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A multigraph drawn in the plane is called non-homotopic if 
no pair of its edges connecting the same pair of vertices can 
be continuously transformed into each other without passing 
through a vertex, and no loop can be shrunk to its end-vertex 
in the same way. Edges are allowed to intersect each other and 
themselves. It is easy to see that a non-homotopic multigraph 
on n > 1 vertices can have arbitrarily many edges. We prove 
that the number of crossings between the edges of a non-
homotopic multigraph with n vertices and m > 4n edges is 
larger than cm2

n
for some constant c > 0, and that this bound 

is tight up to a polylogarithmic factor. We also show that the 
lower bound is not asymptotically sharp as n is fixed and m
tends to infinity.
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1. Introduction

A standard parameter for measuring the non-planarity of a graph G is its crossing 
number, which is defined as the smallest number cr(G) of crossing points in any drawing 
of G in the plane. For many interesting variants of the crossing number, see [15,18,19,23]. 
Computing cr(G) is an NP-complete problem [6].

Perhaps the most useful result on crossing numbers, is the so-called crossing lemma, 
proved independently by Ajtai, Chvátal, Newborn, Szemerédi [2] and Leighton [9], ac-
cording to which the crossing number of any graph with n vertices and m > 4n edges is 
at least cm

3

n2 , for a suitable constant c > 0. For the best known value of the constant c, 
see [1,12]. This result, which is tight up to the constant factor, has been successfully ap-
plied to a variety of problems in discrete and computational geometry, additive number 
theory, algebra, and elsewhere [4,22]. In some applications, it was the bottleneck that 
one needed a lower bound on the crossing number of a multigraph rather than a graph, 
see [13,21,20]. Obviously, the crossing lemma does not hold in this case, as stated. Indeed, 
one can connect a pair of vertices (n = 2) with m parallel edges without creating any 
crossing. However, for multigraphs G with maximum edge multiplicity k and m > 4kn
edges, Székely [22] established the lower bound cr(G) > c′ m

3

kn2 , where c′ > 0 is another 
constant. This bound is also tight, up to the constant factor, and c′ can be chosen to be 
the same as the best known constant c in the crossing lemma (presently, 1

29 ) [1,17].
As the multiplicity k increases, Székely’s bound gets weaker and weaker. Luckily, the 

term k in the denominator can be eliminated in several special cases; see [16,8]. That is, 
the result holds without putting any upper bound on the edge multiplicity. However, in 
all of these cases, we have to assume (among other things) that no two adjacent edges 
cross.

In this paper, we study the analogous question under the weakest possible assumption. 
Obviously, we need to assume that no pair of parallel edges or loops are homotopic, i.e., 
they cannot be continuously deformed into each other so that their interiors do not pass 
through any vertex. As we have noted above, without this assumption, a multigraph can 
have arbitrarily many non-crossing edges. For simplicity, we will also assume that there 
are no trivial loops, that is, no loop can be transformed into a point. Clearly, this latter 
assumption can be eliminated as the first condition already implies that there is at most 
a single trivial loop at any vertex.

To state our results, we need to agree about the definitions.
A multigraph is a graph in which parallel edges and loops are permitted. A topological 

graph (or multigraph) is a graph (multigraph) G = (V, E) drawn in the plane with the 
property that every vertex is represented by a distinct point and every edge e ∈ E is 
represented by a continuous curve, i.e., a continuous function fe : [0, 1] → R2 with fe(0)
and fe(1) being the endpoints of e. In terminology, we do not distinguish between the 
vertices and the points representing them. In the same spirit, if there is no danger of 
confusion, we often use the term “edge” instead of the “curve” fe representing it or the 
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“image” of fe. We assume that no edge passes through any vertex (i.e., fe(t) /∈ V for 
0 < t < 1).

The crossing number of a topological multigraph G is the number of crossings between 
its edges, i.e., the number of unordered pairs of distinct pairs (e, t), (e′, t′) ∈ E × (0, 1)
with fe(t) = fe′(t′). With a slight abuse of notation, this number will be denoted also 
by cr(G).

Two parallel edges, e, e′, connecting the same pair of vertices, u, v ∈ V are homotopic, 
if there exists a continuous function (homotopy) g : [0, 1]2 → R2 satisfying the following 
three conditions.

g(0, t) = fe(t) and g(1, t) = fe′(t) for all t ∈ [0, 1],

g(s, 0) = u and g(s, 1) = v for all s ∈ [0, 1],

g(s, t) /∈ V for all s, t ∈ (0, 1).

