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Abstract. This is an exciting time for the study of r-process nucleosynthesis.

Recently, a neutron star merger GW170817 was observed in extraordinary detail

with gravitational waves and electromagnetic radiation from radio to γ rays. The

very red color of the associated kilonova suggests that neutron star mergers are an

important r-process site. Astrophysical simulations of neutron star mergers and core

collapse supernovae are making rapid progress. Detection of both, electron neutrinos

and antineutrinos from the next galactic supernova will constrain the composition

of neutrino-driven winds and provide unique nucleosynthesis information. Finally

FRIB and other rare-isotope beam facilities will soon have dramatic new capabilities

to synthesize many neutron-rich nuclei that are involved in the r-process. The

new capabilities can significantly improve our understanding of the r-process and

likely resolve one of the main outstanding problems in classical nuclear astrophysics.
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However, to make best use of the new experimental capabilities and to fully interpret

the results, a great deal of infrastructure is needed in many related areas of

astrophysics, astronomy, and nuclear theory. We will place these experiments in

context by discussing astrophysical simulations and observations of r-process sites,

observations of stellar abundances, galactic chemical evolution, and nuclear theory for

the structure and reactions of very neutron-rich nuclei. This review paper was initiated

at a three-week International Collaborations in Nuclear Theory program in June 2016

where we explored promising r-process experiments and discussed their likely impact,

and their astrophysical, astronomical, and nuclear theory context.

PACS numbers: 00.00, 20.00, 42.10

Submitted to: J. Phys. G: Nucl. Part. Phys.
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r-Process Nucleosynthesis: Connecting Rare-Isotope

Beam Facilities with the Cosmos

1. Introduction

How were the elements from Iron to Uranium made? The influential National Academy

of Science report “Connecting Quarks to the Cosmos” identified this question as one

of eleven questions at the intersections of astronomy and physics that are of deep

interest and are ripe for answering [1]. Ever since the pioneering works of Burbidge,

Burbidge, Fowler and Hoyle [2] and Al Cameron [3] we think these elements are made

predominantly by both the slow neutron capture process (or s-process) [4] and by the

rapid neutron capture process (or r-process) [5], where seed nuclei capture neutrons

more rapidly than many β-decays.

One of the major grand challenges of our day is the determination of the site or sites

for the r-process and therefore the identification of the origin of more than half of all the

elements heavier than iron. The answer is complex and highly intermingled between the

astrophysics that provides a description of the conditions of the relevant scenarios and

the physics of nuclei that operates in those scenarios. Connecting rare isotopes to the

Cosmos is an ambitious, yet a feasible, attempt to infer the nature of the extreme stellar
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environments where the r-process occurs by determining important properties of very

neutron-rich heavy nuclei that can be produced at the Facility for Rare Isotope Beams

(FRIB) and other radioactive ion accelerators. This nuclear information can then be

incorporated in detailed astrophysical simulations to make predictions for the elemental

and isotopic abundances produced and for the emitted gravitational waves, neutrinos

and electromagnetic radiations.

Our understanding of the r-process has recently taken a dramatic turn with the

extraordinary multi-messenger observations of gravitational wave and γ-ray, x-ray, ultra-

violet, visible, infrared and radio radiations from the neutron star merger GW170817

[6]. The very red color of this event that was observed two or more days after the

merger, peaking in the infrared, has been interpreted as evidence for the production

of lanthanides via the r-process [7]. Furthermore, the amount of material ejected and

the rate of neutron star mergers suggest that these mergers are a, perhaps dominating,

site of r-process nucleosynthesis [8]. This is in line with earlier observations of strongly

r-process enriched stars in the dwarf galaxy Reticulum II that are best explained by

a neutron star merger r-process [9], the detection of live interstellar 244Pu archived

in terrestrial reservoirs like deep-sea crusts [10] that indicates a rare prolific r-process

production site such as neutron star mergers, and the finding that earlier arguments

against a neutron star merger r-process based on theoretical galactic chemical evolution

models (e.g. [11]) are less constraining than originally assumed (for example [12, 13]).

Observations of mergers are discussed in Sec. 2.2.2, while Sec. 3.3.2 discusses the role

of mergers for galactic chemical evolution, and simulations of neutron star mergers are

discussed in Sec. 4.3. The improved observational constraints on the r-process site

make the need for accurate nuclear data even more pressing as the nuclear physics

increasingly becomes the major missing piece in the puzzle of the origin of the elements.

For example, nuclear physics will be needed to infer the physical conditions in neutron

star mergers that lead to the observed r-process features, to disentangle contributions

from different ejecta components in neutron star mergers, and to identify the role that

alternative r-process sites may still play.

This review is organized as follows: Section 2 discusses a large variety of

observations related to the r-process. Galactic chemical evolution simulations are

reviewed in Sec. 3, while Sec. 4 reviews astrophysical simulations of r-process sites.

Given conditions present in a site, one can perform detailed nuclear reaction network

simulations to predict nucleosynthetic yields. Here, an accurate understanding of the

relevant nuclear physics is required for any comprehensive theory of heavy element

formation. Nuclear physics enables the calculation of the characteristic abundance

patterns produced in a particular astrophysical r-process model and is thus a prerequisite

for a full understanding of all the elements a particular site may produce, and for

validating the site model through comparison with abundance observations. Nuclear

physics is also essential to use nucleosynthesis observations to obtain information and

constraints on the extreme environment of the nucleosynthesis site, such as temperature

and density evolution, neutron-richness, hydrodynamic mixing processes, or neutrino
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physics. Last but not least, only with reliable nuclear physics will one ultimately arrive

at an understanding of the actual mechanism of element formation. The challenge

for understanding the r-process is that the relevant nuclei are very neutron-rich and

knowledge of their properties and reactions therefore extremely limited.

The sensitivity of nucleosynthesis yields to nuclear physics and its uncertainties

is discussed in Sec. 5. Nuclear theory has made great strides in describing the

properties of neutron-rich nuclei, as discussed in Sec. 7, but is still far from making

predictions of structure and reactions with accuracy that is needed for astrophysical

applications. Experimental data are therefore essential for the key nuclear physics

ingredients in r-process calculations, and techniques and approaches to obtain these

data are reviewed in Sec. 6. Experimental data on neutron-rich isotopes can also

guide the development of quantified theoretical models capable of making reliable

predictions for all nuclei involved in the r-process. Obtaining the critical experimental

data will be an iterative process that requires close interaction between experimentalists,

nuclear theorists, and astrophysicists. As knowledge of nuclear physics, astrophysics,

and astronomical observables evolves, sensitivity studies linking nuclear physics with

observables will change, in turn changing experimental and theoretical nuclear physics

priorities. Making this interaction cycle between astrophysicists and nuclear physicists

as efficient and straightforward as possible will be key for success. Also key for

success are the radioactive beam facilities that have capabilities to perform r-process

experiments as reviewed in Sec. 8. Finally Sec. 9 presents a summary and outlook.

2. Observations

2.1. Observations of stellar abundances

The heavy elements in the atmospheres of most late-type (F-G-K) stars, which have

effective temperatures of ≈ 4000–7000 K, reflect the stars’ natal compositions, and are

untouched by the products of nuclear burning in the interior. Each star thus retains a

chemical memory of the content of one piece of the interstellar medium (ISM) at the

time and location of its formation. Collectively, many stars record the fossil record of

the varied and changing composition of the ISM across cosmic time. Astronomers refer

to this concept as “Galactic archaeology.”

The overall metallicity‡ of the ISM generally increases as time passes and more

stars contribute freshly-produced metals. Stars with the lowest metallicity, commonly

known as metal-poor stars, formed in regions of the ISM polluted by relatively few

enrichment events. When the observed abundance patterns reflect so few events, there

is an opportunity to isolate the chemical signatures of individual ones. Some metal-poor

stars show large overabundances of elements produced by r-process nucleosynthesis.

‡ The term “metallicity” describes the overall metal content, and astronomers usually refer to elements

heavier than He as “metals.” Here, metallicity is quantified explicitly as [Fe/H] using the standard

definition of abundance ratios: for elements X and Y, the logarithmic abundance ratio relative to the

Solar ratio is defined as [X/Y] ≡ log10(NX/NY)− log10(NX/NY)�.
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These stars are not the sites where the r-process occurred. Rather, these stars formed

from material enriched by metals from earlier generations of stars, including material

ejected from the r-process production site.

2.1.1. Measuring detailed r-process abundance patterns from Galactic halo field stars

Late-type stars are the only sites beyond the Solar System where detailed chemical

abundance patterns for large numbers of elements can be derived. When metal-poor

stars that are highly enhanced in r-process elements are identified, detailed abundance

analyses based on high-resolution spectra, model atmospheres, and atomic transition

data can be used to derive the abundance pattern of elements present. Only a

small fraction of stars in the sky are metal-poor, and only a small fraction of these

stars (≈ 3%) are highly enhanced in r-process elements [14]. The first highly r-

process enhanced star discovered was CS 22892-052 [15], and subsequent high-resolution

spectroscopic follow-up observations have confirmed an additional ≈ 30 stars with

[Eu/Fe] > +1.0, where Eu is taken as a representative element produced by the r-

process [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

At the temperatures and pressures found in late-type stellar atmospheres, not all

heavy elements present absorption lines that can be detected with confidence in the

optical and near-infrared portions of the spectrum (≈ 3030–25000 Å) accessible to

ground-based telescopes. Additional elements can be detected in the near-ultraviolet

(UV) portion of the spectrum (≈ 1900–3030 Å), but this requires that the star is bright

enough (V magnitude . 10 or so) to be observed with the Hubble Space Telescope (HST ).

When UV and optical spectra are obtainable, however, more than 30 elements produced

by the r-process can be detected in a single star [33, 34, 35, 36, 37, 38, 39, 40, 41].

Figure 1 shows one example. The star shown in Figure 1, HD 108317, is only moderately

enhanced in r-process material ([Eu/Fe] = +0.5), yet 34 elements heavier than Zn

(Z = 30) have been detected.

The elements at the three r-process peaks (Se, Z = 34; Te, Z = 52; and Os, Ir,

and Pt, Z = 76–78) are among those that are best detected in the UV using HST

(Hubble Space Telescope), and these elements have only been detected together in

three stars at present [42, 43, 41]. Elements at the first and second r-process peaks

have not yet been observed in a highly r-process enhanced star, unfortunately, because

no known star is sufficiently bright, although observational work to identify such stars

is underway. The relative abundances and locations (in mass) of the r-process peaks

are sensitive to the conditions (e.g., [44]), so they are especially valuable probes of

the r-process. Many of the radioactive progenitor nuclei for elements at the first

and second r-process peak can be produced by current radioactive beam facilities in

sufficient quantities to measure some of their relevant nuclear properties, so the nuclear

uncertainties are somewhat smaller than for predictions of other r-process elements. The

relationship between observed abundance patterns derived from stellar spectroscopy,

nuclear properties measured by RIB facilities, and models of candidate r-process sites

is clear: if the first two are known, the third can be deduced. Thus access to the UV
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Figure 1. The heavy element abundance pattern in the metal-poor star HD 108317,

which is moderately enhanced in r-process material. The black squares indicate

elements that are detected, and the open triangles indicate upper limits derived from

non detections. The red and blue curves mark the Solar System elemental abundance

patterns, scaled downward to match the Eu (Z = 63) or Ba (Z = 56) abundances in

HD 108317. The bottom panel shows the residuals compared to the (red) scaled Solar

System r-process pattern. The abundance pattern in this star is a close match to the

scaled r-process pattern. Many of the elements shown here, including Ge (Z = 32),

As (Z = 33), Se (Z = 34), Cd (Z = 48), Te (Z = 52), Lu (Z = 71), Os (Z = 76), Pt

(Z = 78), and Au (Z = 79) could only be detected in the UV part of the spectrum.

(Figure from [41])

spectral domain after HST has been decommissioned is critical to maximize the impact

of future RIB facilities, which can produce radioactive progenitors for the second and

even the third abundance peak.

Finer levels of abundance detail—isotopic abundances of heavy elements—cannot

readily be extracted from stellar spectra. The wavelength shifts of spectral lines of

different isotopes of a given element are smaller than the typical line widths (≈ 4-

7 km s−1) in late-type stellar spectra, which are set by convective and turbulent motions

in the stellar atmospheres. Studies over the last few decades have demonstrated the

limits of isotopic measurements for heavy elements [45, 46, 47, 48, 49, 50, 51, 52], and

these are unlikely to be improved in the foreseeable future.

2.1.2. Deviations from the r-process pattern One key observational result is that the

r-process pattern is robust from one star to another, and agrees well with the Solar
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System r-process residuals, for elements at and between the second and third r-process

peaks (Ba to Au, e.g., [38, 42]). Sometimes this so-called “universality” extends to

lighter r-process elements and the actinides, but not always.

Among stars with high and moderate amounts of r-process enhancement, elements

between the first and second r-process peaks sometimes show element-to-element

variations and star-to-star variations in their overall level relative to the scaled Solar

System r-process pattern (e.g., [53, 54, 55, 14, 56, 57, 58, 59]). The bottom panel of

Figure 1 illustrates one example of these variations, where a smoothly-varying deviation

of abundances from the scaled Solar System r-process residuals is found for 32 ≤ Z ≤ 48.

Combining this result with the low star-to-star scatter observed among metal-poor

stars for α- and iron-group elements, like [Mg/Fe], poses a challenge for Galactic chemical

evolution models (Section 3.2.1). It is clear that the main formation site producing Mg

and Fe at low metallicity (i.e., supernovae) cannot be the (only) source for the r-process

elements. More and different formation sites are needed to account for the star-to-star

scatter in the r-process element abundances. Theoretical studies have shown that almost

all the chemical patterns of metal-poor stars can be explained by a combination of two

formation processes: a heavy “H-event” explaining the robust r-process pattern (beyond

the second r-process peak) and a light “L-event” (e.g., [60, 61]). The L-event shows a

larger internal abundance scatter and is therefore less robust. This L-event could be

assigned to a number of formation sites and processes, not all of which may be known

at present.

Observations of the element Ge (Z = 32), which sits at the transition between the

iron-group and neutron-capture elements, indicate that this element does not follow the

scaled Solar System r-process residuals. Furthermore, it does not correlate with overall

r-process enhancement [34]. This result demonstrates that Ge is likely not produced

in the r-process (cf. [62]), but instead could be a product of proton-captures during

explosive nucleosynthesis in supernovae [63, 64].

The actinides Th (Z = 90) and U (Z = 92) are another example of deviations from

the r-process pattern. A subset of highly r-process enhanced stars show radioactive
232Th and 238U enhanced relative to the elements in the Rare Earth domain and third

r-process peak [16, 19, 25, 58, 27], the so-called “actinide boost” [65]. This phenomenon

appears to be limited to elements beyond the third peak [66], but its physical origin is

unknown at present. Future observational work to identify larger samples of actinide

boost and non-actinide boost stars should help to clarify the matter.

r-process investigations could be better served by attempting to reproduce the full

range of r-process patterns across cosmic history, and not just the Solar System r-process

residuals. Increasing the observed chemical inventories (Section 2.1.1) is one important

step toward that goal. Identifying and characterizing the known deviations from the

r-process pattern represent another.

2.1.3. Environmental constraints on the r-process from stars in ultra-faint dwarf galaxies

Stars like HD 108317 or CS 22892-052 are located in the field, unaffiliated with any



Connecting RIB facilities with the cosmos 12

known stellar cluster, stream, or galaxy. This limits their utility in terms of constraining

the site of the r-process based on its environment. Recently, the lowest-luminosity

galaxies known—also called ultra-faint dwarf galaxies, or UFDs—have been identified

as sites of limited chemical evolution where the imprints of single nucleosynthesis events

can be observed in the present-day stars (e.g., [67, 68, 69, 70]).

The recent discovery of the UFD galaxy Reticulum II (Ret II; [71, 72, 73, 74, 75]) has

enabled new insights into the astrophysical site of the r-process by providing additional

information of the star forming environment [9, 30, 29]. A single, rare, and prolific r-

process event must have taken place in Ret II, leading to most of the stars in this galaxy

being highly r-process enhanced. Simulations can be used to estimate the star-forming

gas mass that may have been present in Ret II [76, 77], which enables calculations of

the mass of r-process ejecta from this single event. The results exclude the low total

yields expected to arise from neutrino-driven winds in supernovae. Instead, the much

larger yields from neutron star mergers (or other events producing similarly large yields,

like jet-driven supernovae) are consistent with the observations of Ret II. Furthermore,

the delayed enrichment by a neutron star merger can be accommodated, and its ejecta

retained, as simulations of the first galaxies have shown [78, 79].

It has become clear that considering the galactic environment in which r-process

stars form is crucial for progress in understanding the astrophysical site and conditions

of the r-process. Given the old age of the UFD galaxies (e.g., [80]), and the similarity

between the highly r-process enhanced stars in Ret II and the Galactic halo field, another

implication is that r-process stars found in the halo likely originated in systems similar

to Ret II. This offers the opportunity to use metal-poor r-process enhanced stars in

dwarf galaxies as well as the halo to directly predict r-process yields for comparison

with various theoretical works.

Other observational work has identified the presence of distinct levels of r-process

enhancement in more luminous dwarf galaxies [81, 82, 83, 84]. From this, the occurrence

rate and yields of r-process events can be quantified. These results from the Draco dwarf

galaxy, for example, suggest two distinct sites of r-process nucleosynthesis, possibly a

magneto-rotational supernova and a neutron star merger. A rare neutron star merger

outcome—and thus high levels of r-process enhancement in present-day stars, perhaps

diluted by Fe production—may also become inevitable in more massive systems like

Draco [29].

A second low-luminosity system, Tucana III (Tuc III), containing at least one

r-process enhanced star has been identified [85], although the level of r-process

enhancement in Tuc III is more modest and consistent with that in globular cluster stars

(e.g., [86]). Future work on this system and the ensemble of dwarf galaxies and stellar

systems around the Milky Way will help to place further environmental constraints on

the nature of the r-process.

2.1.4. Evidence from elements not produced by the r-process Another observational

approach to identify the astrophysical site(s) of the r-process is to consider the light
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elements that could be produced along with the r-process. Are the abundance ratios

among elements from C to Zn (6 ≤ Z ≤ 30) statistically different in stars with high

levels of r-process enhancement and those without? No significant differences are found,

either among highly r-process enhanced stars in the field [28] or the Ret II UFD galaxy

[29]. For the field stars, the average differences are constrained to be ≈ 3.5% or less.

This result may be interpreted to indicate that the site responsible for producing the

high level of r-process enhancement did not produce any light elements. This could occur

because the site of the r-process (e.g., neutron star mergers) is physically unassociated

with the site of light element production (normal supernovae) or because the site of the

r-process (e.g., a jet) is decoupled from the regions of supernovae where light element

production occurs. This evidence supports the recent association of neutron star mergers

as a viable site of r-process nucleosynthesis (see Sec. 2.2.2).

2.1.5. Stars with low levels of r-process material Highly r-process enhanced stars, as

highlighted in the previous sections, comprise only a few percent of the local Galactic

halo field population, and only a small fraction of UFD galaxies boast large numbers

of highly r-process enhanced stars. In these stars, elements produced by the r-process

are still in the minority: the ratio of number densities of individual r-process elements

to hydrogen rarely exceed 10−10. In all other stars, the heavy elements are even less

abundant.

