with I0, such
as to go to the other side of the resonance with J → −J .
Now the phase-space diagram is depicted in panel (c). As we
see, due to the change in the sign of J , the energy landscape
changes by θ → θ + π , and the finite imbalance (unstable)
fixed points corresponding to the energy maxima are moved
to the center. The Bose condensate continues its dynamics
in the modified landscape around the X3 fixed point, which
is selected by its instantaneous state [z(10|J |−1),θ (10|J |−1)].
This self-trapping dynamics is shown also in panel (b) for
t > 10|J |−1.
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(a) (b) (c)

FIG. 4. (Color online) Time evolution of the solution of the BJJ equations when a laser dip is abruptly turned on at t = 10 (time is
measured in units of |J |−1). For t < 10 the dip potential is switched off, and the parameters are UN/J = 3.5. The initial conditions are
[z(0) = 0.5, θ (0) = 0]. The system performs Josephson oscillations. At t = 10 a dip potential is suddenly turned on and kept constant. For
t > 10 the parameters change to UN/J = −3.5, and the dynamics exhibits self-trapping. (b) shows the population imbalance as a function of
time. (a) shows, for t < 10, the phase space, fixed points (X1 and X4), and the oscillation (thick line) corresponding to the initial conditions.
Panel (c) shows the phase space for the new system parameters valid from t = 10 and the fixed points (X2 and X3). The thick line corresponds
to the new trajectory of the system continuing its oscillation in the new energy landscape.

Another indicator of the change in the type of the dynamics
is the change in the oscillation frequency, which (at least for
small oscillations around the fixed points) can be calculated by
the linear stability analysis of the fixed points as summarized
in the Appendix. In Fig. 5, we plot the oscillation frequency
as a function of I0. As we increase I0 at the left-hand side of
the resonance, the Josephson oscillation frequency ωJ starts to
grow first since J increases, and then at the right-hand side
where J < 0, it decreases again since |J | decreases. Then at
some point, when U becomes bigger than 2|J |, the fixed point
for the Josephson oscillation becomes unstable, and instead
the self-trapping frequency ωST appears.

IV. SUMMARY

In this paper, we have considered the effect of an additional
central well added to the center of the symmetric double-well
barrier. We have shown that by suddenly opening up this
narrow central well the tunneling amplitude of the bosonic
Josephson junction can be quenched to almost arbitrary values.
Therefore in experiments one can have an additional tunable
parameter on the double-well system and can change the

FIG. 5. (Color online) The oscillation frequencies as a function
of the strength of the potential dip. The given fixed point becomes
unstable when the curve goes below zero.

dynamics in situ from plasma oscillations to the ac Josephson
dynamics or even to self-trapping without modifying the
scattering properties.
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APPENDIX: FIXED-POINT STABILITY

In order to check the stability of the solutions, we look for
small perturbations around the stationary points and calculate
the linear stability matrix of Eqs. (7),

(
δż

δθ̇

)
=

(
2J z̄ sin(θ̄)√

1−z̄2 −2J
√

1 − z̄2 cos(θ̄)

UN + 2J cos(θ̄ )
(1−z̄2)3/2 − 2J z̄ sin(θ̄)√

1−z̄2

)(
δz

δθ

)
.

(A1)

The linear stability matrix has the following eigenvalues:

λ = ±i

√
4J 2

[
cos(2θ̄ )

1 − z̄2
+ UN

2J

√
1 − z̄2 cos(θ̄ )

]
. (A2)

For purely imaginary eigenvalues, the stationary solution is
marginally stable: Small perturbations around the solution
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result in periodic oscillations. The frequency of the oscillation
is ω = Im λ. On the other hand, when the quantity under the
square root becomes negative, the eigenvalues become a pair
of real numbers with equal magnitude and opposite sign, and
the perturbations can exponentially grow in time. By directly
substituting the stationary solutions to the eigenvalues we get

λ|X1 = ±i

√
4J 2

(
1 + UN

2J

)
, stable if:

UN

2J
> −1,

(A3a)

λ|X2 = ±i

√
4J 2

(
1 − UN

2J

)
, stable if:

UN

2J
< 1, (A3b)

λ|X3 = ±i
√

(UN )2 − 4J 2, stable if: (UN )2 > 4J 2,

(A3c)

λ|X4 = ±i
√

(UN )2 − 4J 2, stable if: (UN )2 > 4J 2.