As we deal with non-oriented multigraphs, we also call e and e′ homotopic if fe(1 − t)
and fe′(t) are homotopic in the above sense. A loop at vertex u is said to be trivial if it 
is homotopic to the constant function f(t) = u.

A topological multigraph G = (V, E) is called non-homotopic topological multigraph
or simply non-homotopic multigraph if it does not contain two homotopic edges, and 
does not contain any trivial loop.

Obviously, if G is a simple topological graph (no parallel edges or loops), then it is non-
homotopic. A non-homotopic multigraph with zero or one vertex has no edge. However, 
if the number of vertices n is at least 2, the number of edges can be arbitrarily large, even 
infinite. Our first result provides a lower bound on the crossing number of non-homotopic 
topological multigraphs in terms of the number of their vertices and edges.

Theorem 1. The crossing number of a non-homotopic multigraph G with n > 1 vertices 
and m > 4n edges satisfies cr(G) ≥ 1

24
m2

n .

This bound is tight up to a polylogarithmic factor.

Theorem 2. For any n ≥ 2, m > 4n, there exists a non-homotopic multigraph G with n
vertices and m edges such that its crossing number satisfies cr(G) ≤ 100m2

n log2
2

m
n .

The constant 100 in the theorem was chosen for the proof to work for all m > 4n and 
we made no attempt to optimize it. However, it can be replaced by 1 + o(1) if both n
and m/n go to infinity.

Define the function cr(n, m) as the minimum crossing number of a non-homotopic 
multigraph with n vertices and m edges. Theorems 1 and 2 can be stated as

1 m2
≤ cr(n,m) ≤ 100m

2
log2

2
m
,
24 n n n
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for any n ≥ 2 and m > 4n. We have been unable to close the gap between the lower and 
upper bounds. However, our next theorem shows that the lower bound is not tight.

Theorem 3. The minimum crossing number of a non-homotopic multigraph with n ≥ 2
vertices and m edges is super-quadratic in m. That is, for any fixed n ≥ 2, we have

lim
m→∞

cr(n,m)
m2 = ∞.

Explicitly, we obtain

cr(n,m)
m2 =

⎧⎨
⎩

Ω
(

(logm/ log logm)1/6

n8

)
for m > 4n,

Ω
(
log2/3 m

)
for fixed n.

(1)

Let n, k be positive integers, and consider a set S obtained from the Euclidean plane 
by removing n distinct points. Fix a point x ∈ S. An oriented loop in S that starts and 
ends at x is called an x-loop. An x-loop may have self-intersections. Contrary to our 
convention for edges of a topological multigraph, we do distinguish between an x-loop 
and its reverse. We consider the homotopy type of x-loops in S, that is, we consider two 
loops homotopic if one can be continuously transformed to the other within S. When 
counting self-intersections of x-loops or intersections between two x-loops, we count 
points of multiple intersections with the appropriate multiplicity.

To establish Theorems 2 and 3, we study the following topological problem of inde-
pendent interest.

Problem 4. Let n, k ≥ 1 be integers, let S denote the set obtained from R2 by removing n
distinct points, and let us fix x ∈ S. Determine or estimate the maximum number f(n, k)
of pairwise non-homotopic x-loops in S such that none of them passes through x, each 
of them has fewer than k self-intersections and every pair of them cross fewer than k
times.

The finiteness of f(n, k) is crucially important for our proof of Theorem 3. We provided 
a proof of this fact in the preliminary version of this paper for the proceedings of Graph 
Drawing 2020 [14]. But this is a well studied subject, see e.g., [11]. Various upper bounds 
of f(n, k) were established earlier in [3] and [7]. Juvan et al. [7] did not give an explicit 
bound, but a careful analysis of their argument implies the first part of the next theorem. 
The bound proved by Aougab and Sauto [3] (see the second part of the next theorem) 
is asymptotically stronger for any fixed n, but it seems to be hard to make this bound 
explicit in terms of its dependence on n. This is why we state both bounds here.
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Theorem 5.

1. [7] For any integers n ≥ 2 and k ≥ 1, we have

f(n, k) < (nk)O(nk2).

2. [3] For n ≥ 2 fixed we have

f(n, k) ≤ 2O(
√
k).

For the proof of Theorem 2, we need a lower bound on f(2, k). Juvan et al. [7] es-
tablished a lower bound for f(n, k). Their construction used non-selfintersecting curves. 
Therefore, they obtained a bound which, for a fixed n, was only polynomial in k.

Our following theorem provides an exponential lower bound. For fixed n it matches 
the upper bound in Theorem 5/2 except for the hidden constant in the exponent.

