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Abstract 

 

Obstructive Sleep Apnea (OSA) Syndrome is a relatively frequent sleep disorder 

characterized by disrupted sleep patterns. It is a well-established fact that sleep has beneficial 

effect on memory consolidation by enhancing neural plasticity. Implicit sequence learning is a 

prominent component of skill learning. However, the formation and consolidation of this 

fundamental learning mechanism remains poorly understood in OSA. In the present study we 

examined the consolidation of different aspects of implicit sequence learning in patients with 

OSA. We used the Alternating Serial Reaction Time task to measure general skill learning 

and sequence-specific learning. There were two sessions: a learning phase and a testing phase, 

separated by a 10-hour offline period with sleep. Our data showed differences in offline 

changes of general skill learning between the OSA and control group. The control group 

demonstrated offline improvement from evening to morning, while the OSA group did not. In 

contrast, we did not observe differences between the groups in offline changes in sequence-

specific learning. Our findings suggest that disrupted sleep in OSA differently affects neural 

circuits involved in the consolidation of sequence learning. 

 

Keywords: sleep disruption, memory consolidation, general skill learning, sequence-specific 
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INTRODUCTION 

Currently, there is a growing interest within cognitive neuroscience and neuropsychology to 

understand the underlying mechanisms of memory consolidation; namely, how newly 

acquired and initially labile memory representations become stabile and resistant to 

interference and forgetting [1]. Consolidation can be observed as no deterioration of the 

previously acquired knowledge over the offline period, nevertheless in some cases even 

offline enhancement can occur. Many studies indicate that sleep contributes to the 

consolidation of memory traces by enhancing neuronal plasticity [2-6]. Sleep-related 

enhancement in declarative memory is clearly demonstrated [7-9], but the beneficial effect of 

sleep on the consolidation of non-declarative (i.e. procedural) knowledge is still controversial. 

Previous studies that focused on healthy populations found greater improvement in a 

procedural sequence learning task after a period of sleep than after an equivalent time of 

wakefulness [10,11]. By contrast, several recent studies failed to find sleep-related 

improvement in sequence learning [12-15]. The controversial results might be explained by 

task complexity, for example varying in sequence length and structure. Moreover, some 

sequence learning tasks used in these studies were unable to separate two aspects of sequence 

learning, namely general practice-dependent speed-up (so called general skill learning) and 

sequence-specific learning [10,11,16]. In the present study, we used the Alternating Serial 

Reaction Time (ASRT) task [17] to extend previous research by separating and measuring 

both general skill learning and sequence-specific learning. In this task some runs of three 

consecutive stimuli (triplets) are more frequent than others. With practice people become 

faster in responding to these high frequency triplets compared to the low frequency ones, 

revealing sequence-specific aspects of learning. In contrast, a general speed-up irrespectively 

of the triplet frequencies is considered to be a result of the general skill aspect of learning in 

this task [12,14].  

Previous studies suggest that sleep disorders (e.g., insomnia) lead to weaker 

consolidation both of declarative and non-declarative memory [18,19]. One of the most 

frequent sleep disorders is obstructive sleep apnea (OSA) which is characterized by repeated 

episodes of upper airway obstruction during sleep, resulting in hypoxia, which leads to 

repetitive arousals from sleep disturbing normal sleep patterns [20]. Deficits in working 

memory [21,22], attention, executive functions [23-26], short and long-term verbal and visual 

memory have been demonstrated in OSA [25,27,28] indicating structural changes in brain 

circuits crucial for memory [29]. Nevertheless, sequence learning has not been extensively 
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characterized in OSA. Lojander, Kajaste, Maasilta & Partinen [30] have found poor 

performance in sequence learning in patients with apnea. In contrast, other studies showed 

intact performance on a less complex, deterministic sequence learning task [31] and also on a 

more complex, probabilistic sequence learning task [22], but they found weaker word recall 

and working memory performance, respectively. 

The aforementioned studies investigated on the effect of sleep disorders on learning and 

memory functions in general but not on the overnight consolidation of the acquired 

knowledge. Focusing on consolidation, Kloepfer and colleagues [32] examined the memory 

performance before and after sleep in moderate OSA. They revealed that OSA patients 

showed reduced declarative (verbal) and non-declarative memory performance after sleep 

compared to healthy control participants. It is important to note that this study measured non-

declarative memory by a motor adaptation task and not by a sequence learning task. To our 

knowledge, only one study focused on the consolidation of sequence learning in OSA and 

demonstrated that OSA can negatively affect memory consolidation on a relatively simple 

motor sequence learning task [16]. Nevertheless, this study used an explicit sequence learning 

task (fingertapping) with deterministic sequence structures. The aim of the present study was 

to go beyond previous research in three ways:  

1) investigating the consolidation processes in OSA by a more complex sequence 

learning task, namely the sequence structure is not deterministic but probabilistic; 

2) we use an implicit sequence learning task and not explicit (for example [16]), 

3) the task used here enables us to separately analyze the consolidation of two aspects of 

sequence learning, namely general skill and sequence-specific learning.  