Perhaps surprisingly, trace amounts of heavy elements are found in virtually all stars

that have been studied [87], including stars in nearly all dwarf galaxies. This would seem

to imply that the products of neutron-capture nucleosynthesis were produced frequently,

perhaps even in the first stars [88], and widely dispersed. In these cases, heavy elements

other than Sr and Ba are rarely detected, but their non-detection may simply be a

consequence of their trace abundance, not true absence. Occasionally, elements like Eu

and Yb are also detected when high-quality spectra are obtained. With such limited

abundance information, however, it is difficult to distinguish the nature of the neutron-

capture nucleosynthesis responsible for their production [89, 90].

These heavy elements did not necessarily originate in the same kind of astrophysical

site that enriched Ret II and provided the high r-process enhancement in field stars

like CS 22892-052. Some supernovae or massive stars (prior to their final explosions)

could have produced small amounts of these elements, whether by a weak r-process or

some other neutron-capture nucleosynthesis mechanism [91, 92, 93, 94, 95, 96]. This is

reminiscent of the “L-event” noted previously (Section 2.1.2). The presence of massive

stars in all star-forming regions would provide a natural explanation for the apparent

ubiquity of heavy elements in nearly all stars observed today. Some of the elemental

ratios favor an r-process origin, rather than an s-process origin. There is some consensus,

however, that normal massive-star supernova models could not produce sufficiently low

Ye to reach the A ∼ 170 mass region needed to explain these observations with a weak r-

process, so the nucleosynthesis mechanism and production site remain an open question

at present. The neutrino-driven winds from magnetized, rotating proto-neutron stars
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could provide one source of moderate quantities of light r-process nuclei associated with

core collapse supernovae at low metallicity [97, 98].

2.2. Multi-messenger observations of possible r-process events

Observations of energetic astronomical events with not just photons, but also neutrinos

or gravitational waves, can provide especially important information on the r-

process. This is because neutrinos and gravitational waves come from deep within

an astronomical event and may directly probe the extreme conditions that generate the

many neutrons needed for the r-process. These observations may locate the site of the

r-process, provide information on conditions there and could even help determine the

electron fraction Ye, one of the most important parameters for nucleosynthesis.

2.2.1. Neutrinos from core collapse supernovae One frequently studied theoretical r-

process site is the neutrino-driven wind during a core collapse supernova (CCSN). Here

intense neutrino and antineutrino fluxes blow baryons off of the protoneutron star and

determine the ratio of neutrons to protons in the wind. Antineutrinos capture on protons

to make neutrons

ν̄e + p→ n+ e+ , (1)

while neutrinos destroy neutrons

νe + n→ p+ e . (2)

Therefore the relative rates of these two reactions determine the ratio of neutrons to

protons in the wind. These cross sections grow with energy, therefore the wind will be

neutron-rich if ν̄e are very energetic or if νe have very low energies. Figure 2 plots the

electron fraction Ye expected in the wind for mean energies of ν̄e (on the y axis) and νe
(on the x axis). Thus simple robust neutrino physics determines the Ye of the wind.

Essentially all supernova simulations, over the last fifteen years, find that energies

for ν̄e are not much larger than νe energies. Therefore Ye is expected to be near 0.5

and the wind is not predicted to be very neutron-rich. Although this wind can make

lighter r-process nuclei this strongly suggests that the wind is not the site of the main

r-process.

Neutrino oscillations could change either ν̄e or νe energies and therefore the Ye of

the wind. In general one expects oscillations of νx → νe to increase the energy of the

νe more than oscillations of ν̄x → ν̄e to increase the energy of ν̄e. Here x represents

either µ or τ flavors. This is because most simulations find Eνx ≈ Eν̄x > Eν̄e > Eνe and

therefore ν̄x and ν̄e have more similar energies than νx and νe before oscillations. As a

result, most neutrino oscillations only make the wind less neutron-rich and thus an even

more unlikely site for the main r-process.

Exotic neutrino physics could perhaps help. For example, if there is a new sterile

neutrino νs that lacks conventional weak interactions and has appropriate properties
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Figure 2. Mean antineutrino ν̄e energy versus mean neutrino νe energy for a core

collapse supernova. Contours of electron fraction Ye are indicated for the neutrino-

driven wind. The wind is very neutron-rich only in the upper left corner of the figure.

The solid band shows the approximate mean ν̄e energy inferred from the ≈ 20 events

detected from SN1987a [101].

then νe → νs oscillations could take place while ν̄e → ν̄s oscillations do not. In this case

the wind could be very neutron-rich and produce main r-process elements [99, 100].

A fundamental observable to probe both conventional and unexpected neutrino

physics is to measure detailed neutrino νe and antineutrino ν̄e spectra from the next

galactic core collapse supernova. About 20 ν̄e antineutrino events were detected from

supernova SN1987A. For the next galactic core collapse SN, we expect many thousands

of events in a number of large neutrino detectors [102]. SNO+ will be a new kilo-

tonne scale liquid scintillator detector ≈ 2 km underground in VALE’s Creighton mine

near Sudbury, Ontario, Canada. Although its main focus is the neutrinoless ββ-decay,

Galactic Supernova neutrinos and antineutrinos can be also detected. It is part of the

SuperNova Early Warning System (SNEWS) network. Super-Kamiokande (Japan) is

an existing large water Cherenkov detector that is very good at observing antineutrinos

ν̄e and should provide detailed information on the ν̄e spectrum (y axis in Fig. 2). The

Deep Underground Neutrino Experiment (DUNE) is a large liquid Ar detector that is

being built in the Homestake gold mine [103]. This detector should be able to measure

the νe spectrum very well (x axis in Fig. 2). Together the expected detailed ν̄e and

νe spectra could suggest new neutrino physics or confirm our present expectations and

help infer the electron fraction of the wind and therefore the expected nucleosynthesis.
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2.2.2. Gravitational waves from neutron star mergers The first detections of

gravitational waves (GW) by the Advanced LIGO detectors were powered by mergers of

binary black hole systems [104, 105, 106, 107]. These historic observations opened the

field of gravitational wave astronomy. A subsequent detection of merging black holes

by both LIGO and Virgo [108] then demonstrated that a three-detector network can

provide tighter constraints on the localization of the merging objects, thus facilitating

electromagnetic follow-up of gravitational wave events.

Binary black hole systems, however, are probably not important for nucleosynthesis.

From that point of view, the recent detection of gravitational waves from the merger

of a binary neutron star system, GW170817 [6] is much more significant. An extensive

electromagnetic follow-up campaign of GW170817 [109] allowed for the determination

of its host galaxy (NGC4993), the observation of a delayed (possibly off-axis) gamma-

ray burst [110], and, most importantly from a nucleosynthesis point of view, of

UV/optical/infrared emission consistent with the radioactive decay of the ashes of the

r-process in a few percents of a solar mass of material ejected by the merger [111, 112].

This electromagnetic signal, called a kilonova, is discussed in Sec. 2.2.3.

The very approximate event rate derived from this first observation indicates

that, when Advanced LIGO reaches its designed sensitivity, we can expect an order

of one to a few observations per month of neutron star - neutron star mergers, and

perhaps some neutron star - black hole mergers as well. Over the next five years, GW

observations will more accurately determine the rate of neutron star and neutron star-

black hole mergers and provide information on the mass distribution of merging systems.

This is fundamental information to determine the possible r-process nucleosynthesis

contributions from these systems. Simulations of these mergers are discussed in Sec. 4.

2.2.3. Electromagnetic observations and Kilonovae Nuclei which are freshly

synthesized by the r-process are radioactive. As matter in the expanding ejecta of a

neutron star merger decays back to stability, the energy released via β-decays, α-decays,

and fission can power transient thermal emission lasting days to weeks, known as a

‘kilonova’ [113, 114, 115, 116, 117]. Kilonovae provide a unique probe to directly observe

and quantify the production of r-process nuclei. Their brightness, duration, and colors

are diagnostic of the quantity of r-process matter, as well of physical processes during

the merger and its aftermath (see [118] for a review). In general, kilonovae are promising

electromagnetic counterparts to GW signals detected by Advanced LIGO, because their

emission is approximately isotropic (compared to the relativistically beamed emission

of a gamma-ray burst) and the kilonova is detectable at optical wavelengths, where

sensitive searches are possible [119, 120].

Because the photon opacity of the merger ejecta is dominated by Doppler-broadened

atomic line transitions, the colors of kilonovae are diagnostics for the types of nuclei

synthesized in the merger ejecta. If the ejecta contains lanthanide or actinide nuclei

(atomic mass number A & 145), then the optical opacity is very high due to the complex

atomic structure of the f-shell valence electrons of these elements, resulting in kilonova
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emission which peaks at near-infrared wavelengths [121, 122]. On the other hand, ejecta

containing only lighter r-process elements (A . 145) with d-shell valence electrons will

possess a lower opacity, and hence will also produce a bluer component to the emission

at early times [123, 124]. The latter can be produced by ejecta with higher electron

fractions (Ye & 0.25), which may be produced either by shock heating at the interface

of the merging neutron stars (e.g., [125]), or due to the effects of neutrinos on outflows

from the remnant accretion disk (e.g., [126], [127], [128]). An ∼hour-long UV transient

could also be produced by the decay of free neutrons in the outer layers of the ejecta if

they expand sufficiently rapidly for the r-process to freeze-out prematurely [129].

Electromagnetic follow-up of GW170817 revealed an optical/infrared signal most

naturally explained by a two-component model: a red emission due to neutron-rich ejecta

producing a significant fraction of lanthanides or actinides, and a bluer emission due

to ejecta with a higher initial Ye [112]. Before GW170817, a more tentative candidate

kilonova had already been discovered following the short duration gamma-ray burst

GRB 130603B [130, 131]. Reproducing the peak luminosity of this event required the

ejection of ∼ 0.03− 0.08M� of neutron-rich material [130, 131, 132, 117].

In the future, we are likely to have at our disposal a population of neutron

star mergers detected through both GW and electromagnetic emission. Additionally,

improved theoretical models derived from numerical simulations of mergers, from

nuclear theory, and from experimental nuclear data will help us relate the parameters

of the merging binary, the properties of the ejected material, and the outcome of

nucleosynthesis. Finally, absorption or emission lines from individual r-process elements

could be detected in a post-maximum near-infrared spectrum [124]. This would provide

critical information about the elements produced in a merger event. First tentative line

features consistent with light r-process elements Cs and Te were reported in the kilonova

spectrum from GW170817 [133]. Conclusive data will likely require future 30 m-class

telescopes.

2.3. Isotopic abundances in meteoritic grains, crusts and sediments

In addition to stellar abundances, meteoritic abundances can also provide clues for the

astrophysical site of the r-process. Radioactive nuclei produced by the r-process and

incorporated into the early solar system can serve as a clock for measuring the time

interval between the last r-process production event and solar system formation. The

decay products and remaining parent nuclei of these radioactive nuclides can be found

today in primitive meteorites that are largely unaltered relics from the early solar system.

From the timescale thus obtained, we can constrain the frequency of r-process events.

This argument is based on the comparison of the ratio of unstable to stable isotopes

between meteoritic abundances and the theoretical production yields. The commonly-

used isotope ratios are 247Cm/235U, 129I/127I, 244Pu/238U where the half-lives of these

unstable isotopes are t1/2= 15.6 Myr, 15.7 Myr, and 80 Myr, respectively. Several works

thus far converge to a last r-process event time of about 100 Myr (e.g. [134, 135]). This
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timescale is relatively long when compared to the meteoritic signatures of core-collapse

supernova injection of shorter-lived radionuclides such as 26Al (t1/2= 0.72 Myr) and 60Fe

(t1/2= 2.62 Myr). The implied far lower frequency of r-process events, compared with

core-collapse supernovae points to either neutron star mergers, or a relatively rare type

of supernova as the r-process site. Similar conclusions can also be drawn from recent

detection measurements of radioactive nuclides in deep sea crusts and sediments. The

current abundance of 244Pu in deep sea reservoirs, which are expected to be effective

continuous collectors of interstellar dust, is found to be much lower than in the early

solar system, and much lower than expected for a continuous production of actinides in

standard galactic supernovae at event rates of 1-2/100 yr [10, 136]. This again points

to rare, prolific r-process sites such as neutron star mergers or rare types of supernovae.

The analysis of meteoritic and deep sea sediment data from long-lived radioactive

r-process isotopes relies on the theoretical prediction of production yields and on reliable

half-lives. r-process calculations still involve large uncertainties in nuclear physics and

astrophysical conditions, which lead to the prediction of a wide range of production

yields such as 3.19× 10−3 – 1.46× 10−1 M� for 244Pu[137].

3. Galactical chemical evolution simulations

While observations serve to constrain the source and nature of the r-process, galactic

chemical evolution (GCE) can be thought of as the process by which galactic evolution

is convolved with the underlying production mechanisms of heavy elements. To

reproduce the variety of chemical signatures observed in galaxies, galactic chemical

evolution models need to follow the star formation history of individual galaxies from

their birth to the present time while also taking into account their mass assembly

history (i.e., galaxy mergers and accretion of matter from the intergalactic medium)

as well as the gas circulation processes within and in between their interstellar and

circumgalactic media [138, 139]. Those models also need to follow the evolution

of multiple stellar populations, the associated enrichment of the galactic gas, and

the resulting modification of the composition of new generations of stars [140, 141].

Although stars and interactions between their remnants (e.g., compact binary mergers)

are at the origin of the enrichment process, the Milky Way and local dwarf galaxies

show different chemical evolution trends [142], suggesting that stellar abundances can

also be used to trace the formation history of galaxies.

The ultimate goal of galactic chemical evolution is to understand the origin of all

elements across cosmic time as well as to obtain insights into what drives the formation

and evolution of galaxies. In that regard, it is important to be able to disentangle

the role of nuclear astrophysics and galaxy evolution when analyzing and interpreting

stellar abundances. Galactic chemical evolution simulations are powerful tools to study

this distinction, as they serve to better understand the complex interplay between

the physical processes that give rise to the galactic structures, interactions, stellar

populations, and chemical abundances we observe today. Finding a consistent picture
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of star formation in a galaxy evolution context that agrees with chemical evolution and

galactic dynamics is the “holy grail” of galactic chemical evolution studies. This section

aims to highlight the multidisciplinary nature of galactic chemical evolution, describes

how galactic chemical evolution models can be used to constrain the astrophysical site(s)

of the r-process, and discusses the role played by nuclear data and experiments in the

interpretation of stellar abundances using galactic chemical evolution.

3.1. Inputs to include r-process sites

Galactic chemical evolution can be done in several ways, from simple analytical models

to complex hydrodynamic simulations. Simple models are fast to compute and are

designed to reproduce the global averaged chemical evolution trends [143, 144, 145, 146,

147, 148, 149], while more sophisticated simulations also enable the study of the spread in

the stellar abundances [150, 151, 152], the origin of radial metallicity gradients in galaxies

[153, 154, 155, 156], and the role of the mass assembly history of galaxies via mergers

[157, 158, 159]. In spite of the multitude of numerical approaches, every simulation

needs to input nucleosynthetic yields along with the properties of their astrophysical

site in order to drive the chemical evolution process, regardless of the complexity and

nature of the model used.

Nucleosynthetic yields are the foundation of all galactic chemical evolution

simulations. They represent the amount and isotopic composition of the mass ejected

by individual enrichment sources such as stellar winds, supernova explosions, and

interactions involving stellar remnants (white dwarfs, neutron stars, and black holes).

Those yields are usually dependent on the initial composition and mass of the progenitor

stars, and typically include light elements up to germanium for core-collapse and Type

Ia supernovae [160, 161, 162, 163, 164, 165, 166]. Yields for low- and intermediate-

mass asymptotic giant branch (AGB) stars typically include s-process nucleosynthesis

[167, 168, 169, 170, 171, 172]. Although some sets of yields for massive stars do

provide neutron-capture elements [173, 174, 171, 175, 172], they usually do not include a

proper treatment of the r-process. In galactic chemical evolution models, the r-process

abundances pattern returned into the interstellar medium by a given source is either

taken from the solar residuals [5], or taken from theoretical calculations that properly

focus on r-process nucleosynthesis (see Section 4).

In order to include an r-process site inside galactic chemical evolution simulations,

the adopted r-process yields must be convolved with the occurrence frequency (or rate)

of the considered site [176]. For example, if core collapse supernovae are used as a

site, the r-process yields will be injected in the galactic gas following the rate of core

collapse supernovae, with a certain correction if not all massive stars are believed to

host the r-process. If neutron star mergers or black hole-neutron star mergers are used,

the r-process yields will be convolved with a delay-time distribution (DTD) in the same

manner as one would include the contribution of Type Ia supernovae. Two different

approaches are typically used to define this delay-time distribution: 1) the merger rate
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follows the core collapse supernovae rate, but is shifted to later times by a constant

delay time; and, 2) the delay-time distribution is taken from short gamma-ray burst

observations [177] or from the predictions of population synthesis models [178, 179]. The

final input parameter that needs to be provided is the total mass of material ejected by

each r-process event, which is often used to normalize the adopted r-process abundances

pattern (e.g., the solar residuals). Once all of this information is implemented, galactic

chemical evolution simulations can be performed to test the contribution of different

r-process sites to the chemical evolution of heavy elements in galaxies.

3.2. Metal-poor stars and the early Universe

Low-metallicity stars are interesting targets for observation since they capture the first

moments of enrichment in the early universe. Their chemical signatures are likely to

have been generated by only one or a few astrophysical events. This brief window of

time is thus ideal to study the origin of r-process elements [60], as abundances patterns

can directly be compared with theoretical nucleosynthesis calculations.

3.2.1. The Galactic halo The chemical evolution of r-process elements in the Milky

Way have been investigated in the past using core collapse supernovae and neutron star

mergers as potential sites [144, 11, 180, 176, 181, 182, 183, 13, 12, 151, 152, 184, 185,

186, 187]. The scatter in the observed r-process abundance ratios at low metallicity is

larger than the scatter measured for α elements [188, 61]. This implies that r-process

events are rare, occurred stochastically in the early universe, and that the spread in

abundances can be used to constrain the general properties of r-process site(s) [189].

Because the level of scatter (in, e.g., [Eu/Fe]) depends on the rate and amount of r-

process ejecta of the considered sites, non-uniform mixing models can test different

input parameters and provide insights into the nature of neutron star mergers and core

collapse supernovae [11, 182, 152]. However, hydrodynamic simulations of dwarf and

Milky Way-like galaxies have shown that the spread in neutron-capture elements relative

to Fe is also sensitive to the resolution and the adopted metal diffusion prescriptions

[12, 151, 190, 187], suggesting that gas mixing and metal recycling processes in the early

stages of galaxies need to be understood in order to efficiently constrain the properties

of r-process sites.