Theorem 6. Let k ≥ n ≥ 2 be integers. We have

f(n, k) ≥ 2
√
nk/3.

Our paper is organized as follows. In Section 2, we establish Theorem 1. In Section 3, 
we present some constructions proving Theorem 6, and apply them to deduce Theorem 2. 
In Section 4 we prove Theorem 3.

2. Loose multigraphs—Proof of Theorem 1

One can also define topological multigraphs and non-homotopic multigraphs on the 
sphere S2. If we consider S2 as the single point compactification of the plane with 
the ideal point p∗, then any topological multigraph H drawn in the plane remains a 
topological multigraph on the sphere. However, even if H is non-homotopic on the plane, 
it may lose this property on the sphere, as the addition of the ideal point p∗ may turn 
a loop trivial or two parallel edges homotopic. This can be avoided by adding p∗ as an 
isolated vertex to H: in this case, the resulting multigraph H∗ is non-homotopic on the 
sphere.

We say that a topological multigraph is loose if no pair of distinct edges cross each 
other. An edge (in particular, a loop) is allowed to cross itself. We start by finding the 
maximum number of edges in a loose non-homotopic multigraph on the sphere or in the 
plane, for a given number of vertices. We will see that despite allowing parallel edges, 
loops, and self-intersections, loose non-homotopic multigraphs with n > 2 vertices on the 
sphere cannot have more than 3n − 6 edges, the maximum number of edges of a simple 
planar graph. However, there are many other nontrivial examples, for which this bound 
is tight. The interested reader can verify that, for all n > 2, there are extremal examples, 
all of whose edges are loops. See Fig. 1 for the case of three vertices in the plane.
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Fig. 1. A non-homotopic loose multigraph with 3 vertices and 6 edges, all of which are loops.

Lemma 7. On the sphere, any loose non-homotopic multigraph with n > 2 vertices has 
m ≤ 3n − 6 edges. For n = 2, the maximum number of edges is 1.

Proof. Assume for contradiction that there is a loose non-homotopic multigraph H, 
which is a counterexample to the lemma. We may assume the cr(H) is finite, as this 
can be achieved by infinitesimal perturbation. We choose H to be a counterexample 
with minimum crossing number. If this number is zero (that is, the edges of H have no 
self-intersections), we further minimize the number of connected components in H. Let 
n stand for the number of vertices of H, the minimal counterexample, and let m stand 
for the number of its edges.

Assume first that there is no self-intersecting edge in H, so we deal with a planar
drawing. In this case, we can also assume that H is connected, otherwise two components 
could be joined by an extra edge without creating a crossing. (Note that this argument 
fails if we permit self-intersecting edges, as they may prevent the addition of such an edge 
between two components without creating a crossing, see Fig. 1.) Thus, the boundary of 
each face of H can be visited by a single walk. These walks collectively cover every edge 
twice, so if each of them have at least three edges and the number of faces is s, then 
we have 3s ≤ 2m. Combining this inequality with Euler’s formula n + s = m + 2 gives 
m ≤ 3n −6, which contradicts our assumption that H was a counterexample. Therefore, 
H must have a face bounded by a walk consisting of one or two edges. A boundary walk 
consisting of a single edge is a trivial loop, which is not permitted in a non-homotopic 
graph. A boundary walk of two edges is typically formed by two parallel edges that are 
homotopic, which is also disallowed in a non-homotopic graph. The only possibility is 
that the walk is back and forth along the same edge. In this case, we have n = 2 and 
m = 1, and H is not a counterexample.

Therefore, our minimal counterexample H must have at least one self-intersecting 
edge e. Find a minimal interval γ of e between two occurrences of the same intersection 
point p. This is a simple closed curve in the plane avoiding all vertices. It partitions 
the sphere S2 into two connected components. We call them (arbitrarily) the left and 
right sides of γ. Obviously, e is the only edge that may run between these sides. Let 
H1 and H2 be the subgraphs of H \ {e} induced by the vertices in the left and right 
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Fig. 2. The replacement of e by e′ in the proof of Lemma 7.

sides of γ, respectively. Both of them are loose topological multigraphs, but they may 
contain homotopic edges. By adding p to both of them as an isolated vertex, they become 
non-homotopic. If an endpoint u of e lies in the left part, then by adding to H1 a non-
self-intersecting edge connecting p and u along e, we create no new intersection and 
do not violate the non-homotopic condition either. The resulting topological multigraph 
H ′

1 is a loose non-homotopic multigraph on the sphere with n1 vertices and m1 edges. 
Analogously, we can construct the loose non-homotopic multigraph H ′

2 from H2. Denote 
its number of vertices and edges by n2 and m2, respectively. We have n1+n2 = n +2 and 
m1 + m2 ≥ m. We eliminated a self-crossing (of e) and did not add any new crossings, 
so the crossing numbers of both H ′

1 and H ′
2 are smaller than cr(H).