(A3d)

For the zero imbalance solutions X1 and X2, the frequency
ω is the Josephson frequency ωJ. During the dynamics around
z̄ = 0 there is population inversion, i.e., z(t) changes sign.
Instead, for X3 and X4, when z̄ �= 0, this frequency is the
self-trapping frequency ωST; during the dynamics there is no
population inversion, i.e., z(t) does not change sign.
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Phys. 1, 57 (2005).

[17] A. Micheli, D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. A
67, 013607 (2003).

[18] J. Vidal, G. Palacios, and C. Aslangul, Phys. Rev. A 70, 062304
(2004).

013607-5

http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1103/PhysRevLett.57.3164
http://dx.doi.org/10.1103/PhysRevLett.57.3164
http://dx.doi.org/10.1103/PhysRevLett.57.3164
http://dx.doi.org/10.1103/PhysRevLett.57.3164
http://dx.doi.org/10.1103/PhysRevLett.79.4950
http://dx.doi.org/10.1103/PhysRevLett.79.4950
http://dx.doi.org/10.1103/PhysRevLett.79.4950
http://dx.doi.org/10.1103/PhysRevLett.79.4950
http://dx.doi.org/10.1103/PhysRevA.59.620
http://dx.doi.org/10.1103/PhysRevA.59.620
http://dx.doi.org/10.1103/PhysRevA.59.620
http://dx.doi.org/10.1103/PhysRevA.59.620
http://dx.doi.org/10.1103/PhysRevA.55.4318
http://dx.doi.org/10.1103/PhysRevA.55.4318
http://dx.doi.org/10.1103/PhysRevA.55.4318
http://dx.doi.org/10.1103/PhysRevA.55.4318
http://dx.doi.org/10.1103/PhysRevA.82.033611
http://dx.doi.org/10.1103/PhysRevA.82.033611
http://dx.doi.org/10.1103/PhysRevA.82.033611
http://dx.doi.org/10.1103/PhysRevA.82.033611
http://dx.doi.org/10.1103/PhysRevA.83.053607
http://dx.doi.org/10.1103/PhysRevA.83.053607
http://dx.doi.org/10.1103/PhysRevA.83.053607
http://dx.doi.org/10.1103/PhysRevA.83.053607
http://dx.doi.org/10.1103/PhysRevA.81.023615
http://dx.doi.org/10.1103/PhysRevA.81.023615
http://dx.doi.org/10.1103/PhysRevA.81.023615
http://dx.doi.org/10.1103/PhysRevA.81.023615
http://dx.doi.org/10.1103/PhysRevA.81.063625
http://dx.doi.org/10.1103/PhysRevA.81.063625
http://dx.doi.org/10.1103/PhysRevA.81.063625
http://dx.doi.org/10.1103/PhysRevA.81.063625
http://dx.doi.org/10.1103/PhysRevA.89.023614
http://dx.doi.org/10.1103/PhysRevA.89.023614
http://dx.doi.org/10.1103/PhysRevA.89.023614
http://dx.doi.org/10.1103/PhysRevA.89.023614
http://dx.doi.org/10.1103/PhysRevLett.95.010402
http://dx.doi.org/10.1103/PhysRevLett.95.010402
http://dx.doi.org/10.1103/PhysRevLett.95.010402
http://dx.doi.org/10.1103/PhysRevLett.95.010402
http://dx.doi.org/10.1038/nature06186
http://dx.doi.org/10.1038/nature06186
http://dx.doi.org/10.1038/nature06186
http://dx.doi.org/10.1038/nature06186
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1103/PhysRevA.72.021604
http://dx.doi.org/10.1103/PhysRevA.72.021604
http://dx.doi.org/10.1103/PhysRevA.72.021604
http://dx.doi.org/10.1103/PhysRevA.72.021604
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1103/PhysRevA.67.013607
http://dx.doi.org/10.1103/PhysRevA.67.013607
http://dx.doi.org/10.1103/PhysRevA.67.013607
http://dx.doi.org/10.1103/PhysRevA.67.013607
http://dx.doi.org/10.1103/PhysRevA.70.062304
http://dx.doi.org/10.1103/PhysRevA.70.062304
http://dx.doi.org/10.1103/PhysRevA.70.062304
http://dx.doi.org/10.1103/PhysRevA.70.062304