Another observational indicator that can be used to probe r-process sites with

galactic chemical evolution is the high level of r-process enrichment found in some of

the most metal-poor stars in our Galaxy. This requires a prompt enrichment source in

the early universe. Because neutron star mergers and black hole-neutron star mergers

originate from the coalescence of the remnants of massive stars, the enrichment timescale

of compact binary mergers is naturally longer than for core collapse supernovae. From

that argument alone, core collapse supernovae seem to be the perfect candidates to

explain those observations. Indeed, numerical simulations have shown that allowing

some core collapse supernovae to produce the r-process can explain the early appearance
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of r-process enriched stars [11, 176, 182, 152]. But from a theoretical point of view, as

described in Section 4, neutron star mergers and black hole-neutron star mergers are

more likely to synthesize the full r-process including the 2nd and 3rd peaks, while core

collapse supernovae are more likely to only synthesize the 1st peak. If this is the case

and compact binary mergers are indeed the main r-process sites, the question is how

to introduce their ejecta into the most metal-poor stars, given the relatively long delay

times of these events.

One solution to this challenge is to account for non-uniform mixing of metals

in the interstellar medium, which can be seen in the scatter of the age-metallicity

relationship of stars in the Milky Way [191, 192, 193, 194]. This indicates that stars

with the same metallicity (expressed as [Fe/H] in this particular problem) can have

different ages. This non-linearity between [Fe/H] and stellar age allows compact binary

mergers to enrich stars with ejecta from very-low metallicity stars, even if they occur

later than core collapse supernovae. Indeed, 3D hydrodynamic galaxy simulations

that self-consistently track non-uniform mixing and stochastic processes succeeded in

incorporating neutron-capture elements in the most metal-poor stars with neutron star

mergers only [12, 151, 187].

Another solution to allow neutron star mergers to enrich very-low metallicity stars

is to vary the star formation efficiency (SFE) throughout the formation history of

our Galaxy. In galactic chemical evolution models, the SFE defines the amount of

gas in which heavy elements are deposited and can thus control the rate at which

the galactic gas is enriched (i.e., how fast [Fe/H] is increasing) [148, 195]. From

a cosmological structure formation perspective, massive galaxies like the Milky Way

assembled in time from gas accretion and from galaxy mergers that occurred in the

past [196, 197, 198, 199, 200]. Within this framework, the low-metallicity stars present

in our Galaxy likely formed in many distinct low-mass “building block” galaxies at

high redshift. If we assume that low-mass galaxies have lower SFE than massive

galaxies (which is supported by both observations and theory [201]), this assembly

scenario suggests that the enrichment process was slower in the early phases of our

Galaxy, and that neutron star mergers could more easily enrich stars at low [Fe/H].

This solution has been suggested and tested with a simple galactic chemical evolution

model [13] and thereafter confirmed using hydrodynamic simulations and semi-analytical

models [183, 184, 202]. We note that varying the amount of Fe ejected by core collapse

supernovae can also alter the pace at which [Fe/H] increases in the early universe.

Using galaxy evolution arguments to explain the presence of r-process elements in

metal-poor stars can be difficult, as there is a lack of observational constraints regarding

galaxy properties in the early Universe. Although it is observationally possible to recover

the entire aggregate star formation history of a galaxy, it is not possible to measure how

that galaxy’s gas evolved in the past. This is, nevertheless, an important piece of

information for galactic chemical evolution because it sets the metal concentration of

the galactic gas, the rate of early enrichment, how much mass is recycled into stars,

and how much mass is lost from the galaxies into the circumgalactic and intergalactic
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media. In addition, observations provide few constraints on the number and mass of

the progenitor galaxies that merged together to form the Milky Way halo—quantities

that can significantly impact the local rate of star formation and gas dilution. Future

telescopes such as the James Webb Space Telescope will facilitate exploration of the

early stages of galaxy formation. In the mean time, hydrodynamic and cosmological

simulations of galaxy evolution can provide insights into galactic inflows and outflows,

non-uniform mixing, and on the importance of galaxy mergers.

To summarize, the level of scatter and the presence of r-process elements in metal-

poor stars contain valuable information regarding the nature of r-process site(s), but to

interpret those features, one needs to simultaneously consider r-process nucleosynthesis

calculations, gas mixing processes, and galaxy formation mechanisms, as some galactic

chemical evolution observables can be reproduced in various ways with numerical

models. Identifying the sources of r-process enrichment in our Galaxy thus represents

a significant challenge that needs to be addressed in a multidisciplinary framework.

3.2.2. Local dwarf galaxies Local dwarf spheroidal and ultra-faint galaxies are

interesting targets for probing astrophysical r-process sites, as the great variety of r-

process enrichment levels from one system to another directly probes the stochasticity

and rarity of the underlying r-process events. In addition, compared to the Milky Way

halo, which likely contains a complex mixture of several disrupted satellite galaxies

[203, 204], local dwarf galaxies are relatively pristine systems where the r-process

enrichment can be studied in a much simpler context. In particular, cosmological

simulations have suggested that ultra-faint dwarf galaxies may not have been involved

in galaxy mergers throughout their lifetime [205]. In addition, some galaxies such

as Reticulum II might even have hosted only one neutron star merger, which allows

hydrodynamic simulations to systematically explore the impact of the location where

the neutron star merger occurs (relative to the center of the galaxy) [77], and the impact

of explosion energies and the gas density in which neutron star merger ejecta is injected

[79].

We recall that the detection of prolific r-process enrichments in dwarf galaxies does

not necessarily guarantee that they originate from a neutron star merger. Any other

astrophysical site that can release a similar amount of r-process material is compatible

[29]. In fact, when considering the contribution of compact binary mergers in dwarf

systems, one needs to address the probability of retaining the r-process ejecta within

the star-forming region [76, 79]. Given the low escape velocity of dwarf galaxies, the

natal kick imparted to neutron stars soon after the supernova explosions could expel

the binary system outside the galaxy before they have time to merge. However, using

the low proper motions derived observationally from ∼ 10 binary neutron star systems,

a previous study suggested that neutron star mergers could occur within low-mass

galaxies like Reticulum II [76]. But calculating the fraction of neutron star mergers

that stay within a galaxy and participate to the r-process enrichment depends on the

adopted distribution of natal kicks imparted to neutron star binaries [78]. These input
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distributions can vary substantially based on model assumptions [206, 207, 208, 209].

3.3. Enrichment history and the local Universe

While old low-metallicity stars contain valuable information regarding the rise of

r-process elements in the early universe, the low-redshift (Local) universe contains

information regarding the total integrated r-process production through the lifetime

of galaxies, and thus represents the complex endpoint of galactic chemical evolution.

One of the main challenges when interpreting chemical abundances of relatively young

[Fe/H] ∼ 0 stars is to define which astrophysical sites, between core collapse supernovae

and compact binary mergers, have contributed the most to their r-process abundances.

Galactic chemical evolution simulations are powerful tools to address this challenge since

they can systematically test the contribution of different sites and provide predictions

to be compared with a wide range of observations.

3.3.1. r-process content of the Milky Way Calculating the current mass of r-process

elements Mr,tot found inside the Milky Way represents the first step toward constraining

the origin of r-process elements. As a first-order approximation, Mr,tot can be estimated

by multiplying the r-process mass fraction found in the Solar system with the total

baryonic mass of the Milky Way. This assumes that stars and gas on average have a

Solar composition. For any given astrophysical site, one can derive the total number

of events required to recover this Galactic r-process content by dividing Mr,tot by the

average mass ejected per event. By distributing the events across the lifetime of our

Galaxy (∼ 13 Gyr), which assumes a constant star formation history (SFH) for the Milky

Way, the required number of events are converted into rates (e.g., neutron star merger

rate) and can then be compared with the ones inferred from observations [210]. Such

an analytical approach has been used to calculate the Galactic neutron star merger and

black hole-neutron star merger rates needed to reach Mr,tot, assuming that compact

binary mergers are the main source of r-process elements [211, 114, 212, 213, 136].

There are some limitations to the approach described in the previous paragraph.

According to hydrodynamic galaxy simulations, the SFH of the Milky Way is not

constant but should rather peak at early time during the first few Gyr of evolution and

then decrease [12]. The current (low-redshift) compact binary merger rates inferred

using such varying SFH should then be lower compared to when using a constant

SFH [136], as binary mergers are more concentrated at earlier times. Studies that

only account for the baryonic mass found in the Galactic discs likely underestimate

Mr,tot, as a significant amount of metals (and thus r-process elements) are found in the

circumgalactic medium (CGM) surrounding our Galaxy [214, 204, 215]. Accounting

for this extra gas reservoir in analytical calculations would likely increase the derived

neutron star-neutron star and black hole-neutron star merger rates required to explain

the amount r-process elements observed in the Milky Way. For analytical calculations

that do include the circumgalactic medium, a correction should be included to account
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for the fact that this hot gas reservoir has on average a lower metallicity than the Solar

value [204].

An alternative approach to calculate the amount and distribution of r-process

elements in the Milky Way is to use GCE simulations. The advantage of this approach

is the opportunity to track the production of heavy elements within a context that

includes a time-dependent SFH and a proper treatment of the gas circulation processes

inside and outside galaxies. However, the use of complex models leads to the inclusion

of several sources of uncertainties.

3.3.2. Gravitational waves and kilonovae From a nucleosynthesis point of view,

because theoretical models of compact binary mergers are more likely to synthesize

elements in the 2nd and 3rd r-process peaks compared to core collapse supernovae (see

Section 4), they are excellent candidates for being the dominant r-process site in the

Milky Way. However, to validate this scenario, the merger rate derived using analytical

calculations and GCE simulations needs to be consistent with the rates inferred by

observations. These observed rates can be estimated from binary pulsars and short-

duration gamma-ray bursts [216, 217, 210]. While such observations may not be direct

evidences of neutron star mergers or black hole-neutron star mergers, they can be used

for both the Milky Way [210] and for other galaxies in the Local universe [208].

Gravitational wave measurements provide direct evidences of compact binary

mergers, although the origin and location of the source can be difficult to isolate if

no electromagnetic emission is detected. Recently, the LIGO/Virgo collaboration has

detected for the first time the gravitational wave coming from a neutron star merger

(GW170817, see Section 2.2.2 for details) [6]. This provided a direct constraint on

the local merger rate density (1540+3200
−1220 Gpc−3 yr−1). The electromagnetic emissions

that followed this important event enabled the host galaxy (NGC 4993) to be identified,

and it confirmed that gamma-ray bursts can be associated with neutron star mergers.

The analysis of the light curves of GW170817 demonstrated that neutron star mergers

can indeed synthesize and eject significant amounts of r-process material that includes

elements in the 2nd and 3rd abundance peaks (see Section 2.2.3).

Shortly after the announcement of these new constraints, a series of studies

investigated whether neutron star mergers can be the main r-process site. Work based

on analytical calculations similar to the ones described in Section 3.3.1 concluded that,

if GW170817 is a typical event, neutron star mergers are frequent enough and can eject

enough material to explain the origin of the total r-process mass currently observed

in the Milky Way [218, 112, 7, 219, 220, 221, 222, 223, 224]. In parallel, a framework

has been set to connect GCE simulations with LIGO/Virgo measurements [181, 186].

Convolving those galaxy evolution simulations with the cosmic star formation history,

in order to generate a merger rate density in units of Gpc−3 yr−1, demonstrated that

the rates defined by GW170817 are consistent with the ones needed in GCE studies to

reproduce the evolution of Eu (an r-process tracer) in the Milky Way [225]. In summary,

GW170817 supports the idea that neutron star mergers are the main r-process site, but
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at present the statistics are too poor, and the uncertainties regarding the ejecta of

neutron star mergers are too large, to come to a definitive conclusion [225]. In addition,

there is a difficulty in reproducing the exact shape of the chemical evolution trend of

Eu in the Milky Way using canonical delay-time distributions for neutron star mergers

[184, 186, 224]. black hole-neutron star mergers, which hopefully will be detected in the

next combined LIGO+Virgo observing run, could also play a role in the production of

r-process elements in our Galaxy [181, 185, 186].

3.4. Nuclear physics and chemical evolution

Yields are one of the most important input parameters used in GCE simulations (see

Section 3.1). Any uncertainty associated with those yields will propagate and affect GCE

predictions. To limit the impact of such uncertainties, the solar r-process residuals [5]

can be used to represent the abundance pattern of the ejecta of all r-process sites in GCE

simulations. This widely-used approach is convenient to test different astrophysical sites,

but it only provides limited information regarding how r-process elements are made.

For now, using theoretical r-process yields (see Section 4) may introduce a significant

amount of uncertainty in numerical predictions [225], but it offers a real opportunity to

bridge nuclear astrophysics with the interpretation of stellar abundances in galaxies.

As described in Section 2.1.2, metal-poor stars sometimes show variations in their

abundance patterns for elements between the 1st and 2nd r-process peaks. Such

features are ideal targets for investigating the possible multiple origins of the light r-

process elements. These chemical signatures can be directly compared with theoretical

nucleosynthesis yields for core collapse supernovae and compact binary mergers, without

having to incorporate them into GCE calculations if one assumes that the target stars

have been polluted by one or a limited number of r-process events. Once theoretical

yields are in agreement with observations, they can be implemented in inhomogeneous

GCE models to verify if they can self-consistently reproduce the scatter seen in the

observational data [182]. This GCE approach can put constraints on the probability (or

frequency) of meeting a particular r-process condition (e.g., electron fraction, entropy)

in the early universe as a function of its associated r-process abundance pattern.

While matching abundance patterns of individual metal-poor stars do not

necessarily require GCE simulations, the (still-to-come) theoretical yields used to

describe these stars should also be consistent with the r-process abundances seen in

the Sun and in solar-metallicity stars. To reach these observables, GCE simulations are

required to keep track of the gas circulation and recycling processes and to consistently

combine the different theoretical r-process yields according to the general properties of

their astrophysical sites (e.g., total mass ejected per event, number of event per unit of

stellar mass formed).

Suggested theoretical yields from various nucleosynthesis studies can also play a

critical role that has perhaps gone under-appreciated by both astronomers and nuclear

physicists: that the exclusion of a large, non-trivial part of parameter space for
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proposed yields should exist and that efforts should be made to make complementary

“exclusion” or incompatibility GCE models and simulations that have observable

consequences. If we cannot (currently) pin down the precise nuclear network models

(theoretical yields) that underlie astrophysical observations then we should at least

attempt to first exclude those nuclear network models that are incompatible with

those observations. Furthermore, both nuclear physicists and astronomers should

aim to constrain yield predictions from both areas of expertise—fundamental yield

constraints from theory and observational yield constraints from chemical abundance

patterns and distributions. Currently, the authority on yield constraints has leaned more

towards theory. Astronomers should help nuclear (astro)physicists to use astrophysical

observations to infer the yields from the application of GCE models (see, e.g., [226, 182])

and simulations and observed data to constrain their own nuclear network modeling

efforts.

Chemical evolution is a convoluted process that involves all scales from nuclear

physics to cosmological structure formation. To fully understand the origin of heavy

elements and the r-process signature of all stars, a joint effort between experimental

physics, nuclear astrophysics, GCE, and cosmology is needed. In such a framework,

progress in the field of nuclear physics and r-process nucleosynthesis can be connected

and compared to the abundances observed on the surface of stars. Nuclear experiments

conducted at large facilities such as FRIB will significantly improve our ability to

interpret the r-process signatures observed in our local universe, as they will allow to

constrain and better refine r-process yields calculated from first principles, which will

represent the building block of all GCE simulations. This will lead to a more precise

quantification of the contribution of core collapse supernovae, neutron star mergers, and

black hole-neutron star mergers on the overall production of all elements involved in the

r-process.

4. Astrophysical simulations

There are many proposed sites for the r-process (see Tab. 1). A common requirement is

an environment that produces a large ratio of neutrons to seed nuclei. This is necessary

to produce the heaviest r-process elements. Furthermore, one may require an even

larger ratio of neutrons to seed nuclei in order to insure a robust abundance pattern.

Otherwise, if there are just barely enough neutrons, the resulting abundance pattern

may be very sensitive to small changes in the number of neutrons. In addition, the

neutron density has to be high to drive the nucleosynthesis path away from stability

to produce the prominent abundance peaks at A = 80, A = 130, and A = 195 when

the reaction sequence crosses the corresponding N = 50, N = 82, and N = 126 shell

closures.
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4.1. Physics of neutron-richness

In this section we discuss the physics that may make an environment neutron rich,

or at least have a large ratio of neutrons to seed nuclei. We consider the following

possibilities: (1) weak equilibrium in large neutrino fluxes, (2) electron capture at high

densities, (3) liberation of neutrons from neutron-rich stable nuclei via (α, n) reactions,

and (4) decreasing the number of seed nuclei to increase the ratio of neutrons to seeds.

4.1.1. Weak equilibrium In large neutrino fluxes, the ratio of neutrons to protons is

set by the relative rates of neutrino and antineutrino capture reactions (see Eqs. 1 and

2). These rates depend on the neutrino and antineutrino fluxes, and because the cross

sections grow with energy, the rates also depend on the mean energies of neutrinos and

antineutrinos. Furthermore, there are a number of important corrections to the cross

sections for these reactions due to the mass difference between neutrons and protons,

weak magnetism [260] and the binding energy shift of protons in a neutron-rich medium

[261]. These corrections change the cross section for neutrino absorption relative to

the cross section for antineutrino absorption so they impact the equilibrium ratio of

neutrons to protons and the electron fraction. The electron fraction Ye = np/(nn + np),

where np and nn are the number densities of protons and neutrons (either free or

inside nuclei), respectively, is the most important parameter that determines the r-

process nucleosynthesis outcome. Ye = 0.5 would be symmetric matter (same number

of neutrons and protons) and anything with Ye < 0.5 is neutron rich. For the standard r-

process to happen, we need the ejecta to be neutron rich, i.e. Ye < 0.5 (though depending

on other conditions, an r-process is in principle also possible for Ye > 0.5 [262]).

Neutrino oscillations or new neutrino physics could change Ye. In core collapse

supernovae, oscillations typically increase the neutrino energy more than they increase

the antineutrino energy so the net effect is often to make the wind less neutron rich.

However nonstandard oscillations for example involving sterile neutrinos could make the

wind very neutron rich. Absent new neutrino physics, most supernova simulations find

that Ye is close to 0.5. We discuss nucleosynthesis in the neutrino-driven wind of core

collapse supernovae in Section 4.2.

4.1.2. Electron capture at high densities At great densities, electron capture drives

matter neutron rich because of the large electron Fermi energy. Indeed neutron star

matter is expected to be very neutron rich. However neutron stars have very large

gravitational binding energies of order 200 MeV per nucleon. Therefore, to take

advantage of the neutron-richness of high density matter for nucleosynthesis one needs

a way to eject some matter. Furthermore, this must be done relatively quickly and in

such a way that the weak interactions do not reset the ratio of neutrons to protons.

In neutron star mergers, see Sec. 4.3, matter can be ejected gravitationally from

the tip of the tidal tail(s), as a result of high pressures induced by the collision,

by neutrino heating in the form of thermal winds, by viscous or magnetically driven
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effects, or by other mechanisms. Alternatively, neutron-rich matter can be ejected by

magnetohydrodynamic effects in jet driven supernovae, perhaps with the formation of

a magnetar. We discuss this in Sec. 4.4. Independent of the ejection mechanism, a

common question is to what extent weak interactions reset the neutron to proton ratio

as the matter is ejected. These weak interactions will tend to decrease somewhat the

ratio of neutrons to protons.