If n1, n2 > 2, then we have m1 ≤ 3n1 − 6 and m2 ≤ 3n2 − 6, by the minimality of H. 
Summing up these inequalities, we get m ≤ 3n − 6, contradicting our assumption that 
H was a counterexample.

If n1 = 1 or n2 = 1, all vertices of H lie on the same side of γ. In this case, by deleting 
γ from e, the homotopy class of e remains the same. Hence, the resulting topological 
multigraph is still a loose non-homotopic multigraph with n vertices and m edges, but 
its crossing number is smaller than that of H, contradicting the minimality of H.

Finally, consider the case n1 = 2 or n2 = 2. By symmetry, we can assume that n1 = 2, 
n2 = n, so we have a single vertex u of H on the left side of γ and n − 1 vertices on 
the right side. Note that no edge of H \ {e} can lie in the left side. Indeed, such an 
edge would be a trivial loop. If e has at least one endpoint in the right part, then we 
have m2 = m. This implies that H ′

2 is another counterexample to the lemma with fewer 
crossings, contradicting the minimality of H.

Therefore, e must be a loop at u. The image of e must separate a pair of vertices, 
v, w ∈ V (H) \ {u} from each other, as otherwise e would be a trivial loop. However, 
then we could draw another loop e′ along or very close to some parts of e with no self-
intersection, so that it also separates v and w. Therefore, e′ is not trivial either. See 
Fig. 2. (One can find a minimal separating loop in the image of e, and then join it with 
u by a minimal curve in or near the image of e.)
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Let H ′ be the topological multigraph obtained from H by replacing e by e′. The loops 
e and e′ are not necessarily homotopic, but there is no other edge in H ′ homotopic to e′, 
because there is no other loop at u. Hence, H ′ is a loose non-homotopic multigraph. This 
contradicts the minimality of H, because H ′ has the same number of vertices and edges 
as H does, but its crossing number is smaller. This contradiction proves the lemma. �
Lemma 8. In the plane, any loose non-homotopic multigraph with n ≥ 1 vertices has at 
most 3n − 3 edges. This bound can be achieved for every n.

Proof. Let H be a loose non-homotopic multigraph in the plane with n ≥ 1 vertices and 
m edges. Consider the plane as the sphere S2 with a point p∗ removed. Add p∗ to H as an 
isolated vertex, to obtain a topological multigraph H ′ on the sphere. Then H ′ is a loose 
non-homotopic multigraph with n +1 vertices and m edges. If n > 1, applying Lemma 7
to H ′, we obtain that m ≤ 3n − 3, as required. If n = 1, then H is a single-vertex 
topological multigraph in the plane, so all of its edges must be trivial loops. However, 
by definition, a non-homotopic multigraph cannot have any trivial loop. This completes 
the proof of the upper bound.

There are many different constructions for loose non-homotopic multigraphs for which 
the bound in the lemma is achieved. Such a topological multigraph may have several 
components and several self-intersecting loops. (However, all self-crossings of non-loop 
edges must be “homotopically trivial”: the removal of the closed curve produced by such 
a self-crossing does not change the homotopy type of the edge.)

Here, we give a very simple construction. If n > 2, we start with a triangulation 
with n vertices and 3n − 6 edges. Let uvw be the boundary of the unbounded face. Add 
another non-self-intersecting edge connecting u and v in the unbounded face, which is not 
homotopic with the arc uv of uvw. Finally, we add two further loops at u. First, a simple 
loop l that has all other edges and vertices (except u) in its interior, and then another 
loop l′ outside of l, which goes twice around l. (Of course, l′ must be self-intersecting.)

If n = 1, the graph with no edge achieves the bound of the lemma. For n = 2, draw 
an edge e connecting the two vertices, u and v. Then add two loops at u, as above: a 
simple loop l around e and another loop l′ that winds around l twice. �
Proof of Theorem 1. Let G be a non-homotopic topological multigraph in the plane with 
n > 1 vertices and m > 4n edges.