Based on the previous sleep studies that used implicit probabilistic sequence learning 

tasks [12,14], our hypothesis is that OSA participants will not show deterioration in sequence-

specific and general skill learning over the offline period. 

 

METHODS 

 Participants 

Seventeen newly diagnosed, untreated patients with OSA participated in the experiment 

(average age: 52.41 years, SD: 9.67; average education: 12.65 years, SD: 2.18; 2 females/15 

males). OSA was diagnosed by a board-certified sleep-physician based on a full night of 

clinical polysomnography. The mean Apnea-Hypopnea Index (AHI) was 53.05 events/hour 

(SD: 23.26 (Range: 21.1-117.3). Pathological level of AHI was defined as 15 or more per 
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hour [20]. The mean total sleep time (TST) was 330.52 mins (SD: 48.65). Aside from OSA, 

participants did not suffer from any developmental, psychiatric or neurological disorders as 

established in a full neurological exam by a board-certified neurologist. 

The control group consisted of seventeen healthy participants and was matched by age 

(average age: 54.24 years, SD: 7.29) and by working memory performance. Working memory 

capacity was assessed by two widely-used neuropsychological tests: the Backward Digit Span 

Task (BDST) [33,34] and Listening Span Task (LST) [35,36]. There were no significant 

differences between the two groups in these tasks (BDST: t(32) = 1.116, p = 0.27, LST: t(32) 

= 0.170, p = 0.87). These criteria were included to eliminate the effect of working memory, as 

previous studies in healthy participants revealed a relationship between working memory and 

implicit sequence learning [37,38]. However there is also evidence that the two systems are 

independent of each other [39-41] (for review see Janacsek & Nemeth [42]). Control 

participants did not suffer from any developmental, psychiatric or neurological disorders and 

did not have sleeping disorders. All participants provided signed informed consent and 

received no financial compensation for their participation. Ethics approval was obtained by 

the Psychology Ethical Committee at the University of Szeged, Institute of Psychology. 

 

Procedure 

There were two sessions in the experiment: a Learning Phase (Session 1) and a Testing 

Phase (Session 2) for both the OSA and the healthy control group. The sequence learning 

performance was assessed between 7 and 8 PM prior to sleep (Learning Phase) and between 7 

and 8 AM after sleep (Testing Phase), thus the average interval between the Learning and 

Testing Phase was 12 hours. Between the two sessions AHI was measured in a full night of  

polysomnography in SomnoCenter’s sleep lab (Szeged, Hungary). During the data collection, 

subjects’ caffeine and nicotine intake was restricted.  

 

Alternating Serial Reaction Time (ASRT) Task 

We used the modified version of the ASRT task in which a stimulus (a picture of a 

dog’s head) appeared in one of four empty circles on the screen [12]. Before beginning the 

task, detailed instructions were read to participants. They were instructed to press the button 

corresponding to the stimulus location as quickly and as accurately as possible [12]. The 

computer was equipped with a special keyboard with four marked keys (Y, C, B and M on a 

QWERTZ keyboard; thus, compared to the English keyboard layout, the location of the 
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buttons Z and Y were switched), each corresponding to one of the horizontally aligned circles. 

Session 1 (Learning Phase) consisted of 25 blocks, with 85 key presses in each block – the 

first five stimuli were random for practice purposes, then an eight-element alternating 

sequence (e.g., 2r1r4r3r, where numbers represent the four places on the screen, and r 

represents an event randomly selected from the four possible places) repeated ten times. 

Similarly to earlier studies [12], stimuli were presented 120-ms after the previous response 

(response-to-stimulus interval, RSI). Each block required about 1.5 minutes and the entire 

session took approximately 30-40 minutes. Between blocks, participants received feedback 

about their overall reaction time and accuracy on the screen and then rested 10 to 20 seconds 

before starting a new block. Session 2 (Testing Phase) consisted of 5 blocks; the number of 

key presses and the RSI were the same as in Session 1 and this Testing Phase took 

approximately 5-10 minutes to complete. 

A different ASRT sequence was selected for each participant based on a permutation 

rule such that each of the six unique permutations of the 4 repeating events occurred. 

Consequently, six different sequences were used across participants [12].  