4.1.3. Liberating neutrons from nuclei with nuclear reactions Free neutrons required

for neutron-capture processes can also be produced via helium burning through (α,n)

reactions on slightly neutron-rich isotopes such as 13C or 22Ne (like in the s-process). The

presence of neutron-rich seed isotopes, and therefore the neutron-richness of the helium

burning environment stems from prior episodes of hydrogen burning, where β− decays

produce neutron-rich nuclei from N = Z seeds - for example via 12C(p,γ)13N(β−)13C

or the CNO cycle producing 14N, which is later converted into 22Ne by helium induced

reactions. One of the earliest proposed r-process scenarios was indeed explosive helium

burning in core collapse supernovae, where a shockfront passes through the helium rich

outer layer of a star [263, 264]. However, the consensus today is that the neutron

densities that can be achieved in this scenario fall by far short of what is required for an

r-process. Rather, non-explosive and explosive helium burning are the widely accepted

scenarios to explain s-process nucleosynthesis [4], and possibly an i-process [265].

A variant of this scenario using neutrino induced nuclear reactions has recently

been proposed as a possible r-process scenario in low metallicity supernovae, where

lower neutron densities are needed to achieve a high neutron-to-seed ratio [266]. In this

scenario, the intense neutrino flux during the core collapse liberates neutrons in the

helium shell via 4He(ν,νn)3He(n,p)3H(3H,2n)4He and 4He(ν,νp)3H(3H,2n)4He.

4.1.4. Reducing the number of seed nuclei For a given number of neutrons, one can

synthesize heavier nuclei, if the number of seed nuclei is reduced. Most r-process

scenarios create their own seeds. In such models, seed production can be suppressed by

very rapid expansion timescales leaving less time for the slow seed producing reactions,

or by destroying most seed nuclei with a higher entropy.

4.2. Neutrino-driven winds

Core-collapse supernovae and their neutrino-driven ejecta are an interesting

nucleosynthesis site for the production of heavy elements. After the successful launch

of a supernova explosion, the proto-neutron star cools by emitting neutrinos. These

neutrinos deposit enough energy (via absorption and scattering reactions) to power a

baryonic outflow of matter with supersonic velocities. This is known as neutrino-driven

wind. Already in 1957, core-collapse supernovae were suggested to be the astrophysical

site for the r-process [2, 3]. In core-collapse supernovae, neutron stars form and matter

is rapidly ejected, therefore the conditions looked promising for the r-process. However,
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neutrino absorptions on neutrons increase the electron fraction preventing a succesful r-

process (see Sec. 4.1.1). In the 1990s, delayed neutrino-driven explosions were simulated

following the supernova evolution up to several seconds after the explosion. Woosley

and collaborators [241, 242] found high entropy and low electron fraction ejecta where

the r-process produced heavy elements. However, these results could not be reproduced

by similar simulations of other groups [267], or by analytic and steady-state models

[268, 269, 270, 271, 94]

The first few seconds of a core-collapse supernova are characterized by only small

changes of neutron star mass, radius, neutrino luminosities, and neutrino energies.

Therefore, one can neglect time dependencies and approximate the hydrodynamic

problem with steady-state equations. This is only valid for the neutrino-driven wind

when assuming spherically symmetric outflow of matter. However, the conclusions

found with these kind of steady-state models can be extended to other neutrino-driven

ejecta. Steady-state models (see e.g., [270, 271]) played a critical role in identifying

the appropriate conditions for the r-process to occur in core-collapse supernovae.

Such conditions are defined by three wind parameters: entropy, expansion time scale,

and electron fraction. High entropies and short expansion time scales lead to high

Yn/Yseed & 100 and thus to an r-process that can form elements up to uranium. When

the neutron-to-seed ratio is low (Yn/Yseed . 1), i.e. in only slightly neutron-rich winds

(0.45 . Ye < 0.5), the weak r-process synthesizes heavy elements below the second

r-process peak by α, neutron, and proton capture reactions as well as β decays. Since

the expansion in the wind is much faster than the β-decay time-scale, charged-particle

reactions become important for moving matter towards heavier nuclei. Proton-rich

winds are another possibility favored by current supernova simulations. In this case

the νp-process [272, 63, 273] can produce elements heavier than 64Ge along proton-

rich nuclei. This is not an r-process, but a rapid proton capture process accelerated

by (n,p) reactions that bypass slow β-decay rates using neutrons created by neutrino

capture on protons. It is currently not clear if supernova ejecta are slightly neutron-

rich or proton-rich [246], or both at different times. Therefore nucleosynthesis studies

need to be performed for both conditions in order to explore the potential impact of

neutrino-driven winds on the origin of the heavy elements.

The most recent core-collapse supernova simulations (see e.g., [274, 275, 276])

indicate that the conditions in neutrino-driven winds are most likely proton rich, with

some neutron-rich clumps ejected promptly in low mass progenitors [277]. There are

still open questions, and the answers may change the prediction of the conditions

in supernova ejecta. For example, neutrino oscillations can dramatically change the

electron fraction (see Sec. 2.2.1), magnetic fields may also affect the wind nucleosynthesis

[278, 97], and there are still uncertainties in the determination of neutrino matter

interactions that affect the electron fraction evolution (for example [279]).

Taking into account current simulations and considering their uncertainties,

especially for predicting the electron fraction and neutron-richness, core-collapse

supernovae may contribute to the production of lighter heavy elements from gallium
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up to the second r-process peak. The existence of an additional r-process site for just

these elements is supported by observations from ultra metal-poor stars that show a

robust abundance pattern for elements with A ≥ 130, whereas they exhibit a large

star-to-star scatter below the second peak (see e.g., [188] and Sec. 2.1.2). Moreover, the

solar system abundances of these elements may also require nucleosynthesis processes

in addition to the main r- and various s-processes. The missing process was tentatively

called LEPP (lighter element primary process) [280, 281]. Therefore, there may exist

at least two r-processes: one that produces a robust abundance pattern and synthesizes

elements up to uranium, and another one that only contributes to the so-called lighter

heavy elements (at least Sr-Ag, maybe Ga - Cd). Core-collapse supernovae and their

neutrino-driven winds are a possible production site for these lighter heavy elements

[60, 61].

Given the high frequency of core collapse supernovae and the robust prediction

of significant neutrino-driven outflows, neutrino-driven winds are an important

nucleosynthesis site and their contribution to the chemical history of our universe must

be understood. Advances of our understanding and numerical treatment of neutrino

transport in high density matter are needed to reliably predict the neutron-richness

evolution of the winds. For a given neutron-richness, reliable r-process nuclear physics

is needed to predict the range of elements created. As conditions in the ejecta are

most likely only slightly neutron or proton rich, the nuclear reactions involved proceed

likely closer to stability compared to the main r-process, and can be more easily

obtained experimentally. Once nuclear physics uncertainties have been reduced and

controlled, one can use abundance observations to constrain the conditions in core-

collapse supernova and learn about the neutrino spectra and luminosities and thus

about the explosion.

4.3. Neutron star mergers

The first detection by LIGO and Virgo of gravitational waves (GWs) powered by

merging neutron stars [6], and subsequent observations of that system in γ-rays, x-

rays, UV, optical, infrared and radio bands [109] was a remarkable breakthrough for

both gravitational wave astrophysics and nuclear astrophysics. In the coming years, we

expect the LIGO and Virgo detectors to observe many more mergers of binary black

holes [282] and binary neutron stars, and to start observing mixed black hole–neutron

star (BHNS) binaries [216].

Theoretical results have long indicated that, in the presence of a neutron star,

gravitational wave and electromagnetic observations of binary mergers can put useful

constraints on uncertain nuclear physics, including the equation of state of neutron

stars [283, 284, 285] and the origin of heavy elements synthesized through r-process

nucleosynthesis [227, 113, 230, 125]. Electromagnetic counterparts to the gravitational

wave signal can also provide additional information about the properties of the merging

objects, and the environment in which the merger occurs [286, 287, 288, 289, 290, 291].
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Finally, binary neutron star and black hole-neutron star mergers are generally assumed

to be the engine beyond the observed population of short-hard gamma-ray bursts [292].

GW170817, together with the electromagnetic signals observed in its aftermath,

largely confirmed the potential of binary neutron star mergers as probes of a wide range

of physical processes. In particular, as far as nucleosynthesis is concerned, the observed

optical and infrared emission is consistent with the radioactive decay of the ashes of r-

process nucleosynthesis in a few percent of a solar mass of neutron-rich material ejected

by the merger [111, 112]. This observation significantly increases the likelihood that

binary neutron star mergers are (one of) the dominant source(s) of r-process elements

in the Universe. An overview of the three different merger types, their ejected mass and

the LIGO detection rate is given in Table 2.

Table 2. Material ejected by the three types of compact binary mergers observable

by Advanced LIGO, and estimated merger rates within the volume observable by

advanced LIGO at design sensitivity (defined as a NS-NS merger detection range of

200 Mpc).

Merger type r process Mej (M�) Grav. waves LIGO det. rate/yr

NS-NS yes yes yes 10−200a

dynamical ejecta ∼ 10−3−0.02

post-merger ejecta ∼ 0.01−0.05

NS-BH yes 0.2−200b

low BH spin, high BH mass, small NSd no no

high BH spin, low BH mass, large NSd yes yes

- dynamical ejecta ∼ 10−2-0.2

- post-merger ejecta ∼0.01−0.05

BH-BH no no yes 36−800c

a Rates from [216], rescaled for the volumetric rates inferred after the detection of GW170817 [6].
b Rates from [216] for the advanced LIGO detectors at design sensitivity.
c Rate from [216] for the advanced LIGO detectors at design sensitivity, rescaled for the updated

volumetric rates provided in [282] after the end of O1.
d See [293] for a more quantitative division of the black hole-neutron star parameter space.

4.3.1. Outflow mechanisms The connection between binary neutron star mergers

and r-process nucleosynthesis provides us with a source of information about the

production mechanism and the properties of neutron-rich elements that can complement

experiments at RIB facilities. To understand that connection, and place it in the context

of current and future observations of neutron star mergers, it is useful to review the

various mechanisms by which matter is expected to be ejected in these systems.

Numerical simulations of mergers have revealed that both binary neutron star and

black hole-neutron star mergers can eject a significant amount of rapidly expanding

neutron-rich material, providing conditions favorable to the production of r-process

elements. The properties of these ejecta vary significantly with the parameters of
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the binary (component masses and spins, eccentricity) and the unknown equation

of state of dense neutron-rich matter. Additionally, within a single merger event,

numerical simulations have identified various components of the ejecta, with different

thermodynamical properties and composition.

The tidal disruption of a neutron star by a black hole companion can eject

cold and very neutron-rich material (e.g. [294, 233, 234, 295]). The merger of two

neutron stars can produce similar cold tidal ejecta, complemented by hotter, less

neutron-rich material originating from the contact region between the two neutron stars

(e.g. [232, 235, 236, 296]). We will call those two components, which are ejected within

∼ 1 ms of the merger, the dynamical ejecta. For both types of binaries, more matter

can then be unbound from the post-merger remnant – either a massive neutron star or a

black hole surrounded by a hot, strongly magnetized accretion disk. These post-merger

outflows are ejected over much longer timescales, ∼ 0.01−10 s (e.g. [297, 127, 298, 299]).

The outcome of nucleosynthesis in the ejecta from a compact binary merger mostly

depends on the composition, entropy, and expansion timescale of the ejected matter. In

particular, many r-process nucleosynthesis calculations (e.g. [241, 230, 300, 239]) have

found that there is a critical threshold of Ye ∼ 0.25. For Ye . 0.25, the full range of

heavy r-process elements is produced (beyond the third peak, up to uranium), while for

Ye & 0.25 only a weak r-process (up to A ∼ 120) is possible. Accurate determination of

the mass and composition of the ejecta in numerical simulations is thus an important

component in understanding the impact of binary mergers on r-process nucleosynthesis.

Nuclear physics inputs (e.g. masses and half-lives of neutron-rich nuclides, nuclear

reaction rates far away from β-stability, and fission fragment distributions) are also

crucial for r-process nucleosynthesis calculations (see Sec. 5).

In recent years, numerical simulations have made significant progress towards taking

into account the many physical effects important to the determination of the ejected

mass and its composition. General relativistic and Newtonian simulations of black hole-

neutron star and binary neutron star mergers can now use nuclear-theory based, finite

temperature, composition dependent equations of state. Neutrino-matter interactions,

which play a critical role in the cooling of the post-merger remnant and the evolution of

the composition of the ejected material, can be approximately taken into account (see

e.g. [235, 301, 127, 238] for algorithms including both neutrino cooling and absorption).

The full Boltzmann equations for neutrino transport remain, however, too costly to be

directly included in global 3D simulations of mergers. The improvement of approximate

transport methods, and the determination of the systematic errors in the composition

of the ejecta due to approximate weak reaction rates and neutrino transport, are

important objectives for future simulations. Magnetic fields also play an important

role in the evolution of the post-merger remnant (see e.g. [302, 303, 304, 298, 305]).

The growth of magnetic fields due to small scale instabilities and the effects of

magnetically driven turbulence in the merger remnant are generally under-resolved

in existing simulations [304]. Quantitative estimates of the effects of magnetic fields

thus remain challenging. The long-term (∼ 10 s) evolution of the merger remnant,
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which is necessary to determine the properties of the post-merger outflows, also requires

additional approximations. Recently, a 3D, general relativistic magnetohydrodynamics

simulation of an accretion disk [298] has been performed. However, most simulations

of the post-merger remnant are generally performed in 2D (e.g. [297, 127]). Despite

these limitations, existing merger and post-merger simulations of compact binaries can

already predict a number of qualitative features of the ejecta.

4.3.2. Dynamical ejecta The mass and composition of the dynamical ejecta obtained

in numerical simulations of black hole-neutron star (BHNS) and binary neutron star

mergers vary with the type of binary under consideration. In a black hole-neutron star

merger, the disruption of the neutron star by the black hole can lead to the ejection of

a large amount of cold, neutron-rich material at velocities v ∼ 0.1 − 0.3 c. These are

favorable conditions for a robust strong r-process, including fission cycling. We should

however note that whether any mass is ejected by the system is sensitive to the binary

parameters (black hole mass and spin, neutron star equation of state [293]). For example,

for a black hole of mass MBH = 7M� and a neutron star of mass MNS = 1.3M� (typical

masses of galactic compact objects), a neutron star of radius RNS = 11 km would not

be disrupted unless the component of the dimensionless black hole spin aligned with the

orbital angular momentum of the binary satisfies aBH ≥ 0.7. Here the dimensionless

spin is the angular momentum in units of the maximum possible value GM2
BH/c. The

production of r-process elements in black hole-neutron star mergers will thus strongly

depend on the distribution of black hole masses and spins, and on the neutron star

equation of state. On the other hand, currently the dynamical ejecta of black hole-

neutron star mergers is the only ejecta component for which the nucleosynthesis can be

reliably predicted: it robustly produces heavy r-process elements. Reasonable estimates

of the ejected mass and its velocity have also been derived from simulations [306, 295].

While a similar cold tidal component is observed in binary neutron star mergers,

numerical simulations indicate that the dominant source of ejecta in most of these

systems originate from the shocked contact region between the two stars. That

ejecta is hotter than the tidal ejecta, and generally less neutron rich due to weak

reactions [125, 235, 236]. Future simulations need to clarify the precise impact of weak

reactions on the properties of the shocked ejecta [307] and, through nuclear network

calculations, on the final abundance pattern in the ejected material. The total amount

of ejected mass is generally lower than in black hole-neutron star mergers, and estimates

from numerical simulations are currently more uncertain [296]. Yet, except for very

massive binary neutron star systems in which the remnant promptly collapses to a

black hole, most binary neutron star mergers are expected to eject some neutron-rich

material, with a broad range of composition likely to include matter with Ye > 0.25.

For both black hole-neutron star and binary neutron star mergers, the amount of

mass ejected by the merger is sensitive to the equation of state of neutron stars: larger

neutron stars generally eject more mass in black hole-neutron star mergers, and less in

binary neutron star mergers. This dependence of the ejected mass on the properties of
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neutron-rich nuclear matter exemplifies the need for tighter constraints on the properties

of high-density matter. Indeed, knowledge of the equation of state is necessary in order

to determine the yield of heavy elements for a given compact binary population.

4.3.3. Post-merger outflows Depending on the binary parameters the central object

of the post-merger configuration is either a black hole or a massive neutron star, which

eventually can collapse to a black hole on a secular time scale. Except for black hole-

neutron star mergers with a high black hole mass, for which the entire neutron star

plunges into the black hole, that central object is surrounded by a differentially rotating

disk (or torus) consisting of neutron star debris. Current numerical models of post-

merger remnants suggest the existence of several agents able to contribute to matter

ejection, which we briefly outline in the following.

The hot and dense remnant releases neutrinos at high rates that are comparable

to core-collapse supernovae. Neutrino heating is therefore sufficiently powerful to

gravitationally unbind the surface layers of the remnant in the form of a neutrino-driven

wind. However, in a black-hole torus remnant the luminosities, and therefore the wind

power, quickly decline as torus matter is swallowed by the central black hole, resulting in

negligibly small wind masses [297, 127]. In contrast, in a neutron-star torus remnant the

central object represents another large energy reservoir for neutrinos. The luminosities

decline on much longer timescales and allow for higher wind masses [287, 238, 239].

Since the neutrino emission in the equatorial direction is obscured by the surrounding

torus, most of the neutrino-driven wind is expelled in the polar directions. The electron

fraction in the wind is mainly determined by neutrino captures and strongly depends

on the lifetime of the NS-torus system. Its general distribution turns out to be slightly

higher, Ye ∼ 0.2− 0.5, than in the case of other post-merger outflows (see below).

The differentially rotating disk around the central object is subject to the

magnetorotational instability, which leads to turbulence on small scales and to viscous

angular momentum transport and heating on macroscopic scales. While the disk

matter dilutes due to expansion and accretion onto the central object, neutrino cooling

eventually becomes inefficient in balancing viscous heating. The increasing thermal

pressure then leads to a rapid expansion of the torus and ultimately to the expulsion

of a significant fraction of its original mass mainly, but not exclusively, around the

equatorial direction. Since neutrino irradiation is inefficient in the expanding disk,

the electron fraction in this viscous outflow is mainly determined by electron/positron

captures and typically freezes out at Ye ∼ 0.1− 0.3 [297, 127, 123, 299].

Recent general relativistic simulations also indicate that magnetohydrodynamic

turbulence alone can give rise to massive winds early in the evolution of the disk [298],

and that rapid redistribution of angular momentum within a differentially rotating

massive neutron star remnant can unbind ∼ 0.01M� of material in the ∼ 10 ms following

merger [299].

Although all existing simulations of post-merger remnants still contain considerable

simplifications in one way or another, they already indicate that post-merger outflows
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can be the source of a significant amount of r-process elements, essentially within the

entire r-process range but probably dominated by intermediate mass (∼2nd peak)

elements. In addition to the variety of outflow properties that can be encountered

in a single merger event, the post-merger outflows also vary with the initial binary

parameters and the nuclear equation of state. For example, the amount of neutrino-

driven outflows steeply increases with the lifetime of the central neutron star before its

collapse to a black hole, and the amount of disk outflows is roughly proportional to

the initial disk mass. Future improvements in modeling the merger and in constraining

the equation of state will therefore directly translate into better predictions for the

properties of post-merger ejecta.