Let D denote the non-crossing graph of the edges of G, that is, let V (D) = E(G)
and connect two vertices of D by an edge if and only if the corresponding edges of G
do not share an interior point. Any clique in D corresponds to a loose non-homotopic 
sub-multigraph of G. Therefore, by Lemma 8, D has no clique of size 3n − 2. Thus, by 
Turán’s theorem [24],

|E(D)| ≤ |V (D)|2
(

1 − 1
)

= m2 (
1 − 1

)
.
2 3n− 3 2 3n− 3
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The crossing number cr(G) is at least the number of crossing pairs of edges in G, which 
is equal to the number of non-edges of D. Since m > 4n, we have

cr(G) ≥
(
m

2

)
− m2

2

(
1 − 1

3n− 3

)
= m2

6

(
1

n− 1 − 3
m

)
>

m2

6

(
1
n
− 3

4n

)
= 1

24
m2

n
,

as claimed. �
The proof above gives a lower bound on the number of crossing pairs of edges in G, 

and in this respect it is tight up to a constant factor. To see this, suppose for simplicity 
that n is even and m is divisible by n. Let G0 be a non-homotopic topological multigraph 
with two vertices and 2m

n non-homotopic loops on one of its vertices. Taking n2 disjoint 
copies of G0, we obtain a non-homotopic topological multigraph with n vertices, m edges, 
and fewer than m

2

n crossing pairs of edges.

3. Two constructions—Proofs of Theorems 6 and 2

The aim of this section is to demonstrate how to construct topological graphs with 
many edges and families consisting of many loops, without creating many crossings. The 
constructions are based on the description of the fundamental group of the plane from 
which a certain number of points have been removed.

Proof of Theorem 6. Let S = R2 \ {a1, . . . , an}, where a1, . . . , an are distinct points in 
the plane, and let x ∈ S be also fixed. Assume without loss of generality that ai =
(i, 0), 1 ≤ i ≤ n, and x = (0, −1). Recall that an x-loop is a (possibly self-crossing) 
oriented path in S from x to x, i.e., a continuous function f : [0, 1] → S with f(0) =
f(1) = x.

Note that the homotopy group of S is the free group Fn generated by g1, . . . , gn, where 
gi can be represented by a triangular x-loop around ai, for example the one going from 
x to (2i − 1, 1), from here to (2i + 1, 1), and then back to x along three straight-line 
segments; see [10].

We define an elementary loop to be a polygonal x-loop with intermediate vertices

(1, ε1), (2, ε2), . . . , (n, εn), (n + 1,−1),

in this order, where each εi (1 ≤ i ≤ n) is equal either to 1/2 or to −1/2. There are 2n
distinct elementary loops, depending on the choice of the εi. Each of them represents a 
distinct homotopy class of the form gi1 · · · git , where the indices form a strictly increasing 
sequence. By making infinitesimal perturbations on the interior vertices of the elementary 
loops, we can make sure that every pair of them intersect in at most n − 1 points. Thus, 
we have f(n, n) ≥ 2n. See Fig. 3.

If n ≤ k ≤ 9n, we have f(n, k) ≥ f(n, n) ≥ 2n ≥ 2
√
nk/3, and we are done.
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Fig. 3. An elementary x-loop (n = 5).

In the case k > 9n, we consider all x-loops which can be obtained as the product 

(concatenation) of j =
⌊√

k−1
n

⌋
≥ 3 elementary loops. Unfortunately, some of these 

concatenated x-loops will be homotopic. For example, if the elementary loops l1, l2, l3, 
and l4 represent the homotopy classes g1, g2g3, g1g2, and g3, respectively, then l1l2 and 
l3l4 are homotopic. To avoid this complication, we only use the 2n−1 elementary loops 
that represent homotopy classes involving g1 (that is, the ones with (1, 1/2) as their 
first intermediate vertex). Concatenating j such elementary loops, we obtain 2j(n−1)

different x-loops, no pair of which are homotopic. By infinitesimal perturbation of the 
interior vertices of these x-loops (including the j−1 interior vertices at x), we can ensure 
that they do not pass through x, and no two polygonal paths corresponding to a single 
elementary loop intersect more than n times. Therefore, any pair of perturbed concate-
nated loops cross at most j2n < k times, and the same bound holds for the number of 
self-intersections of any concatenated loop. This yields that f(n, k) ≥ 2j(n−1) ≥ 2

√
nk/3, 

completing the proof of the theorem. �
Proof of Theorem 2. We want to construct a non-homotopic topological multigraph G
with n vertices, m edges, and few crossings. We distinguish 3 cases.