As there is a fixed sequence in the ASRT alternating with random stimuli (e.g., 

2r1r4r3r), some triplets or runs of three consecutive stimuli occur more frequently than others. 

For example, 2_1, 1_4, 4_3, and 3_2 occur more often because the third element (bold 

numbers) can be derived from the sequence or can also be a random element (if the sequence 

is 2r1r4r3r). In contrast, 1_2 or 4_1 occur less often because the third element can only be 

random. Following previous studies [12,14], we refer to the former as high-frequency triplets 

and the latter as low-frequency triplets. Out of the 64 possible triplets, each 16 high frequency 

triplets occur on approximately 4% of the trials, about 5 times more often than the low-

frequency triplets. Note that the final event of high-frequency triplets is therefore more 

predictable from the initial event compared to the low-frequency triplets (also known as non-

adjacent second-order dependency, see in Remillard [43]). 

Previous studies have shown that as people practice the ASRT task, they come to 

respond more quickly to the high-frequency triplets than low-frequency triplets, revealing 

sequence-specific learning [14,44]. In addition, general skill learning is revealed by the 

overall speed-up during the practice, irrespectively of the triplet types. Thus, we are able to 

measure both sequence-specific and general skill learning in the ASRT task. 

To explore how much explicit knowledge participants acquired about the task, we 

administered a short questionnaire (previously used in Song and colleagues [12],
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colleagues [14]) after the task. This questionnaire included increasingly specific questions 

such as “Have you noticed anything special regarding the task? Have you noticed some 

regularity in the sequence of stimuli?” The experimenter rated subjects’ answers on a 5-item 

scale, where 1 was “Nothing noticed” and 5 was “Total awareness”. None of the participants 

in either the OSA or control group reported noticing the sequence in the task.  

 

Statistical analysis 

To facilitate data processing, the blocks of ASRT were organized into epochs of five 

blocks. The first epoch contains blocks 1-5, the second epoch contains blocks 6-10, etc. 

Participants’ accuracy remained very high throughout the test (average > 96% for both 

groups), therefore we focused on reaction time (RT) for the analyses reported. We calculated 

RT medians for correct responses only (following the standard protocol, see in [12,14,17,44]), 

separately for high- and low-frequency triplets and for each participant and each epoch. Note 

that for each response (n), we defined whether it was a high- or a low-frequency triplet by 

considering whether it is more or less predictable from the event n-2. For the analyses 

reported below, as in previous research [12,14], two kinds of low-frequency triplets were 

eliminated: repetitions (e.g., 222, 333) and trills (e.g., 212, 343). Repetitions and trills were 

low frequency for all participants and people often show pre-existing response tendencies to 

them [44]. So by eliminating them we attempted to ensure that any high- versus low-

frequency differences were due to learning and not to pre-existing tendencies. 

 

RESULTS 

Online learning during Session 1 (Learning Phase)  

To investigate learning during Session 1, a mixed design ANOVA was conducted on 

the first 5 epochs of the data shown in Figure 1A, with TRIPLET (2: high- vs. low-frequency) 

and EPOCH (5: 1-5) as within-subject factors, and GROUP (OSA vs. control) as a between-

subject factor. All significant results are reported together with the η
2

p effect size and 

Greenhouse Geisser ε correction factors where applicable. Post hoc analyses were conducted 

by Fisher’s LSD pairwise comparisons. 

There was significant sequence-specific learning (indicated by the significant main 

effect of TRIPLET: F(1,32) = 15.58, ηp
2 

= 0.32, p < .001), such that RTs were faster on high- 

than on low-frequency triplets. OSA and control groups showed no differences in sequence-

specific learning (TRIPLET x GROUP interaction: F(1,32) = 1.61, ηp
2 

= 0.04, p = 0.21). 
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There was also significant general skill learning (shown by the significant main effect of 

EPOCH: F(4,128) = 28.62, ηp
2 

= 0.47, p < 0.001), such that RTs decreased across epochs. 

OSA and control groups performed at the same level (EPOCH x GROUP interaction: 

F(4,128) = 2.21, ηp
2 

= 0.06, p = 0.12). 

 The TRIPLET x EPOCH and TRIPLET x EPOCH x GROUP interactions were not 

significant (F(4,128) = 0.94, ηp
2 

= 0.03 p = 0.42; F(4,128) = 0.48, ηp
2 

= 0.01, p = 0.69; 

respectively), indicating that the pattern of learning was similar in the groups. In the overall 

RT, the OSA group differed significantly from the control group, with slower RTs for the 

OSA group (main effect of GROUP: F(1,32) = 4.95, ηp
2 

= 0.13, p = 0.03). To ensure that this 

difference in overall RTs did not influence learning measures, we also ran an ANOVA on 

normalized data (for each participant, the median RTs for high- and low-frequency triplets in 

each epoch were divided by the overall RT of the first epoch) and found the same results.  