4.3.4. Future prospects Models of the optical and infrared emission from the ejecta of

GW170817 currently favor a two-component ejecta, with ∼ 0.01M� of fast (v ∼ 0.3c),

neutron-rich ejecta and ∼ 0.04M� of slower (v ∼ 0.1c), less neutron-rich ejecta [112].

These two components could plausibly be associated with, respectively, a shocked

dynamical ejecta and a viscously-driven disk outflow. However, at this point, modeling

uncertainties place significant limits on our ability to make robust claims for the

properties of the ejecta. An upcoming challenge will be to combine neutrino transport,

magnetohydrodynamics and general relativity to obtain better predictions for the mass

and composition of the ejecta, and to infer its properties and those of the merging

objects from such observations.

Improved nuclear physics models, aided by the insights gained from future nuclear

experiments, will play an important role in this process. They will constrain the

nucleosynthesis yields of post-merger ejecta, which impact the duration, color, and

magnitude of the associated electromagnetic signal [308], and are required to assess

the role of neutron star mergers in galactic chemical evolution.

4.4. Magneto-rotational supernovae

Some very energetic supernova explosions are observed and cannot be explained by the

standard neutrino-driven mechanism. These rare supernovae are thought to be driven

by a magneto-rotation mechanism [250] and may be the explanation for long gamma-ray

bursts. Moreover, these explosions have been also suggested as a potential r-process site

[309, 310]. During collapse and post-bounce, the magnetic field of the stellar progenitor

can be amplified by the magnetorotational instability (MRI) [311] or by the dynamo

instability [312]. The strong magnetic field leads to a collimation of matter and thus

to a jet-like explosion. Moreover, matter can be promptly ejected by the magnetic

field without long exposure to neutrinos thus maintaining in the outflow the neutron

richness of the proto-neutron star. The resulting relatively neutron-rich outflows are

suitable sites for a full r-process.

Magneto hydrodynamic simulations of core-collapse supernovae present computa-

tional and physics challenges. Investigating these explosions and their nucleosynthesis
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requires three dimensional simulations including detailed neutrino transport and enough

resolution to resolve the MRI. Several efforts have been reported towards this direction

but the results are not yet conclusive. Based on 2D simulations with parametric neu-

trino treatment, Nishimura and collaborators [252, 313] have compared the effect of

neutrinos and magnetic field. They conclude that for explosions with strong magnetic

fields the r-process can produce elements up to the third peak. However, according to

these studies, when neutrinos become the dominant mechanism for ejection of matter,

the third r-process peak is underproduced. A strong r-process up to the third peak

has been also found in 3D simulations that include neutrino leakage and very strong

magnetic fields (∼ 1013 G) [251, 314]. However, such strong magnetic fields are not very

likely to occur. For more realistic magnetic fields (∼ 1012 G), the third peak abundances

are strongly reduced or even negligible [314]. Recent efforts to include realistic magnetic

fields, rotation, and accurate neutrino transport have been reported in 2D simulations

[315].

If a strong r-process occurs in magneto-rotational supernovae, then they contribute

to galactic nucleosynthesis with 10−3 − 10−2M� per event [251, 314]. These are rare

events and are unlikely to account for the majority of r-process nuclei in the Galaxy.

However, they may dominate shortly after the Big Bang until neutron star mergers,

which only occur with a significant time delay, begin to contribute. This may explain

the early occurrence of r-process elements in the Galaxy inferred from the observation

of r-process abundance signatures in extremely metal-poor stars (see Sec. 3.2.1). The

heavy element abundances observed in very weakly r-process enriched metal-poor stars

may be signatures of these events [313] (see also Sec. 2.1.5). MHD-supernovae require

extremely rapidly rotating progenitor stellar cores, which are likely to be very rare

in Nature. However, the combined effect of a strong magnetic field and even less

extreme rotation can impact nucleosynthesis in the proto-neutron star wind phase

as a result of magnetic acceleration of the wind material through the seed forming

region. In particular, magnetars born with rotation periods of . 10 ms can produce a

successful 2nd peak r-process for the otherwise identical conditions in which a normal

(non-rotating, unmagnetized) proto-neutron star wind would fail [98, 97].

5. Nuclear sensitivity studies

Sensitivity studies explore the detailed dependence of r-process observables on specific

nuclear properties. Typically, these observables have been the abundances of the

produced elements, but other observables such as heating and radiation transport in

kilonovae also need to be considered. Such sensitivity studies play a key role in nuclear

astrophysics. They guide nuclear experimental and theoretical research, including the

development of new facilities, and they provide astrophysicists and astronomers with

information about model uncertainties that ultimately limit the information that can be

extracted and the conclusions that can be drawn by comparing models with observations.

Sensitivity studies provide the intellectual connection between astrophysics and nuclear
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physics, and are essential for achieving a complete understanding of how the elements

were formed in nature.

Modern sensitivity studies can be categorized into two groups depending on their

primary goal:

(1) Studies that aim at quantitatively propagating nuclear physics uncertainties

to astrophysical observables. These studies provide the nuclear error bars, for

example, for the predicted r-process abundances. They are critical for enabling

meaningful comparisons of r-process models with observations. For example, only

when discrepancies with observations exceed the nuclear error bars, limitations of the

astrophysical model or site can be revealed. The nuclear error bars are also essential

to determine the confidence limits for inferring unknown astrophysical parameters

from observed abundances, such as temperatures, densities, neutron-to-seed ratios,

or neutrino fluxes. The method of choice for these types of studies are Monte

Carlo/Bayesian calculations that sample appropriate probability/posterior distributions

for all nuclear input parameters, run a particular model for each sample, and

thus determine the corresponding uncertainties of predicted observables. Common

limitations are unknown input probability/prior distributions, computational cost, and

the strong correlations between the various nuclear physics uncertainties in the case of

nuclear theory predictions on which most r-process calculations rely heavily.

(2) Studies that aim at identifying the nuclear uncertainties that most strongly

affect observables. These studies focus on providing an appropriate relative ranking

of importance of nuclear physics inputs that can guide and focus future work in nuclear

theory and experiment. While correlations in Monte Carlo/Bayesian studies can be used

to identify at least some of these critical nuclear physics quantities, another common

approach is a variation of individual nuclear physics properties. The key for these

types of studies is the definition of a figure of merit that quantifies the importance of a

particular variation in the predicted observables. This depends on the scientific question

that is being explored by a particular comparison between model and observations.

Example questions could be: (a) what are the astrophysical parameters needed to get

the best match to the complete solar r-process abundance pattern? (b) can the observed

Eu/Ba ratio in metal-poor stars be created by the r-process? Clearly the figure of merit

for a sensitivity study would be very different for these two questions. For (a) some

global measure such as the sum of all abundance changes may be appropriate. The range

of astrophysical parameters needed to achieve a new best fit for each nuclear physics

variation would be an even better choice. For (b) the impact on the Eu/Ba ratio would

be the best choice. Clearly for each case the resulting key nuclear physics parameters,

and therefore the most important nuclear physics needs, can be very different.

It should also be emphasized that sensitivity studies depend on the astrophysical

model used. While there are certain nuclear properties that are needed in a broad

range of models, there are many others that are only relevant for certain, or even just

a single model. This is not a limitation. It just means that nuclear physics work is

not necessarily “important for the r-process”, but provides the data needed to use and
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validate one particular model. As long as this astrophysical model is a reasonable choice,

the work will be important to make progress. This underlines the importance of close

collaboration between nuclear physicists and astrophysicists.

In this context, the recent observations of the neutron star merger GW170817 via

gravitational waves [6] and the associated kilonova [109] play an important role for

nuclear physics. While the observation does not eliminate the need to study a broader

range of alternative r-process sites, it provides a fresh impetus for studying neutron star

mergers as a key site. This should serve as a strong justification to redirect significant

effort in astrophysical modeling, associated sensitivity studies, and nuclear physics to the

neutron star merger scenario. This is very important, as it is not feasible for the field to

explore the large number of proposed r-process sites with equal effort, and because the

neutron star merger site, especially because of its inherent lack of spherical symmetry

and the range of astrophysical conditions, is a particularly challenging problem that

requires significant resources and therefore a strong motivation.

5.1. Overview of important nuclear physics in the r-process

From its inception the study of r-process nucleosynthesis has been inextricably linked

to the details of the structure of neutron-rich nuclei and found to depend on the nuclear

uncertainties of far-from-stability isotopes. In fact, the existence of an r-process in

nature is inferred from the prior understanding of N = 50 and N = 82 shell effects

in neutron-rich nuclei [2, 3]. Because of these nuclear structure effects, an r-process

provides the most natural explanation for the observed peaks in the cosmic abundance

distribution of the elements.

It was recognized from an early stage that masses and β-decay rates play the

most dominant role in the determination of the abundances [316, 317, 44]. This is

because for the hot and neutron-rich conditions expected for most r process sites, an

equilibrium is established at least for some period of time, between neutron capture and

photodissociation; while (n, γ)-(γ, n) equilibrium persists, relative abundances within

individual isotopic chains are determined by a Saha equation that depends primarily

on neutron separation energies and nuclear partition functions (the spins of ground and

low lying Ex < kT ≈ 100 keV states). The total summed abundances in each isotopic

chain are set by the β-decay lifetimes that connect them. β-decay half-lives are therefore

another important nuclear ingredient that determine the speed of the r-process and the

relative abundances in each isotopic chain. β-delayed emission of neutrons also becomes

important once equilibrium fails, in determining decay paths back to stability and in

providing additional neutrons for late time captures [318].

Modern reaction network calculations of the r-process now include theoretical

predictions of additional nuclear properties, e.g., neutron capture rates as well as

neutron induced, β-delayed and spontaneous fission, and associated fission fragment

distributions. Individual neutron capture rates are important after (n, γ)-(γ, n)

equilibrium fails, typically towards the end of the r-process when the neutron abundance
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drops and neutron capture lifetimes increase. They are also critical in r processes that

occur in cold conditions where equilibrium is established only briefly if at all, and the

r-process path is instead determined by competition between neutron capture and β-

decay rates. Fission rates and product distributions are crucial for very neutron-rich r

processes characterized by fission recycling.

The importance of the nuclear physics ingredients discussed so far on r-process

models has mostly been determined by comparing model results obtained with different

choices for nuclear theory predictions, such as mass models, β-decay models, or fission

models or by simply repeating an r-process model calculation after a particular nuclear

physics quantity has been measured in the laboratory. Examples for more systematic

attempts to link certain isolated abundance features or discrepancies with certain specific

nuclear structure features include the detailed analysis of Kratz et al. [44]; the classical

r-process model study of Chen et al. [319], who studied the impact of quenching of the

spherical shell gaps far from stability on abundances just below the A = 130 and A = 195

peaks; the study of Schatz et al. [65], who explored the link between a possible N = 184

shell closure and the r-process production of uranium and thorium; the work of Baruah

et al. [320], who performed a quantitative analysis of the impact of mass uncertainties

around 80Zn on the astrophysical model conditions needed for the synthesis of a A = 80

abundance peak; and the recent analysis of Lippuner et al. [300], who identified the

individual contributions of longer-lived isotopes to the heating of kilonovae.

5.2. Results from large scale sensitivity studies for the main r-process

Recently more systematic large scale sensitivity studies that pinpoint important

individual nuclear properties in r-process models, and first complete r-process Monte

Carlo studies that propagate nuclear errors to abundance observables have been carried

out. The recent advances are summarized in the recent review of Mumpower et al.

[321]. The studies focus on the main r-process, i.e., the synthesis of A ≥ 120 nuclei,

and examine model sensitivities to atomic masses, β-decay half-lives, β-delayed neutron

emission probabilities, and neutron capture rates (Fig. 3).

For these global sensitivity studies, a baseline abundance pattern is generated with

chosen nuclear physics inputs for a fixed astrophysical trajectory. Next, individual

nuclear properties are varied and compared to the baseline. The impact of the variation

is measured using certain metrics, e.g., the sum of the absolute final abundance changes

relative to the baseline. The study is repeated for each of a set of five r-process

trajectories that, while not necessarily realistic, are thought to sample a wide range of

conditions encountered in various possible r-process models. Typical results are shown

in Fig. 3. The important masses are spread over a broad range of neutron-rich nuclei,

with some concentration near the N = 82 and N = 126 spherical shell closures (the

models focus on the main r-process, which excludes the N = 50 region) and the rare

earth region. For β-decay half-lives, the most important nuclei are more concentrated.

They are located at the spherical shell closures at N = 82, Z < 50 and N = 126, Z < 73
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Figure 3. Nuclear properties that have the strongest global effect on the isotopic

abundances produced in a ν-wind r-process model. Shown are the most important

neutron capture rates (upper left), masses (upper right), β-decay rates (lower left),

and β-delayed neutron emission branchings (lower right). These nuclei should be

a priority for nuclear experiment and theory to best constrain the global r-process

abundance pattern, in particular the main abundance peaks. The reach of existing

facilities (example CARIBU at ANL) and of next generation facilities (example FRIB)

is indicated by the thin and thick gray lines, respectively. Modern neutron star merger

models predict similar conditions.

and along the path of the main r-process, especially within 8 neutrons of N = 82 and

in the rare earth region. The most important β-delayed neutron emitters are located

at N = 84 − 88 in the neutron-rich tin region. The important neutron capture rates

depend strongly on the r-process trajectory but are in general closer to stability than

the important masses and β-decay-properties, just below N = 82 and N = 126. This

reflects the fact that neutron captures only become important towards the end of the

r-process during freeze-out when neutron densities drop and the r-process reaction path

is moving closer to stability.

The fact that sensitivity studies identify as most important the properties of nuclei

near closed shells and the rare earth region is no surprise. These nuclei tend to slow

the reaction sequence and create the well known A = 130, rare earth (A ≈ 165), and
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A = 195 peaks in the final abundance distribution. Any changes that affect the r-process

speed through these regions will lead to global changes in the final abundance pattern,

which is the chosen figure of merit of these sensitivity studies.

The recent review [321] also summarizes first Monte Carlo studies that propagate

uncertainties (see Sec. 7.1) in nuclear masses, β-decay rates and neutron capture rates

to the final abundances for some of the same r-process model trajectories. These

calculations led to a number of important conclusions. First, the r-process model

trajectories chosen do not reproduce very well the solar r-process abundance distribution

in all mass regions above A ∼ 120 with discrepancies ranging from factors of 2-3 to

an order of magnitude in some places. The Monte Carlo studies demonstrate that

only the mass uncertainties come close in possibly explaining these discrepancies, and

only barely, implying that there are likely additional non-nuclear physics issues in the

astrophysical models. This illustrates the importance of error propagation studies in

judging the quality of an r-process model. The finding that, compared to β-decay rates

and neutron capture rates, mass uncertainties lead to by far the largest uncertainties

in the final abundances is another important result in itself. This result was obtained

assuming uncorrelated mass uncertainties of 500 keV, which is a comparable value to

what mass models achieve for experimentally known nuclei. However, uncertainties

for predicting unknown masses are likely higher (see Sec. 7.1) and they are certainly

correlated. In addition, these first Monte Carlo mass sensitivity studies do not account

for the full range of mass-related model changes in other quantities such as β-decay

properties. An example are changes in the statistical decay from final states. For all

these reasons it is likely that uncertainties in the predictions of masses of r-process

nuclei are underestimated.

In contrast, β-decay half-lives and neutron capture rates lead to significant smaller

uncertainties though they can reach about an order of magnitude. Clearly better nuclear

physics is mandatory for any meaningful comparison of r-process model calculations

with observations. These first studies suggest that in order for details of the abundance

patterns to stand out over nuclear uncertainties, a mass accuracy of better than 100 keV

is needed and β-decay and neutron capture rates should be known to within a factor of

two [322, 323].

5.3. The special case of the rare earth peak

The rare-earth peak at A≈165 and Z=58−71 is a distinct signature of r-process

nucleosynthesis. Its formation is subject to ongoing research (see e.g. [324, 325, 326,

327, 328]). In contrast to the A=130 and 195 abundance peaks, which arise from

the accumulation of material at the N=82 and 126 shell closures, the mini-peaks at

A≈100 and 165 may originate from the decay of isotopes through regions of double

sub-shell closures or deformed single particle energy gaps (e.g. at Z=40, N+64 and

Z=64, N=106). In the case of the rare earth peak a so called ‘dynamical’ formation

mechanism during the decay back to stability has been proposed. The isotopes in the
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relevant mass region are strongly deformed (for the even-even nuclei this corresponds

to a large quadrupole deformation β2) which may lead to a localized enhancement in

stability that causes the rare earth peak to form. Another possible formation mechanism

is strongly asymmetric fission of neutron-rich actinides.

The significance of these two formation mechanisms is that they are intimately

coupled to the astrophysical conditions. While the dynamical mechanism can potentially

operate in both hot and cold freezeout conditions, the fission formation mechanism

requires more extreme conditions where fission recycling can occur, such as the tidal

ejecta of neutron stars. Further, the dynamical mechanism formation can be studied

in the laboratory at RIB facilities offering a path forward in ruling out this possibility

(e.g. in the case that no feature is found in nuclear structure) and in understanding the

late-time r-process conditions. In either case, the properties of the involved nuclei play

an important role for understanding the r-process.

During extremely neutron-rich conditions, rare-earth nuclei with Sn ∼ 2 − 3 MeV

will set the r-process path. In this phase, the nuclear properties shape the peaks and

troughs in the abundance pattern [329]. During freeze-out, the radioactive progenitor

nuclei will decay to stability and form the final r-process abundance distribution. As β-

decay drives the abundances towards less neutron-rich nuclei, the shapes of the relevant

nuclei may change. This induces changes in trends for nuclear masses and neutron

capture rates that affect the final abundances. However, the location of these shape

transitions on the chart of nuclides are predicted differently by various theoretical

models.
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Figure 4. Quadrupole deformation β2 as predicted by the mass models FRDM [330],

SkM∗ [331], SLy4 [332] and UNEDF0 [333]. Note that the quadrupole deformations

of odd-A and odd-odd nuclei are interpolated from the predicted values for even-even

nuclei in the last three models. The dotted-dashed line marks the limit of known

(neutron-rich) nuclei (as given on the NuDat website, http://www.nndc.bnl.gov/

nudat2/).

http://www.nndc.bnl.gov/nudat2/
http://www.nndc.bnl.gov/nudat2/
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Figure 4 shows the quadrupole deformation β2 for even-even nuclei in the region

N = 100− 126 for the four mass models FRDM 2012 [330], SkM∗ [331], SLy4 [332] and

UNEDF0 [333]. The limit of currently known nuclei is marked by a dotted-dashed line.

The region of largest deformation around the mid-shell closure is visible as well as the

region for a sudden shape transition towards the N=126 shell closure.

For example, already the isotopes of Yb (Z = 70) are predicted to show a rapid

shape transition. The presently heaviest known Yb isotope is 180Yb (N=110), and the

shape transition is predicted to be between N=116 and N=118 in SkM∗, SLy4, and

UNEDF0, whereas for the FRDM(2012) it is shifted to N=118-120. Pushing further

neutron rich into this part of the present ”Terra Incognita” will be possible with the

new fragmentation facilities FRIB and FAIR. Knowledge about the properties of rare-

earth isotopes in this region will help to constrain and improve nuclear models as well

as understand this important piece of r-process nucleosynthesis.