Case A: If n = 3, we set k = �(9/2) log2
2(2m)�. Theorem 6 guarantees that f(2, k) ≥

2m. Thus, there are 2m pairwise non-homotopic x-loops in S = R2 \ {a1, a2} such that 
each of them has fewer than k self-intersections and any pair intersect fewer than k
times. Regard this arrangement as a topological multigraph G with 2m edges on the 
vertex set {a1, a2, x}. All edges are x-loops. At most one of them is trivial, and for each 
loop edge there is at most one other loop edge homotopic to it (which must come from 
an x-loop with inverse orientation). Therefore, we can always select m edges that form 
a non-homotopic multigraph. We have

cr(G) < k

(
m +

(
m
))

<

⌈
9 log2

2(2m)
⌉
m2.
2 2
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Case B: If n > 3, we set n∗ = 	n/3
, m0 = �m/n∗�. Take n∗ disjoint copies of 
the non-homotopic multigraph G0 with 3 vertices and m0 edges constructed in Case A. 
We add at most 2 isolated vertices and remove a few edges if necessary to obtain a 
non-homotopic multigraph on n vertices and m edges. We have

cr(G) ≤ n∗cr(G0) ≤ n∗m2
0

⌈
9
2 log2

2(2m0)
⌉
.

Case C: If n = 2, we cannot use Theorem 6 directly. Note that all edges of the 
non-homotopic multigraphs G constructed in Case A were loops at a vertex x, and 
these x-loops were pairwise non-homotopic even in the space obtained from the plane 
by keeping x, but removing every other vertex. Now we cannot afford this luxury since 
in this case typical edges would go around the other vertex Ω(m) times and would cross 
other edges typically Ω(m) times, creating Ω(m3) crossings. However, even for n = 2, we 
can construct a topological multigraph G with many pairwise non-homotopic edges and 
relatively few crossings, as sketched below.

Let V (G) = {a1, a2}, where a1 and a2 are distinct points in the plane, and set S =
R2 \ V (G). Choose a base point x ∈ S not on the line a1a2. Now the homotopy group 
of S is the free group generated by two elements, g1 and g2, that can be represented by 
triangular x-loops around a1 and a2, respectively. By the proof of Theorem 6, with the 
notation used there, we can construct 2j pairwise non-homotopic x-loops in S with few 
crossings. Namely, each of these x-loops have at most 2j2 self-intersections and each pair 
intersect at most 2j2 times. Now, each of these x-loops, l, can be turned into either a 
loop edge at the vertex a1 or into an a1a2 edge, as follows: we start with the straight-
line segment a1x, then follow l, finally add a straight-line segment from x to either a1

(for a loop edge) or to a2 (to obtain a non-loop edge). After infinitesimally perturbing 
the resulting edges, one can maintain that each pair of edges cross at most 2(j + 1)2
times and this also bounds the number of self-intersections of any edge. However, now we 
face a new complication: there may be a large number of pairwise homotopic edges. In 
Case A, when we regarded x-loops as loop edges in a topological multigraph having x as a 
vertex, two loop edges could only be homotopic if the corresponding x-loops represented 
the same or inverse homotopy classes. Now the situation is more complicated: a loop 
edge constructed from an x-loop representing an element g in the homotopy group is 
homotopic to an another edge constructed from another x-loop representing g′ if and 
only if we have g′ = gs1gg

t
1 or g′ = gs1g

−1gt1 for some integers s and t. (For non-loop edges 
the corresponding condition is g′ = gs1gg

t
2.) We may have constructed more than two 

(even an unbounded number of) homotopic edges, but considering only those of the 2j
x-loops that start and end with g1g2, we have a set of 2j−2 non-homotopic edges. Thus, 
we choose j = �log2 m� + 2 and we can select m non-homotopic edges. The crossing 
number of the non-homotopic graph G so obtained satisfies

cr(G) ≤ 2m2(�log2 m� + 3)2.
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One can prove by simple calculation that the bounds proved for the crossing num-
bers of the graphs constructed in all three cases are within the bound stated in the 
theorem. �
Remark. Note that the statement of Theorem 2 does not distinguish between loops and 
non-loop edges. For n ≥ 3, all edges of the non-homotopic graphs constructed above are 
loops, and this can be also attained for n = 2.

On the other hand, it is not hard to modify the above constructions so that the 
resulting graphs have no loops at all. For n = 2, one version of the construction described 
in the last paragraph of the proof uses no loops. For n > 2, instead of taking the 3-point 
construction described in Case A as our base, we can start with a 2-vertex non-homotopic 
graph that has no loops. The union of n∗ = 	n/2
 pairwise disjoint copies of such a graph, 
with an additional isolated vertex if necessary, will meet the requirements.