 

 

Figure 1. Results of sequence learning and consolidation in the OSA and control group. A) Results of 

sequence-specific and general skill learning in OSA and control group in Session 1 and Session 2: Although the 

OSA group was generally slower in Session 1, both groups showed significant sequence-specific and general 

skill learning. There were no differences in learning between the groups; the pattern of learning was similar in 

the OSA and control groups. B) Results of offline changes in sequence-specific learning in OSA and control 

group: The differences between the low and high frequency triplets indicate sequence-specific learning. There 
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was a decrease in sequence-specific knowledge, such that the learning index of the first epochs of Session 2 was 

significantly smaller compared to the last epochs of Session 1. There were no significant differences between the 

OSA and control groups. C) The results of offline changes in general skill learning: the differences in overall 

reaction time between the last epoch of Session 1 and the first epoch of Session 2 regardless of triplet type show 

general skill learning. There was a trend of improvement in general skill learning. The OSA group showed no 

offline general skill learning, while the control group showed better performance (smaller RTs) at the beginning 

of Session 2 compared to the end of Session 1. Error bars indicate SEM. 

 

Consolidation of sequence-specific and general skill learning  

To investigate the offline changes of sequence-specific and general skill learning we 

compared the RTs from the last epoch of Session 1 (Epoch 5) and the epoch of Session 2 

(Epoch 6) in both groups (for similar analyses see [12, 14]). These variables were submitted 

to a mixed design ANOVA with TRIPLET (2: high- vs. low-frequency) and EPOCH (2: last 

epoch of Session 1 and epoch of Session 2) as within-subject factors, and GROUP (OSA vs. 

control) as a between-subject factor. 

 The main effect of TRIPLET was significant (F(1,32) = 32.34, ηp
2 

= 0.5, p < 0 .001), 

thus RTs were faster on high- than low-frequency triplets. It was similar in the OSA and 

control groups (indicated by the non-significant TRIPLET x GROUP interaction: F(1,32) = 

1.07, ηp
2 

= 0.03, p = 0.31). 

The main effect of EPOCH did not reach significance (F(1,32) = 2.34, ηp
2 

= 0.07, 

p=0.13) but the EPOCH x GROUP interaction was significant (F(1,32) = 9.32, ηp
2 

= 0.22, p = 

0.005), suggesting that the OSA and control groups showed significant differences in the 

offline changes of general skills. The LSD post hoc test revealed that the OSA group showed 

no offline general skill improvement (p = 0.29), while the control group showed better 

performance (faster RTs) at the beginning of Session 2 compared to the end of Session 1 (p = 

0.003). 

The sequence-specific knowledge did not change significantly during the offline period 

(TRIPLET x EPOCH interaction: F(1,32) = 2.75, ηp
2 

= 0.08, p = 0.11). The OSA and control 

groups performed on a similar level (TRIPLET x EPOCH x GROUP interaction: F(1,32) = 

0.29, ηp
2 

= 0.009, p = 0.59). The offline changes of sequence-specific and general skill 

knowledge are shown on Figure 1B-C, respectively. 

There were significant differences in the general RTs between the OSA and control 

groups, with slower RTs for the OSA group (main effect of GROUP: F(1,32) = 6.27, ηp
2 

= 

0.16, p = 0.02). ANOVA on normalized data revealed the same results, confirming that the 
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significant difference in offline changes of general skills between the OSA and the control 

group was not due to general RT differences (EPOCH x GROUP interaction: F(1,32) = 11.17, 

ηp
2 

= 0.25, p = 0.002). 

To further confirm the ANOVA results we also analyzed individual differences of 

sequence-specific and general skill consolidation. In the case of offline sequence-specific 

changes, we counted the number of participants who exhibited higher sequence-specific 

learning in Epoch 6 than in Epoch 5 (thus, sequence-specific knowledge in Epoch 6 minus 

Epoch 5 was above zero, irrespectively of significance testing). A similar number of OSA and 

control participants (7/17 and 6/17, respectively) showed higher than zero difference in 

sequence-specific knowledge between Epoch 6 and Epoch 5. Consequently, the number of 

participants showing the opposite pattern (lower than zero difference between Epoch 6 and 

Epoch 5) was also similar in the two groups (10/17 and 11/17, respectively). Thus, there was 

no group difference in sequence-specific consolidation based on this analysis (chi-square(1) = 

0.125, p=0.724) which supports the ANOVA result. In contrast, in the case of general skill 

consolidation, more controls (14 out of 17) than OSA patients (8 out of 17) showed higher 

than zero difference in general RTs between Epoch 6 and Epoch 5, thus they were generally 

faster in Epoch 6 compared to Epoch 5. This group difference in general skill consolidation 

was significant (chi-square(1)=4.636, p= 0.031) similarly to the ANOVA result. 