5.4. Reverse engineering nuclear properties from r-process abundances

In the traditional sensitivity studies discussed above, nuclear physics properties are used

as input in r-process model calculations to determine their impact on the predicted r-

process abundances. Features in the nuclear structure, such as shell closures, translate

then into features in the calculated abundances. It has recently been shown that working

in the reverse direction is also a powerful tool to illuminate the interdependence between

nuclear physics and astrophysical observables [327]. In this approach one takes local

features of the observed r-process abundance pattern together with conditions suggested

by astrophysical simulations and predicts the trends in the nuclear structure necessary

to produce the observed features.

The method has recently been demonstrated in Refs. [327, 328], who reconstructed

the mass surface required to reproduce the rare earth abundance peak for various

astrophysical conditions. A Markov-chain Monte Carlo approach has been used, where

neutron capture and β-decay rates have been consistently updated as the nuclear mass

surface is varied. The variation of the mass surface uses a relatively featureless baseline

mass model, and parametrizes deviations from this baseline trend. The result of these

calculations are predictions for nuclear masses with quantitative uncertainties. For a

given astrophysical model, masses must lie in this range to reproduce the solar isotopic

r-process abundances in the rare earth peak, provided that other nuclear structure input

is correct. Different results are obtained for different astrophysical conditions, making it

possible one day to distinguish among the range of possibilities using new measurements

at RIB facilities.

An example is shown in Fig. 5, which shows that this method can be a very powerful

tool to to guide future experimental and theoretical efforts, in particular in terms of

how future experiments can discriminate between different sets of astrophysical models

and conditions. We therefore discuss this method in the context of sensitivity studies.

Compared to schematic sensitivity studies that vary individual masses independently
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and assume no inter-nuclei correlations exist, this reverse engineering approach has

a number of advantages. One key advantage is that the method takes into account

correlations in nuclear uncertainties that lead to systematic changes in masses along

isotopic and isotonic chains.

In addition, the reverse engineering approach provides more meaningful guidance

for experiments. The method identifies the key quantities that need to be measured: the

masses predicted with the smallest uncertainties and the strongest deviations from the

baseline trend. Moreover, the prediction of mass trends allows experimenters to draw

meaningful conclusions from early, incomplete data, and offers opportunities to test

astrophysical models by exploring mass surface trends closer to stability or in nearby,

easier accessible, mass regions.

Another important feature of the reverse engineering approach is that the differences

in the required masses for different astrophysical models or sites provide a direct measure

of the astrophysical model discrimination power of a particular mass measurement.

These differences directly indicate the required mass accuracy for a meaningful

experiment. If the differences are large, already a lower accuracy mass measurement may

provide important insights into astrophysical r-process sites as long as the right nuclei

are measured. An example is shown in Fig. 5. For very cold neutron-rich conditions,

e.g., tidal tails of neutron star mergers, the predicted mass surface is different compared

to hot conditions, e.g., winds from massive neutron stars, accretion disks, or the proto-

neutron stars of core collapse supernovae. Clearly, mass measurements of 163−166Nd

with less than 100 keV uncertainty would be most important to calibrate models and

to test the cold r-process hypothesis. These results clearly demonstrate that nuclear

measurements are key in discriminating between different possible r-process models and

sites.

Looking to the future, this method can be improved on a number of fronts. First,

experimental nuclear data should be included in the study to provide another anchor

for the limits of model variation. Second, additional uncertainties from other relevant

quantities such as β-decay and neutron capture rates should be included simultaneously

with mass uncertainties. More robust nuclear models for the description of fissioning

nuclei may also impact the predicted trends depending on the astrophysical conditions

studied.

The approach is general enough to expand focus on other parts of the r-process

abundance pattern. Taking into account multiple abundance features simultaneously

would further increase model discrimination power. In the end this would provide an

excellent method to directly test a given r-process model: if the reverse engineering

fails to find a set of nuclear properties that is compatible with experimental nuclear

data, within uncertainties, the model can be rejected. As better nuclear data become

available, the method will become more and more powerful.
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Figure 5. Differences in mass datasets from Duflo-Zuker along the Z = 60 (Nd)

isotopic chain. The shaded regions show the predicted change to the Duflo-Zuker mass

surface using a Markov chain Monte Carlo technique for a hot (red) and very neutron-

rich cold (green) r-process. Points show experimental data from the Atomic Mass

Evaluation Audi et al. (2012). Note peak formation depends on trends in the mass

surface, not the absolute values of the masses. Fig. from [327]

5.5. (α,n)-rate sensitivities in the weak r-process

Fewer nuclear sensitivity studies focus on models producing the lighter r-process

elements between Se and Sn, the so called weak r-process. Surman et al. [334] carr

ied out extensive studies focusing on the neutron capture rate sensitivity, using about

90 different trajectories from a broad range of models. In about 55 of these trajectories

a significant dependence on neutron capture reaction rate uncertainties is found. The

important reactions are located in the neutron-rich Z = 26 − 34 region, about 6-12

isotopes away from stability.

A recent study pointed out the importance of the rates of (α,n) reactions on slightly

neutron-rich nuclei between Fe and Rh for the nucleosynthesis of elements in the Sr-Ag

range [335]. In the weak r-process, the seed nuclei created by charged particle reactions

such as (α,n) are only moderately processed by the subsequent weak r-process. The

final abundances therefore retain signatures of the charged particle reaction sequence.

The identification and reduction of nuclear physics uncertainties is particularly
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important for addressing the open question of the role of the weak r-process in the

origin of the elements. Accurate nuclear physics is mandatory for disentangling the

weak r-process contribution from possible other sources of light “r-process” nuclei such

as νp-, charged particle, or i-processes.

5.6. Outlook for nuclear sensitivity studies

The studies discussed in the preceding sections mark just the beginning of our

understanding of the detailed connection between individual nuclear properties and r-

process model predictions. An important aspect for providing meaningful guidance

to nuclear physics is the choice of the r-process model to be investigated. With

neutron star mergers now observed as a possible site of r-process nucleosynthesis, future

sensitivity studies should explore their various major ejecta components in more detail

(see Sec. 4.3.1). The first Monte Carlo studies [321] revealed statistically significant

discrepancies between predicted and inferred solar abundances. As a next step it will

therefore be important to refine the choice of models that agree with both the final

r-process abundances and the most recent observational constraints from kilonovae.

Owing to the studies carried out so far we are now in a position to quantify what

“better” means.

In addition, the range of nuclear physics inputs that are considered in sensitivity

studies needs to be broadened. So far, studies have mostly focused on masses, β-decay

properties, neutron capture rates, and (α,n) rates. In the future, it will be important

to include the sensitivity to uncertainties in nuclear fission properties (e.g., lifetimes

and yield properties) which almost certainly play a key role in many r-process models

[336, 337, 338] as well as other charged particle reaction rates.

Another important question is the choice of metrics that measures the sensitivities.

The most common choice is the sum of all absolute abundance residuals. This global

measure is a good choice for identifying nuclear physics properties that affect the overall

r-process conditions required for a successful r-process, but overemphasizes the most

abundant r-process nuclei in the main r-process peaks. There is a broad range of

open questions related to the r-process, and each requires tailored metrics to determine

the key nuclear physics uncertainties. For example, when investigating the conditions

required for more local abundance features such as the rare earth peak, the use of relative

abundance changes as sensitivity metrics is a better choice [339].

The challenge is that there is a very large number of abundance observables one may

be interested in. Sensitivity studies with global metrics do not provide information on

which nuclear property affects which abundances. A possible solution to this problem is

a ‘heat map’ style analysis. An example is shown in Fig. 6, which shows the sensitivity

of all final abundances to all nuclear masses in a neutron star merger r-process. In this

study individual nuclear masses were varied by 500 keV and all of the nuclear properties

that depend on this mass were propagated self-consistently [339]. The color scale is

defined so that dark shades of red denote a larger influence on predicted abundances
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while shades of green denote smaller influence. White indicates that the particular

nucleus had no influence on the respective final abundance. A long dark red shading

along the x-axis direction indicates broad global impact of the mass uncertainty, while

small red areas indicate a more local impact on the final abundances. The nuclear masses

are sorted by mass number. The diagonal correlation visible in the figure reflects the

fact that the masses of heavier nuclei tend to also affect heavier final abundances. The

low sensitivity in the upper left part of the plot indicates that, as expected, the mass of

a nucleus mostly affects the abundances further along the r-process path.

Realistic input uncertainties also are a prerequisite for realistic uncertainty

predictions, especially for Monte Carlo studies. It is well known that discrepancies in

predictions of masses [321] and neutron capture rates [323] far from stability can exceed

the deviations between models and experimental data closer to stability (cf. Sec. 7.1).

The average deviation of theory and experiment, which is often used in sensitivity studies

as a measure of uncertainty, therefore can be a poor predictor of theoretical uncertainties

far from stability. The development of nuclear theory approaches that determine self-

consistent uncertainties is therefore of particular importance for understanding the r-

process. A recent example of this approach is the density functional theory (DFT)

based mass predictions that provide statistical and systematic uncertainties [340] (see

also Sec. 7.2).

Another important issue are correlations among uncertainties. Early schematic

sensitivity studies have assumed uncertainties be independent, which is certainly an

incorrect assumption for theoretically predicted nuclear properties [341, 342]. One

solution would be to use the nuclear ingredients that enter nuclear theoretical models

as input parameters, and propagate their uncertainties through the nuclear models,

and then through the astrophysical model to the final abundances. This approach

has recently been attempted by [343] for the intermediate neutron capture process (i-

process). However, there are drawbacks to this approach: first of all, the uncertainties

of nuclear structure ingredients such as level densities or nuclear potentials are even

more difficult to characterize far from stability as experimental data are much more

limited. Second, once the sensitivity is established it is difficult to use the information to

guide specific experiments. Third, the results will be strongly nuclear model-dependent.

Nevertheless this may be an interesting approach, especially for nuclear models with few

free parameters, or to provide guidance for experiments that specifically target nuclear

structure ingredients for nuclear theory, such as the β-Oslo method (see Sec. 6.5). An

alternative approach to correlated uncertainties has recently been used by [329], who

use a well defined set of different energy density functionals to create a range of mass

predictions for r-process studies. The resulting r-process predictions form an abundance

uncertainty band that takes into account the correlated uncertainties of the model, for

example in predicting shape transitions and systematic trends in neutron separation

energies near closed spherical shells.
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Figure 6. A ‘heat map’ showing the sensitivity of final abundances to nuclear masses

in a neutron star merger r-process. Darker shades of red denote a larger influence

on predicted abundances while green and white indicates smaller and no influence

respectively. Only a few nuclei have a global impact on abundances by shifting material

across a large range in atomic mass, which is indicated by the extent of the dark red

shading across the x-axis [321].
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6. Experimental methods

Nuclear physics is critical for understanding the r-process and addressing current open

questions as it links astrophysics to r-process observables such as kilonova light curves

and abundances. Nuclear physics also enables the prediction of the contributions from

individual components in the many cases where mixtures of processes are observed. For

example, abundance observations in metal-poor stars provide a compositional snapshot

of the material the star is formed of, and even at low metallicities multiple events

may have contributed. Similarly, observations of kilonovae from neutron star mergers

probably show mixtures of distinct processes within the merger event, such as dynamical

ejecta, jets, and winds (see Sec. 4.3.1). With reliable nuclear physics, the relative

contributions from different processes can be disentangled, a pre-requisite for using

observations to infer the respective astrophysical conditions.

In general, current nuclear theory predictions are not sufficiently accurate (see

Sec. 7.1). Experimental data are therefore required for critical quantities in r-process

models, and to guide theory towards more reliable predictions of the properties of exotic

nuclei that remain out of experimental reach.

The nuclear physics quantities needed for r-process studies depend somewhat on

the particular r-process model. Data need to be provided for each reasonable model, so

as to enable the testing of this model against observations. For the breadth of models

available today the following types of experimental data are needed: β-decay properties,

including decay rates and branchings for β-delayed neutron emission, masses, and

partition functions (spin and parities of the low lying / 1 MeV excited states). Neutron

capture rates are essential, but there is currently no technical solution for carrying out

direct measurements. Therefore, indirect measurements need to provide information for

reaction and structure theory to better predict neutron capture rates. Measurements

that can contribute to reducing uncertainties in predicted neutron capture rates include

transfer cross sections, breakup cross sections, level densities, and γ-strength functions.

Another essential nuclear physics quantity are rates for neutron induced and β-delayed

fission, as well as the corresponding fission fragment distributions.

Because r-process calculations will rely for the foreseeable future on theoretical

nuclear physics data to complement experimental information, r-process nucleosynthesis

models benefit strongly from experimental information on neutron-rich nuclei that

improves our understanding of their structure. Nuclear structure effects such as

(sub)shell closures, or changes in deformation can have a strong impact on r-process

calculations [44, 319, 327]. This creates a close connection between nuclear physics

questions, and nuclear astrophysics questions.

The experimental requirements for the various quantities needed vary widely -

some can be obtained with very limited beam intensity, some require higher beam

intensities, for some the required accuracy can be obtained easily, while for others

sophisticated analysis methods and reaction theory are needed. Table 3 provides

an overview over the different requirements for various types of measurements and
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techniques. Generally, decay properties can be studied with the lowest beam intensities

and therefore for the most neutron-rich nuclei accessible, while masses require somewhat

higher beam intensities, and reaction studies are only possible closer to stability where

beam intensities are still higher. In the following we discuss various experimental

approaches in more detail.

6.1. Masses

There are many methods to determine binding energies of nuclei. In the past decade

a large number of mass measurements of neutron-rich nuclei have been performed,

approaching, and in some places reaching, the path of the r-process (Fig. 7). Until

recently, mass measurements of nuclides in the r-process path have been rare, and

measurements lag behind decay studies that have reached much more neutron-rich

nuclei. This is about to change as new facilities are coming online and developments

of experimental devices for mass measurements of exotic nuclei are completed. New

facilities that are already operating and will provide a large number of r-process masses

in the very near future include CARIBU at ANL and RIBF at RIKEN.

N=50	

N=82	
N=126	

ANL	Trap:	Mass	

Jyvaskyla	
Trap:	Mass	

TRIUMF	Trap:	Mass	

CERN/ISOLDE	
Trap:	Mass	

GSI	ESR	
	Ring:	Mass	

RIKEN	T1/2			

NSCL	T1/2	Pn		

CERN/ISOLDE	
	T1/2	Pn		

GSI	
	T1/2	Pn		

FRIB	Reach	

Figure 7. Recent r-process motivated experiments measuring masses or β-decay half-

lives T1/2 at various radioactive beam facilities. The colors of the legend boxes match

the colors of the chart and denote a specific facility or experimental collaboration. The

pink area denotes the reach of the future FRIB facility.

Experimental mass values are not only needed as input for r-process models, but

are also essential for validating theoretical mass models since some of the r-process

nuclei are not experimentally reachable today and thus the simulations have to rely on

theoretical mass predictions. As discussed below in Secs. 7.1.1 and 7.2.1, current energy

density functionals used in DFT calculations of nuclear masses ere deficient near the
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shell closures. One example of is the strongly decreased odd-even mass difference for Sn

isotopes as observed via the odd-even mass staggering [344]. Whereas DFT models could

not explain the observed anomalous trend in the odd-even staggering for the N = 83

isotonic chain [344], more detailed shell-model calculations were able to reproduce the

trend [345]. In the future, more advanced mass models should be explored to take into

account these effects observed near closed shells, see Sec. 7.2.1 for more discussion on

this point.

In the following we provide an overview of the experimental techniques that are

being used to measure masses, recent r-process motivated results obtained with these

techniques, and an outlook on future developments (see also Fig. 7 for an overview).

The various techniques have different advantages and drawbacks (see Table 3). Penning

traps provide the highest accuracy but measurements are only performed on a single

nuclide at a time, lifetimes have to be sufficiently long, and beam intensities have to

be high enough to enable transmission into the trap of a sufficiently large number of

nuclei. Storage ring techniques and Spectrometer time of flight (TOF) techniques enable

mass measurements of 10’s or even 100’s of nuclei simultaneously within a very short

time (100’s of ns to µs). Because of the longer flight path, storage rings can provide

higher accuracy compared to spectrometers, but beam intensities need to be higher to

compensate for the losses by transmission into a storage ring. Refs. [346, 347, 348]

provide a recent overview of various techniques. Major technical developments are on

the way for all these techniques. For example, the relatively new MR-TOF technique

based on a multi-reflection time-of-flight spectrometer has been developed to address

some of the drawbacks of the various other approaches. In the following subsections we

discuss the various techniques in more detail.

6.1.1. Penning trap technique During the last decade, several hundreds of high-

precision mass measurements have been performed at Penning-trap facilities worldwide

using the time-of-flight ion cyclotron resonance (TOF-ICR) technique [349]. Ions at very

low energies are trapped in magnetic and electrical fields, and the cyclotron motion in a

strong magnetic field is used to determine the mass. With TOF-ICR, typical precision

achieved is on the order of a few keV for most of the neutron-rich isotopes. For the

most exotic cases, the reached precision may be 10’s of keV. Several reviews on the

topic have been published recently. Measurements on fission fragments are summarized

in Ref. [350], a comprehensive review is given in Ref. [351], interesting details about the

history of Penning-trap spectrometry can be found from Ref. [352], and an insight to

current and new techniques is given in Ref. [353].

Penning trap mass measurements performed in the 132Sn region are among recent

highlights related to mass measurements for the r-process. This mass region is governed

by the formation of the 2nd r-process abundance peak at A≈130 and has a strong effect

on the final r-process abundances in sensitivity studies [339, 321]. Neutron-rich Ag [354],

Cd [354, 355] and Sn [356] isotopes have been studied at ISOLTRAP up to 124Ag, 131Cd

and 134Sn, respectively. JYFLTRAP has also measured neutron-rich Cd up to 128Cd
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and 130−135Sn as well as 129,131In, 131−136Sb, and 132−140Te [344]. TITAN at TRIUMF

has complemented these measurements with precise determinations of masses of ground

states and isomers of 125−127Cd [357] and 125−130In [358], taking advantage of the unique

capability of an electron beam ion trap (EBIT) to increase the charge state and thus

the precision of the mass measurements. At CPT several isotopes in the region have

been measured (130−131In, 130−135Sn, 131−137Sb, 133,135−140Te, 133−135,139−141I, 142−146Cs)

[359, 360]. The overall agreement between different Penning-trap measurements in the

region is very good. However, there are a few cases, such as 133Te and 140Te, where

re-measurements are anticipated to verify the mass value. This mass region shows that

measurements at different facilities are essential for achieving not only precise but also

accurate mass values.

Another important mass region where Penning trap mass measurements have

reached the r-process path are nuclides around 80Zn. This mass region governs the

formation of the first r-process abundance peak and affects the synthesis of the lighter

r-process elements. Here it is critical to measure masses up to N = 52 for isotopic chains

with Z≤30. This will enable to determine experimental two-neutron shell gap energies

for N=50. The shell-gap energies are essential to test current theoretical mass models

used in r-process calculations and have a strong impact on the calculated abundances.