4. Even more crossings—Proof of Theorem 3

Let x ∈ S2 and consider a family L of x-loops in S2 that start and end at x, but do 
not pass through x. With infinitesimal perturbations of the elements of L and without 
creating any further intersections, one can attain that all intersections are simple: no 
point other than x appears more than twice on the same loop or on different members 
of L. This will be assumed for all families of x-loops used in the rest of this section. A 
(possibly self-intersecting) closed curve in S2 is said to be an L-circle if it is either a 
segment of a loop l ∈ L between two appearances of a self-intersection point of l, or it 
consists of two segments of the same loop or two segments belonging to different loops 
in L, connecting the same pair of intersection points. If the two segments belong to the 
same loop, they are not allowed to overlap. We call a family of L-circles non-overlapping
if no two members of the family share a segment.

Claim 9. Let L be a family of x-loops consisting of a single loop with at least k self-
intersections or consisting of two loops intersecting each other at least k times.

Then there is a non-overlapping family of L-circles, consisting of at least k1/3 − 1
members.

Proof. Suppose first that L consists of two x-loops, l1 and l2. By the Erdős-Szekeres 
lemma [5], we can find k′ ≥

√
k intersection points a1, a2, . . . , ak′ that appear either in 

this order or in the reverse order on both l1 and l2. In this case, the segments of l1 and l2
between ai and ai+1 form an L-circle, for each 1 ≤ i < k′. The family of these L-circles 
is non-overlapping, as claimed.

Alternatively, suppose that L = {l} is a singleton family. The segment of l between 
the two appearances of a self-intersection point a is an L-circle. If there are at least k1/3

among these L-circles that form a non-overlapping family, then we are done. If this is 
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not the case, then we have a point p �= x on l which is not an intersection point, but 
appears in at least k2/3 of these single-part L-circles. That is, at least k2/3 intersection 
points appear both on the initial segment l1 of l ending at p, and on the final segment 
l2 of l, starting at p. We can then argue as we did in the case |L| = 2. Using the Erdős-
Szekeres lemma, we can find k′ ≥ k1/3 intersection points a1, a2, . . . , ak′ that appear 
either in this order or its reverse both on l1 and l2. For every 1 ≤ i < k′, the segments 
of l1 and l2 between ai and ai+1 form an L-circle, and the family of these L-circles is 
non-overlapping. This finishes the proof. �
Claim 10. Let L be a family of x-loops not passing through a point p ∈ S2, p �= x. 
Let L1 and L2 be two disjoint subfamilies of L such that for each i ∈ {1, 2} there is a 
non-overlapping family Ci consisting of k Li-circles, each of which separates x from p.

Then the total number of intersections between a loop in L1 and a loop in L2 is at 
least k.

Proof. For a family H of loops in S2, we call a connected component of the part of S2

not covered by H an H-face. Let F be the (L1 ∪ L2)-face which contains p. Let q be an 
arbitrary non-intersection point on the boundary of F . Obviously, q lies on an x-loop 
l ∈ Li with i = 1 or 2. Thus, q belongs to the L3−i-face containing p, and all L3−i-circles 
in C3−i separate x from q. The loop l connects x to q, so it must intersect all of these 
L3−i-circles. As C3−i is a non-overlapping family, these intersections must be distinct 
intersection points of l and some x-loop in L3−i. This proves the claim. �

Let us fix n > 1 and a set T of n points on the 2-sphere S2. Let S = S2 \ T , and fix 
a point x ∈ S.

Lemma 11. The minimal number an(m) of crossings among m pairwise non-homotopic 
x-loops in S is super-quadratic in m.

an(m) =

⎧⎨
⎩

Ω
(
m2 (logm/ log logm)1/6

n4

)
for m > 4n,

Ω
(
m2 log2/3 m

)
for fixed n.

(2)

Proof. Let L be a collection of m non-homotopic x-loops in S with the minimum overall 
number, an(m), of crossings.

Choose the largest k such that f(n −1, k) < m/2. By the definition of f (see Problem 4) 
this means that in any collection of at least m/2 pairwise non-homotopic x-loops in S, 
there is one with at least k self-crossings or two that cross each other at least k times. 
By Theorem 5, we have k = Ω(

√
logm/(n log(n logm))) in general and k = Ω(log2 m)

if n is fixed.
We greedily divide the loops of L into blocks, as follows. Each block is either a single 

loop crossing itself at least k times, or a pair of loops crossing each other at least k times. 
We do not use the same loop of L twice. Having formed at most m/4 blocks, we still 
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have at least m/2 unused loops, and so we can form yet another block. Therefore, the 
greedy procedure yields more than m/4 blocks.