 

DISCUSSION 

Our goal was to investigate the consolidation of non-declarative learning in OSA. We 

used a relatively complex sequence learning task that allowed us to differentiate between two 

components of learning: general skill learning and sequence-specific learning. We found 

differences in offline changes of general skills between OSA patients and controls. The 

control group showed offline improvement from evening (Learning Phase) to morning 

(Testing phase), thus, they became faster in the morning after the offline period, while the 

OSA group did not. In contrast, we failed to find differences in the offline changes of 

sequence-specific knowledge between the groups. We believe our study to be the first to 

investigate the consolidation of these two aspects of implicit learning by using a task with 

complex sequence structures in patients with OSA. 

In the Learning Phase the OSA and control group showed similar learning patterns in 

general skill and sequence-specific learning; however the OSA group demonstrated slower 

RTs in general. These intact learning curves are in line with previous studies investigating 
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non-declarative learning in this patient population [22,30,31]. For example, Nemeth and 

colleagues [22] and Csabi, Benedek, Janacsek, Katona & Nemeth [45] using the ASRT task 

also showed intact sequence learning both in children and elderly adult population with sleep-

disordered breathing and OSA. In another type of non-declarative memory, Rouleau, Décary, 

Chicoine & Montplaisir [46] found preserved learning measured by a sensorimotor adaptation 

task in OSA patients, although a subgroup of them demonstrated deficits in initial learning 

performance. This subgroup also had difficulties on other neuropsychological tests (e. g. 

executive functions). Naegelé et al [25] using the same task also found significant but weaker 

learning in OSA than in the control group. The authors suggest that patients with OSA have 

difficulties creating new sensorimotor coordination. In sum, these studies suggest that 

sensorimotor adaptation might be weaker while the less sensorimotor coordination-demanding 

sequence learning is intact in OSA. 

In the overnight consolidation of non-declarative memory we revealed weaker 

performance on general skill learning in OSA patients compared to the controls who 

demonstrated offline general skill improvement after the 12-hour delay period. Kloepfer et al 

[32] found similar results: at the encoding, prior to sleep OSA patients showed similar non-

declarative sensorimotor adaptation as the healthy control participants, but they revealed 

reduced overnight improvement on average RT performance. A recent sequence learning 

study by Djonlagic et al [16] also demonstrated that OSA patients and controls displayed 

almost identical performance during the initial learning in the evening, but the control group 

exhibited significantly more overnight improvement. The authors concluded that this weaker 

offline performance was caused by sleep fragmentation in OSA.  

In the case of sequence-specific learning, we found similar performance between the 

OSA and control groups not only in online sequence-specific learning but also in the 

consolidation of sequence-specific knowledge. This result is in line with previous studies that 

failed to find sleep-related changes in the consolidation of sequence-specific learning in 

healthy participants [12,14]. It suggests that sleep might have less influence on this specific 

aspect of non-declarative learning. This conclusion is also supported by two recent reports. 

Song & Cohen [47] propose that practice and sleep form different aspects of skill. Their 

results suggest transition learning (as in the ASRT) to be an implicit component of skills that 

lacks sleep-dependence. In the other recent consolidation study, Meier and Cock [48] found 

neither deterioration, nor further improvement in sequence-specific learning over the offline 

period, however, they found offline improvement in general skill learning. 
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In conclusion, we demonstrated that the offline changes of two components of implicit 

sequence learning are differentially affected in OSA: in contrast to the preserved 

consolidation of sequence-specific knowledge, the consolidation of general skills was weaker 

compared to the controls. Thus, we suggest that long-term sleep disturbances present in OSA 

play differential role in these two aspects of consolidation in the case of more complex, 

probabilistic sequences. Nevertheless, a daytime control condition is needed to investigate 

whether weaker consolidation of general skills is specific to the actual overnight sleep 

disturbances or to long-term deficits related to sleep disruption. Our findings underscore the 

importance of examining more specific and focal cognitive functions in OSA. Creating more 

sophisticated neuropsychological profiles about the cognitive dysfunctions could not only 

provide clues about which brain networks may be affected in OSA but also can help develop 

more effective methods of rehabilitation and treatment.  
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