At ISOLTRAP the masses of the Zn isotopes were measured precisely out to 81Zn

[320]. The authors demonstrated that with an extrapolated mass value for 82Zn, this

enables a reasonable determination of the astrophysical conditions required for the
80Zn waiting point and a sufficient production of A = 80 elements in the r-process.

JYFLTRAP also performed mass measurements out to 80Zn in the same year [361].

Later, ISOLTRAP achieved a measurement of the 82Zn mass directly [362], making 80Zn

the first major r-process waiting point that is completely characterized by high precision

Penning-trap mass measurements. More recently ISOLTRAP mass measurements also

reached the N = 50 shell closure for the Cu isotopes [363], with 79Cu being another

important r-process nucleus. The TITAN Penning trap at TRIUMF has performed

mass measurements in the path of the r-process of Rb and Sr isotopes out to 98,99Rb

and 98−100Sr [364, 365] and demonstrated that these measurements reduce uncertainties

in the prediction of the synthesis of A≈90 elements in neutrino-driven wind scenarios.

However, the TOF-ICR technique requires a measurement time of around 0.5 s to

perform the required RF excitations in the trap, which sets a limit for the half-life for

measurable isotopes to T1/2 & 100 ms. The shortest-lived isotope measured with this

method so far is 11Li with T1/2= 8.75 ms at the TITAN facility [366]. In addition, a

lot of time is spent in collecting statistics at several frequency points to fit a TOF-ICR

curve. Recently, a new method called phase imaging ion cyclotron resonance (PI-ICR)

[367, 368] has been commissioned [369, 370]. The method is much faster than the

conventional TOF-ICR as it does not require long excitation times in the measurement

trap. It is sufficient to determine the angle between the position of the ions in a two-

dimensional micro-channel plate detector, thus every ion counts and several isotopes can

in principle be measured at the same time. Measurements at the SHIPTRAP facility at
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GSI have shown that the PI-ICR can be about 25x faster, give about 40x better mass

resolving power and 5x better precision compared to TOF-ICR [353]. At the moment,

almost all major Penning-trap facilities are either already using the PI-ICR technique

or are commissioning it.

6.1.2. Storage ring techniques Storage-ring mass measurements allow masses of short-

lived nuclei to be measured at relativistic energies [371]. Masses are determined from

the revolution frequency of the ions in the storage ring. While the precision is lower

compared to Penning trap measurements (100’s of keV), the approach has the advantage

that in principle a large number of masses can be determined simultaneously. The

pioneering works have been made with the Schottky Mass Spectrometry (SMS) method

with the experimental storage ring (ESR) [372] at GSI Darmstadt, Germany. A mass

resolving power of ∆m/m ∼ 10−6 has been achieved with the method. However, since

SMS requires cooling prior to the mass measurement, which usually takes a few seconds,

it cannot be applied to mass measurements of most neutron-rich r-process nuclei whose

half-lives tend to be much shorter than 1 s.

The Isochronous Mass Spectrometry (IMS) method is an alternative to measuring

the masses of short-lived r-process nuclei in storage rings down to 10’s of µs [373]. In

this method the ion-optics of the storage ring is tuned so that the revolution frequency

of the particle of interest (to first order) does not depend on its velocity and thus cooling

is not needed. Consequently the measurement time can be decreased to less than 1 ms.

IMS at the ESR has successfully been used to measure masses of r-process nuclei, e.g.

of 129,130,131Cd [374]. The technique is also used at the HIRFL/CSRe [375, 376, 377]

of the Institute of Modern Physics, in Lanzhou, China. By applying the IMS at CSRe

in Lanzhou, masses of short-lived nuclei in the A<100 neutron-deficient region have

been measured. The best mass precision achieved to date is 8×10−8 [378, 379]. A new

development is the Rare RI Ring [380, 381] at RIBF, which will take advantage of the

presently superior production capabilities of the most neutron-rich r-process nuclei at

RIKEN Nishina Center.

6.1.3. Time-of-flight with spectrometers Spectrometers have long been used to measure

masses of exotic nuclei [382, 383, 384]. The technique relies on a simultaneous

measurement of the magnetic rigidity (Bρ) and the time of flight (TOF) through the

spectrometer beam line system. It is therefore often referred to as TOF-Bρ technique. A

more recent implementation of the technique uses the NSCL Coupled Cyclotron Facility

at Michigan State University with the S800 spectrometer [384]. A mass resolution of

1.8×10−4 has been achieved and mass accuracies on the order of 10−5 [385, 386, 387, 388].

Measurements have so far been limited to neutron-rich nuclei below iron, but it is

planned to extend the method to heavier elements in the r-process using NSCL and, in

the future FRIB. The advantage of the technique is the ability to measure a large number

of masses simultaneously within a few 100 ns and with close to full transmission from the

fragment separator producing the rare isotopes. However, accurate calibration masses
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are essential for the technique. This highlights the need for coordination among the

different technical approaches to minimize systematic uncertainties. More recently the

TOF–Bρ technique has been implemented at RIKEN-RIBF, and first measurements

have been performed with both the SHARAQ and BigRIPS spectrometers. There,

another advantage of the TOF–Bρ technique was exploited. Unlike other techniques

it does not consume the ions measured, rather, the measurements are performed along

a beam line and spectrometers where the particles enter on one side and leave on the

other. This opens up the opportunity to perform mass measurements simultaneously

with other experiments that can be performed downstream of the TOF–Bρ section,

such as decay or reaction studies. This provides a much more efficient use of expensive

rare isotope facility beam time, which is especially beneficial for r-process research as a

large number of measurements are required for which beam time is not always readily

available.

6.1.4. Multi-reflection time-of-flight spectrometer In the last few years, high-resolution

multi-reflection time-of-flight (MR-TOF) devices were introduced to ion-beam facilities

for mass measurements [389, 390, 391, 392, 393], bridging the gap between Penning trap

and Schottky Mass Spectrometry on one hand and TOF-Bρ on the other. In a MR-

TOF, a trapped ion bunch is allowed to bounce back-and-forth between two electrostatic

mirrors for a large number of cycles (>100), considerably increasing its resolving power

as compared to regular TOF devices. After a suitable amount of time, allowing the

temporal separation of the various species contained in the original bunch, the particles

are released and detected with a micro-channel plate detector. The mass of an ion

of interest is then determined from its total time-of-flight in the device compared to

the time-of-flight of a calibration ion of well-known mass. MR-ToFs are also used as

a high-resolution isobar separator for Penning traps and other experimental equipment

requiring purified ion bunches. The MR-TOF device has a relatively compact design

(size ≈1-2 m) and offers non-scanning operation reaching high mass resolving power of

m/∆m = 105 in just a few milliseconds. Devices of this type are already implemented

or under development at almost all ion-beam facilities. Several MR-TOF systems are

operational now, for example at the ISOLTRAP mass spectrometer (ISOLDE/CERN

in Switzerland), at the SLOWRI setup (RIKEN in Japan) [394], at the FRS ion-catcher

(GSI in Germany), at the CARIBU facility in ANL [395], and since 2017 also at TITAN

(TRIUMF/ISAC) [393, 396]. Furthermore, many new devices are under commissioning

or development at other facilities and experiments, such as at the PILGRIM setup

(SPIRAL facility at GANIL in France), at the University of Notre Dame [397] for the

future ANL N = 126 beam factory, at the NSCL facility at Michigan State University

in the USA, at the IGISOL facility at the University of Jyväskylä in Finland, at the

CAS in Lanzhou/China, and at the RISP/RAON facility in Daejeon/South Korea.

6.1.5. Atomic mass evaluation The Atomic Mass Evaluation (AME) is the most

reliable source for comprehensive information related to the atomic masses. It provides
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the best values for the atomic masses and their associated uncertainties by evaluating

all available experimental mass data. During the AME development process, all

the available experimental data related to atomic masses are collected and carefully

examined. It is the policy to use the experimental information as much as possible,

rather than simply adopting the final mass values from the publications. The mass

of one nuclidic species obtained through different methods often leads to multiple

relationships between masses, thus establishing a network. In many cases the mass

values are overdetermined because of a large number of measurements. A least-squares

method is employed in order to unify all individual measurements. After the publication

of AME2012 [398], the atomic mass data center (AMDC) was officially transferred from

CSNSM-Orsay to IMP-Lanzhou to continue AME.

The latest atomic mass evaluation, AME2016, was published in March 2017 in

two papers. The first article provided complete information on the experimental input

data and details on the evaluation procedures [399]. The second one presented a table

with the recommended values of the atomic masses, as well as tables and graphs of

derived quantities, together with a list of all references used [400]. Similarly to the

previous distributions, the AME2016 is accompanied by the NUBASE2016 evaluation,

which provides ground state information, including decay data, and thus a consistent

interpretation of the individual states involved in the mass evaluation [401]. The

NUBASE evaluation includes masses, excitation energies of isomers, half-lives, spins,

parities, decay modes, and their intensities, for all known nuclei in their ground and

excited isomeric states that have half lives longer than 100 ns. In AME2016, 13035

experimental data extracted from the available literature were accumulated and studied.

5675 of them are used as valid input data following the AME policy. In the AME2016

mass table, 2497 experimental masses for nuclides in their ground state are listed.

For some nuclides their existence has been demonstrated experimentally, but their

masses are still not known. These nuclides are typically two to three nuclides away from

the known mass region along an isobaric chain. To guide further research, their masses

are estimated based on the trends in the mass surface in the neighborhood and listed in

the AME mass table. In AME2016, estimated mass values are given for 938 nuclides.

6.2. Decay half-lives

β-decay half-lives are another important physical quantity to be measured for a better

understanding of r-process nucleosynthesis (see Sec. 5). While masses determine the

route of the (hot) r process under given astrophysical conditions, the β-decay half-lives

of waiting-point nuclei dictate how fast the process can proceed towards heavy nuclei

and how much material is accumulated in a given isotopic chain. In addition, in cold r-

process scenarios such as some of the ejecta in neutron star mergers, the r-process path

is determined by the competition between neutron capture rates and β-decay rates.

In the last few years scientists at RIBF in RIKEN Nishina Center in Japan have

pushed out the limits for neutron-rich isotopes more than any other facility. These
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measurements show the power of the new generation of RIB facilities in combination

with highly-efficient state-of-the-art detection setups. As a result more than 200 β-decay

half-lives were measured for neutron-rich isotopes between 72Co up to 163Pm in the rare

earth region [402, 403, 404, 405], many of them for the first time. On Jan. 15, 2018

RIKEN announced that they have discovered 73 new isotopes ranging from Mn to Er at

the BigRIPS in-flight separator, totaling the number of newly discovered isotopes in 10

years of operation at RIBF to 132. About 62 more new isotopes from recent campaigns

will be announced soon. Half-life and neutron-branching measurements are expected

for many of these isotopes from the BRIKEN collaboration.

The large-scale β-decay half-life measuring campaigns at RIKEN revealed some

surprises. First, they emphasize the necessity of cross-checking previous values whenever

possible. A striking example here is the half-life of the crucial N=82 isotope 130Cd,

which is mainly responsible for the second r-process abundance peak. Previous results

from ISOLDE using the time-dependence of the decay measured via β-delayed neutrons

resulted in values of t1/2= 195 (35) ms [406] and later in t1/2= 162(7) ms [407]. In the

recent EURICA campaign a 20% lower value of t1/2= 127 (2) ms was derived [404],

which was confirmed by the GRIFFIN collaboration at TRIUMF (t1/2= 126 (4) ms,

[408]). As discussed in Ref. [404] the systematic overestimate of the half-lives for the

N=82 isotones can be traced to the scaling of the Gamow-Teller (GT) quenching to the

previously reported longer half-life for 130Cd [407]. Increasing the GT quenching factor

from q = 0.66 to 0.75 in order to reproduce the shorter half-life resolves this discrepancy

and new predictions will yield shorter half-lives for the yet unmeasured N=82 isotones

with Z<44. Another interesting outcome from the half-life measurements of Lorusso et

al. [404] is that there is no sudden drop in half-life when crossing the N=82 shell closure

in this region (see Fig. 8).

Figure 8. Left: QRPA predictions for (ground-state) β-decay half-lives [] of isotopes

with Z=45-49 up to N=100 (lines) in comparison with experimental data (symbols).

Right: Color-coded chart of nuclides for the experimental half-lives in this region.

Most of these recent β-decay half-life measurements were focused on very neutron-

rich isotopes with A<170. A recent measurement at the Fragment Separator (FRS) at

the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany extended
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the sparse knowledge in the region “south-east” of 208Pb [409, 410]. With these new

data, new tests of theoretical predictions become possible. (The likely too long value

for the half-life of 202Pt (N=124, t1/2=44(15) h, [411]) calls for a remeasurement.)

The FRDM+QRPA [412] and the Gross Theory (GT2) model plus HFB21 masses

[413] overpredict the half-lives for N≤126 by a factor of ≈20-30. This is likely due

to the increasing contributions from first-forbidden transitions towards higher Z values

that are not self consistently included in the theory. Gamow-Teller transitions become

progressively Pauli-blocked by the filling of the πh11/2 proton orbital, which reduces

contributions from allowed νh9/2-πh11/2 transitions. This trend is inverted for N>126

which is an indication of the predominance of allowed νi11/2-πi13/2 Gamow-Teller-

transitions “south-east” of 208Pb [409, 410].

The newer RHB+RQRPA [414] seems to do a slightly better job in the “south-west”

quadrant but underpredicts most of these half-lives. As soon as one crosses the shell

closure, the trend drastically worsens and half-lives are underpredicted by a factor of 30

and more. The interpretation given in Ref. [409, 410] is “This feature may be ascribed

to a specific neutron-excess dependent ansatz for the strength of the T=0 proton-neutron

(dynamic) pairing assumed. This free parameter has a strong influence on the β-decay

strength function. This parameter was fitted to the available decay rates, which did not

include the isotopes with very high (N-Z) values studied in the present work.”.

These examples illustrate the challenges with using theoretical approaches that rely

on empirically determined parameters for extrapolation into unknown mass regions, and

the need for nuclear data to address these issues. In the following paragraphs we discuss

the different methods that have been used for measurements of half-lives. The three

different methods in Table 3 are explained, including their strengths and weaknesses.

As can be seen, short of proof of existence, half-life determinations have the highest

sensitivity of all experiments and can be performed down to beam intensities of 10−5

pps for a few weeks of beamtime.

6.2.1. Decay half-lives from the implant-correlation method The best suited method

for measuring the half-lives of the most neutron-rich and shortest-lived (t1/2<10 s)

isotopes is the implant-decay correlation technique (see Table 3). The radioactive beam

is implanted into a detector system, that detects the implantation event as well as the

decay event, most commonly via detection of the emitted β-particle. The implantation

setup can additionally be surrounded by a moderated neutron detection setup. From

the time differences between an implantation and the subsequent decay the half-life

can be determined. For background to be manageable the method requires the time

between subsequent implantations to be larger than a few multiples of the half-lives to

be measured. This is commonly achieved by segmentation of the detector system. In a

segmented system, only the rate per segment must be sufficiently low. For reasonable

segmentations (1000’s of pixels) the method is still suited to low implantation rates

and short half-lives, which is often fulfilled for r-process related measurements. Typical

detector systems can handle a few kHz implantation rates for typical r-process half-lives
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of less than a second.

The method is most commonly applied for relatively fast radioactive beams

produced by in-flight fragmentation or fission. Such beams are implanted deep into

a detector layer, enabling high efficiency for the detection of the emitted β-particle. In

addition the method can then be combined with event-by-event particle identification.

As a result the technique becomes extremely selective, and even with mixed beams the

observation of just a few (less than 10) ions enables half-life determinations with errors

of approximately factors of two to three.

For example, the astrophysically interesting 78Ni was first measured with the

technique based on the identification of only 7 ions resulting in a half-life of 110(+100
−60 ) ms

[415]. Subsequent measurements with much higher statistics have since confirmed the

half-life to be 122.2 (51) ms [403]. A significant number of new half-lives have been

determined recently using the technique that are important for r-process scenarios and

suggest new trends relative to theoretical predictions [402, 403, 404, 405]. Additional ≈
50 new half-lives are expected from the 2017 run of the BRIKEN project (see Sec 6.4.2).

In its simplest approach the emitted β− particles are detected and their correlation

in time with the implantation of the preceding ion is used to determine the half-

life. However, if beam intensities are sufficiently high, the method can be significantly

improved by detecting γ-rays or neutrons in coincidence. The most precise and least

error-prone method for the measurement of a half-life is via the time-dependence of

known γ-transitions in the decay. Ideally, the half-life is deduced as error- and intensity-

weighted average from several transitions of the same state (ground state or isomers).

This method has its limitations if the half-life is “contaminated” by an isomer or long-

lived state in the decay daughter, or if the half-lives of the ground-state and isomeric

parent isotope are too similar (example: 129Cd, see [408]). A drawback of this method

is the requirement of reasonably good statistics (>1000 events) for several γ-lines. The

method is therefore not applicable to the most neutron-rich nuclides that can be reached.

Alternatively, the time-dependent decrease of a β-delayed neutron emitter can

be a very sensitive method and has been widely used in the past for the first-time

determination of half-lives. It is particularly advantageous if the isotope of interest

is the only β-delayed neutron emitter in the experiment, i.e. if daughters and beam

contaminants are not strong neutron emitters.

A number of implant-decay correlation systems exist or are being planned for

current and future fragmentation facilities including the beta-counting system at NSCL

and eventually FRIB [416, 417]; WAS3Abi [418] and CAITEN [419] at RIKEN; SIMBA

at GSI [410]; the active stopper for the RISING campaign [420]; DESPEC AIDA at

FAIR and at RIKEN [421]; and a system at Lanzhou [422]. The technique has also been

implemented with gaseous detectors at a variety of facilities (see Ref. [423] for a recent

example).

The implant-decay correlation technique becomes progressively more difficult to

apply as the half-lives become longer and the ion production rates increase. If the

secondary radioactive ion beam is pure enough then half-life information can still be
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obtained by pulsing the accelerator with the disadvantage of the reduction in duty cycle

[424]. There have been recent developments to apply the implant-decay correlation

technique to longer lifetimes [425, 410]. The technique is promising but appears to

require a larger number of ions compared to the standard implant-decay correlations.

6.2.2. Decay half-lives from the moving-tape method For longer half-lives of the order

of a few seconds and more, the implantation of a low-energy beam onto a moving

tape made out of mylar is the method of choice. The measurement is performed in

“tape cycles” usually starting with a background measurement of a few seconds, then

the beam is implanted on the tape for a certain time (depending on the half-life of

interest). After interruption of the beam the decay is followed for several half-lives,

before the “contaminated” tape is moved away from the implantation point behind a

lead wall. Ideally, the length of the tape and tape cycles allows a ”fresh” tape to be used

throughout the experiment, so long-lived contaminations on the tape can be discarded

afterwards. Special care has to be taken if volatile elements are implanted or produced

as decay products like gases or iodine. Experiments have shown that losses due to

diffusion appear if the beam is not implanted deep enough (with enough energy) into

the tape. Aluminized mylar tapes are used for these cases. These tape stations can

then be surrounded by highly-efficient detection setups, e.g. γ-spectrometers, β-decay

stations, or even neutron detectors (in combination with a β-detector).

This method is commonly used at ISOL facilities with low energy beams (<60 keV).