By Claim 9, for each block B, one can find a non-overlapping collection CB of at least 
k1/3 − 1 B-circles. A B-circle γ is called trivial if it does not separate x from any point 
of T = S2 \ S. The existence of a trivial B-circle would contradict the minimality of 
the total number of crossings in the collection L of x-loops. Indeed, if a trivial B-circle 
consists of a single segment of an x-loop l, then deleting this segment does not affect the 
homotopy type of l, but decreases the number of crossings. If a trivial B-circle consists of 
two segments, then interchanging these segments does not affect the homotopy types of 
the corresponding loops. Now the number of crossings can be reduced by an infinitesimal 
perturbation of the original family L or of the family obtained by this switch.

As no B-cycle in CB is trivial, for every block B, we can find a point pB ∈ T such that 
the number of B-cycles in CB which separate pB from x is at least k′ =

⌈
k1/3−1

n

⌉
. Clearly 

k′ = Ω((logm/ log logm)1/6/n2 in general and k′ = Ω(log2/3 m) for fixed n. There are 
only n points in T , so there exists p ∈ T such that pB = p for at least �m/(4n)� blocks. 
By Claim 10, any two distinct blocks B and B′ for which pB = pB′ , cross each other at 
least k′ times. This gives a total of at least 

(�m/(4n)�
2

)
k′ crossings. Combining this with 

our bounds on k′, the lemma follows. �
Note that the proof of Lemma 11 finds crossings between distinct edges, self-crossings 

are not even counted.

Proof of Theorem 3. Let G be a non-homotopic multigraph with n vertices, m edges, 
and with the smallest possible crossing number cr(n, m). As before, we can assume that 
there is no triple intersection among the edges, because we can get rid of these by 
infinitesimal perturbations. Obviously, we can find a set E′ of m′ ≥ m/n2 parallel edges 
in G. We fix such a set E′, and in the rest of the proof we ignore all other edges of G. 
There are two cases.

Case A: E′ consists of loops at a vertex x. We will use Lemma 11. In the lemma, we 
have non-homotopic x-loops on a surface S with x ∈ S. Therefore, we remove all vertices 
of G from the plane, except x. To maintain that the edges are non-homotopic, we also 
remove a point p, very close to x but not on any of the loops in E′. Let S be the set 
obtained from the plane by deleting p and all vertices of G except x. The edges in E′

are pairwise non-homotopic x-loops in S. As S can be obtained from the sphere S2 by 
deleting n + 1 points, these loops determine at least an+1(m′) intersections. According 
to Lemma 11, for a fixed n, this quantity is super-quadratic in m′ and, hence, also in m.

Case B: E′ consists of edges between two distinct vertices, x and y. In this case, we 
pick two points, p and q, very close to x and y, respectively, which do not lie on any 
edge in E′. Now choose S to be the set obtained from the plane by deleting all vertices 
of G except x and y, and also deleting p and q. Any two edges of E′ form an x-loop. 
Moreover, for any e1, e2, e3 ∈ E′ with e2 �= e3, the x-loop formed by e1 and e2 is not 
homotopic in S to the x-loop formed by e1 and e3.
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We build a collection of pairwise non-homotopic x-loops by pairing up edges of E′

in a greedy way, using every edge at most once. Suppose that the process stops with a 
collection L of m′′ x-loops. There are m′ − 2m′′ unused edges left in E′. Fix any one of 
them, and combine it with each of the remaining ones to obtain m′ − 2m′′ − 1 pairwise 
non-homotopic x-loops. Since we were unable to extend L by another x-loop, each of 
these x-loops is homotopic to one of the m′′ loops we have constructed so far. Therefore, 
we have m′′ ≥ m′ − 2m′′ − 1, and m′′ ≥ (m′ − 1)/3.

All x-loops in L pass through y. With an infinitesimal perturbation, one can get rid 
of this multiple intersection without changing the homotopy classes of the x-loops or 
creating any additional intersection. Denote the resulting family of x-loops by L′. All 
loops in L intersected at y. This may introduce up to 

(
m′′

2
)

intersections between loops 
in L′ close to y. All other intersections among the members of L′ correspond to actual 
intersections between edges in E′.

Just like in Case A, S can be obtained from the sphere by removing n + 1 points. 
Hence, altogether there are at least an+1(m′′) intersections between the loops in L′, and 
the number of intersections between the edges of E′ is at least an+1(m′′) −

(
m′′

2
)
. In view 

of Lemma 11, this is super-quadratic in m′′ and, hence, also in m.
Using the estimates in Lemma 11 for an(m), we obtain the asymptotic bounds for 

cr(n, m) claimed in the theorem. �
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