An example for such a setup is the newly commissioned GRIFFIN spectrometer at

TRIUMF with its auxillary detectors [426]. Recent results from this setup include

new half-life measurements of 128−130Cd for r-process studies [408]. At FRIB it will be

possible to stop the high-energy beam in a gas catcher, extract it at 40 keV energy, and

then implant it on a moving tape system.

6.2.3. β-decay half-lives from stored ions Time-resolved Schottky mass spectrometry is

a non-destructive method based on Schottky-noise spectroscopy in circular accelerators

and storage rings. In the ESR at GSI Darmstadt [427] the ions have typical revolution

frequencies of about 2 MHz and induce in each turn mirror charges on two electrostatic

pick-up electrodes. The revolution frequency measured at these pick-up electrodes is

related to the mass-to-charge ratio of the ion and can be used to uniquely identify it.

If after a decay the daughter nucleus continues to circulate in the storage ring, the

decay can be detected by the frequency change. Hence, time dependent measurements

of frequency and intensity of the pick-up electrode signals can be used to determine the

decay half-life. Due to the restricted acceptance of the ESR only half-lives from electron

capture (EC) and isomeric decays can be measured with this method, especially those

of highly-charged ions (see e.g. Ref. [428, 429, 430]). A similar approach can be applied

to nuclei stored in a MR-TOF spectrometer (see section 6.1.4) [431].

The addition of multi-purpose particle detectors like CsISiPHOS [432] in the

respective outside or inside pocket positions of storage rings can extend this method
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to β+-, β−-, and also to α-decay half-lives. The unique advantage of measuring half-

lives in the storage ring is the opportunity to measure the influence of the charge state

on the half-life. It is well-known that in highly ionized states the decay of nuclei which

decay predominantly via EC or Internal Conversion (IC) is hindered [428, 429, 430],

whereas the bound-state β-decay in fully ionized nuclei accelerates the decay compared

to the terrestrial decay half-life [433]. However, the ultra-high vacuum conditions in the

storage ring are not identical to real “stellar” conditions, where the nuclei are immersed

in a plasma with finite electron densities.

6.3. β-decay strength functions

β-decay strength distributions provide a strong constraint to theoretical models that

predict β-decay properties. While a large amount of experimental data providing β-

intensities exists in the literature, only a limited fraction provide a reliable measure

of this important quantity due to the well known “Pandemonium effect” [434].

Pandemonium is a phenomenon that occurs when low-efficiency detection systems are

used to infer the β-intensity. Such measurements can miss significant fractions of the

low-intensity/high-energy γ emission and as a result, the β-intensity to low lying levels

is artificially enhanced. The effect is even more pronounced when moving away from

the valley of stability, where the β-decay Q-value increases and many more states can

be populated. The technique of Total Absorption Spectroscopy (TAS) was developed

as a means to overcome the Pandemonium effect (see [435] for a recent example, and

references therein for a history). The TAS technique relies on the use of a large volume,

high efficiency γ-ray calorimeter, which can detect the full energy emitted in a γ cascade,

and therefore identify the excitation energy that was fed in the β decay. Using the TAS

technique, the β-decay intensity can be accurately measured and compared to theoretical

calculations.

Several total absorption spectrometers have been developed for current and next

generation radioactive beam facilities. Newer examples of such detectors are the

Modular Total Absorption Spectrometer (MTAS) at Oak Ridge National Laboratory

[436], the Summing NaI (SuN) detector at the NSCL and FRIB [437], the Decay Total

Absorption Spectrometer (DTAS) [438] for FAIR, and others. These TAS detectors

are typically coupled with an appropriate β-decay implantation setup, as described

in section 6.2.1, either for fast beam implantation-β correlation measurements or for

stopped-beam moving-tape experiments. Depending on the setup, beam impurities,

half-lives, and other parameters, the required beam rate for such experiments can vary,

however a typical minimum requirement for extracting the β-decay intensity is of the

order of 1 pps. Many nuclei are accessible for TAS studies at current facilities and many

experimental campaigns are ongoing. In addition, experiments are planned at next

generation facilities, especially going to heavier nuclei (around N=82 and the rare-earth

region), in regions that are currently inaccessible.
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6.4. β-delayed neutron emission

β-delayed neutron emission is a common decay mode of neutron-rich nuclei, and can

become the most dominant decay process for very neutron-rich isotopes in the r-process.

If the neutron separation energy becomes smaller than the β-decay energy window (Qβ

value), the emission of neutrons after β-decay is possible. These β-delayed neutron (βn)

emitters play a crucial role in nuclear structure, nuclear astrophysics, and for nuclear

reactor applications.

The neutron emission branching ratio (Pn value) is an important physical quantity

in r-process models. During freeze-out, β-decay moves the reaction flow towards

stability along isobaric chains. βn-emitters in these decay chains can influence the final

abundance distribution in two ways: (1) the emission of neutrons leads to a transfer of

material into β-decay chains with lower mass number, thereby changing the final element

created in the r-process, and (2) the emitted neutron is thermalized and increases the

abundance of late time neutrons that may be recaptured by the decaying material. Thus

an accurate knowledge of the neutron-branching ratio and half-lives of βn-emitters is

needed for r-process models (see Sec. 5).

Neutron spectra are less important for astrophysical applications because emitted

neutrons are rapidly thermalized before they undergo a capture reaction. However,

measured in the laboratory, they serve as important diagnostics of the theoretical models

used to predict decay properties.

In general two types methods can be distinguished for the measurement of β-delayed

neutrons: the classical ones that are detecting the neutron (with or without moderation),

and indirect methods that do not detect the neutron but identify parent and daughter

nuclei.

An overview of the different methods to extract half-lives and Pn values from

data is given in the recent summary reports of the IAEA Coordinated Research

Project “Development of a Reference Database for Beta-delayed neutron emission”,

INDC(NDS)-0599, -0643, -0683, and -0735 which can be downloaded from https:

//www-nds.iaea.org/beta-delayed-neutron/. These reports (INDC(NDS)-0683, p.

11ff.) lists eight methods for the determination of the neutron branching ratio:

• (1) the “β/n coincidence method”,

• (2) the “n-β” method (separately measuring βs and neutrons simultaneously but

not in coincidence),

• (3) the method to count γ-rays in the daughter (“γ AZ+n”),

• (4) measuring relatively to a known P1n standard (“Pn
AZ+n”),

• (5) counting the number of precursors and then the amount of βn daughters by any

suitable method (“ion”),

• (6) measuring the number of precursors by fission yields and then the amount of

βn daughters by any suitable method (“fiss.”),

https://www-nds.iaea.org/beta-delayed-neutron/
https://www-nds.iaea.org/beta-delayed-neutron/
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• (7) pure γ-counting techniques to determine both the number of mothers and βn

grand-daughters (“γ-γ”), and

• (8) the ion-recoil method which includes trap measurements [439].

6.4.1. Spectra and β-delayed neutron branching ratios from traps An example of the

“ion-recoil” method (8) are measurements in a Paul trap [439, 440]. Both the β particles

emitted from the trapped ions and the recoiling daughter nucleus, are detected using

detectors that surround the trap. The time difference between the βs and the slower

recoil ions produces a time of flight spectrum which consists broadly of two peaks: one

at the longer time of flight from regular beta decay, and one from which the energy

of the emitted neutron (and the fact that a neutron was emitted in addition to the β)

can be reconstructed. The method is currently under further development at ANL. It

can be complemented with γ-detectors. The advantage of this approach is a very clean

and selective signal, the well defined large detection efficiency, as well as the ability

to determine the energy spectrum of the emitted neutrons. However, this method is

currently limited to P1n measurements, and is not feasible for multi-neutron emission.

6.4.2. β-delayed neutron branching ratios from 3He and BF3 detectors The extraction

of Pxn values from 3He or BF3 arrays with a moderator can be accomplished with

above mentioned methods (1), (2), (4), and (6). The emitted neutron is moderated

in a suitable material, typically polyethylene, and the low energy neutrons can then

be detected efficiently through 3He(n,p) or 10B(n,α) reactions in gas-filled ion counters

that detect the resulting charged particle. The “fission” method (6) relies on older, less

reliable fission yield measurements and is no longer recommended. The measurement

relative to a known P1n standard (method (4)) requires that the chosen standard has

a similar neutron energy spectrum compared to the isotope of interest. Only then the

amount of counted neutrons can be directly related to the standard. This can also be

achieved with a neutron detector that has a “flat” neutron detection efficiency curve.

Setups like NERO [441], BELEN [442] and the new BRIKEN array at RIKEN [443]

have been designed with Monte Carlo simulations to achieve a flat efficiency curve up to

≈2 MeV. In these cases the different neutron energy spectra of calibration isotopes and

isotopes of interest can be neglected as long as the underlying assumption of neutron

energies below 2 MeV is valid.

The methods of counting βs and neutrons either in coincidence or separately are

the most reliable, provided the background and the β energy-dependence of the detector

array can be well characterized. The one-neutron branching ratio P1n can be deduced

from the number of detected β decays (Nβ) and the number of detected β-neutron

coincidences (Nβn) via P1n = Nβn/(Nβ · εn). The main requirement of this method

is that the number of counted βs is free of contaminations, i.e. any background is

subtracted. If the neutron efficiency curve is constant by design, εn is a constant.

However, if the neutron energy distribution (and ergo the respective β energies) is very

different from the calibrant isotope, systematic effects arise which cannot be corrected
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without theoretical predictions (because the neutron spectrum is not typically known)

and simulations. In the coincidence method the β-n time correlation window needs to be

long enough to include also high-energy neutrons with longer moderation times. Typical

moderation time windows for modern neutron detector setups are a few hundred µs.

Since 2016 the BRIKEN project (Beta-delayed neutron measurements at RIKEN

for nuclear structure, astrophysics, and applications) focusses on the most exotic βn-

emitters which can presently be produced [443]. Several experiments were carried out

in 2017 and covered 231 βn-emitter between 64Cr up to 151Cs. For many of these

isotopes, βn-emission branching ratios have been measured for the first time, e.g. for

the doubly-magic N=50 isotope 78Ni, as well as about 50 new β-decay half-lives. More

experiments for A>150 and A<60 will be carried out in the upcoming 2-3 years, making

this experimental campaign one of the largest systematic investigation of two important

nuclear physics input parameters (half-lives and Pxn values) for modeling the r-process

nucleosynthesis.

An estimated outcome of this project is shown in the last column of Table 4. Almost

all of the previously measured βn-emitters will be remeasured, and approximately 150

new βn emitters will be added to the list of 298 known βn-emitters. Also the number of

measured multi-neutron emitters will be largely expanded. The inclusion of these new

results in astrophysical network calculations will help to reduce the uncertainty in the

calculated r-process abundances from this nuclear physics quantity.

6.4.3. β-delayed neutron branching ratios from HPGe detectors In method (3) the

abundance of the precursor is determined via γ-counting of any β-decay daughter,

followed by the detection of β-delayed neutrons. For this, absolute γ intensities have to

be known (which are not available for many isotopes). When fragmentation reactions

are used for the production of the precursor nucleus, the βn-daughter might also be

produced, as well as isomers. The γ counting then needs to be corrected to account for

this.

Method (7) is a pure γ-counting technique to determine both, the number of

mother and βn granddaughter nuclei. As mentioned before, absolute γ intensities and a

complete knowledge of the decay scheme are required, as well as the direct ground-state

feeding that can lead to neutron emission without a γ-ray. If these requirements are

fulfilled, the P1n value can be extracted from γ efficiencies εγ, number of detected γ’s

Nγ, and the γ intensities Iγ via P1n = (εγ,d ·Nγ,g ·Iγ,d)/(εγ,g ·Nγ,d ·Iγ,g), where “d” stands

for the decay daughter and “g” for the granddaughter (after βn-decay).

6.4.4. β-delayed neutron branching ratio from ion counting, e.g. in storage rings

or traps The ion-counting method (5) relies on counting the number of precursors

and βn daughters, and deducing the Pxn value from this via P1n = Nβ1n/Nion. Such

measurements can be performed in devices that store ions for a sufficiently long time

so they can decay, and that allows single-ion counting. Examples are traps [439] and

storage rings [444]. This method is completely independent of the neutron detection
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efficiency, but the efficiency of and transmission through the ion counting device has

to be carefully determined and known for both species, mother and daughter. This

method also needs corrections for βn daughters already present in the beam cocktail

and potential losses during the storage times, e.g. by reactions with rest gas particles

or atomic interactions that change the ion’s charge state.

6.4.5. β-delayed neutron spectra from neutron detectors without moderation The use of

neutron detectors that are capable of detecting MeV neutrons with reasonable efficiency

has several advantages over the use of 3He or 10B based neutron detectors described

above. The main advantage is that without moderation, the time-of-flight can be used

to measure the energy of individual neutrons. This allows the determination of neutron

spectra in addition to branching ratios. A disadvantage is the much lower efficiency

and the need to correct for the considerable detection energy threshold, typically of

the order of 100 keV, that prevents the detection of the lowest energy neutrons. The

most common type of detector used for such measurements are plastic scintillators.

Recently developed detector systems for use at rare isotope facilities include VANDLE

at ORNL [445] and LENDA at NSCL [446]. Liquid scintillator-based detection systems

are DESCANT at TRIUMF [447] and MONSTER [448] for FAIR.

6.4.6. Recent evaluation of β-delayed neutron emitters The latest Atomic Mass

Evaluation (AME2016 [400]) has identified 2451 isotopes, from which 621 are β-delayed

neutron emitters (Qβxn>0 keV). The present status (June 2017) is summarized in

Table 4, together with an estimate of new data from the ongoing BRIKEN campaign

(see Sec. 6.4.2).

Table 4. Number of identified β-delayed neutron emitters with Qβxn>0 keV (within

the uncertainties, from AME 2016 [399]) and number of isotopes where the neutron-

branching ratio has been measured but not necessarily to the required precision (Status:

June 2017, isomeric states not included). The last column gives the estimated number

of new emitters that will be measured by the BRIKEN collaboration from 2017-19.

Identified Measured Fraction (%) Isotopes BRIKEN (est. new)

P1n 621 298 48.0% 8He-216Tl ≈150

P2n 300 23 7.7% 11Li-136Sb ≈50

P3n 138 4 2.9% 11Li-31Na ≈20

P4n 58 1 1.7% 17B ≈5

About half of the identified βn-emitters have a measured P1n value, however many

of them with either large uncertainties or only as upper (or even lower) limits. The

situation gets worse when going to β-delayed multi-neutron emission which will be the

prevalent decay mode for the most neutron-rich isotopes that are produced in any r-

process scenario. Only 23 β2n emitters have been measured so far (out of 300 which

are accessible), and only four β3n- and a single β4n-emitter (17B) are known so far, all

outside of the r-process mass range in the lighter mass region up to A=31.
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All βn-emitters with an experimental value for the β-decay half-life or neutron-

branching ratio have been recently re-evaluated in the framework of a Coordinated

Research Project (CRP) of the International Atomic Energy Agency (IAEA) which

ran from 2013-2017. The new recommended values for these isotopes will be

available in a reference database on the IAEA website at https://www-nds.iaea.

org/beta-delayed-neutron/ and have been published or will be published soon. The

isotopes with Z≤28 are published in Ref. [449], and the isotopes with Z>28 are presently

under review [450].

This evaluation of the half-lives and neutron-branching ratio was performed

completely independent from the efforts in NuBase [399, 451]. While for the half-

lives both evaluations should yield almost identical results, we strongly encourage users

only to use the recommended neutron-branching ratio values from the IAEA CRP in

the reference database since the NuBase work for this quantity is only a compilation

(collection of results including extrapolated values from theory) without the detailed

evaluation work that has been done by the members of the IAEA CRP group.

Apart from the evaluated data the IAEA CRP reference database will also include

values from various theoretical predictions and semi-empirical estimates for the given

isotopes, and much more additional information like links to digitized neutron spectra.

Although the CRP finished in 2017, the evaluation effort and maintenance of the

reference database will be continued. The present database is an important basis for

the vast amount of new data on neutron-rich isotopes that is expected to be published

in the upcoming years, from running projects like the BRIKEN project at RIKEN and

then from even more neutron-rich new isotopes to be produced and investigated at the

new generation of RIB facilities which will come online in the next decade.

6.5. Neutron capture rates

Due to the lack of a suitable neutron target, or a target of unstable isotopes, determining

neutron capture rates for nuclei far from stability with short half-lives (< 1 day)

currently requires indirect techniques. Proposals have been made for a radioactive

beam in a storage ring intersecting either a nuclear reactor [452] or a neutron target

produced by ongoing spallation reactions [453], but these ideas remain a scenario for

the far future, if they are feasible at all. Indirect techniques use alternative reactions to

populate compound nucleus states that are important for the neutron capture reaction,

and reaction data can then be used to constrain the relevant properties such as neutron

and γ-strengths. A broad range of techniques is under development under the label

of “Surrogate Reactions” [454]. All these approaches require a very close interplay of

experimental work and reaction theory. An approach that has been used with an r-

process motivation are neutron transfer reactions such as (d,p) (see [455] for a recent

review). Pioneering measurements have been carried out at ORNL’s HRIBF facility

probing neutron captures on 130Sn [456] and 132Sn [457]. These reactions have so far

only been used to probe bound states relevant for the direct capture component of the

https://www-nds.iaea.org/beta-delayed-neutron/
https://www-nds.iaea.org/beta-delayed-neutron/
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reaction rate.

Resonant states are more difficult to constrain as level spacings can be small

compared to level widths, and configurations can become more complex. An alternative

approach that avoids the need to characterize individual states is to determine average

neutron and γ-strength functions, as well as level densities, that can then be used

as input in statistical model calculations of neutron capture rates using the Hauser-

Feshbach approach. Statistical model codes commonly used for r-process calculations

are TALYS [458] and NON-SMOKER [459] (or its more recent incarnation SMARAGD).

Statistical model predictions have been shown to be accurate to about a factor of 2 for

neutron capture rates on stable nuclei where data from direct measurements exist [460].

However, there are indications from theoretical calculations with a range of input models

for level densities and γ-strength functions that uncertainties blow up considerably

to orders of magnitude, just a few mass units away from stability [323]. The likely

reason is the fact that the global parametrizations that are used for strength functions

and level densities have been fitted to data near stability. A promising approach is

therefore to experimentally constrain these input quantities for neutron-rich nuclei to

enable statistical model calculations to at least achieve the same level of accuracy as for

stable nuclei.

A technique that has been recently developed with this goal in mind is the β-Oslo

method [461, 323]. In this method, a radioactive isotope is placed into a segmented

total absorption spectrometer (such as SuN at the NSCL [437]) and the β-delayed

γ-ray emission is monitored. The total excitation energy of a state populated by β-

decay is obtained from the sum of all γ-ray energies deposited in the detector from the

deexcitation cascade. Individual γ-rays originating from any of these excited states can

be identifed from the energy deposited in individual segments of the detector. From

the combination of these experimental data, the nuclear level density and the γ-ray

strength function can be extracted [462, 463, 464], which can then be used to constrain

the neutron capture cross section within a statistical model. The technique has been

applied to the neutron capture of 75Ge and 69Ni, and has resulted in a reduction of the

neutron capture uncertainties to factors of a few. The technique can be applied to nuclei

with production rates of the order of ten particles per second. The completion of FRIB

should enable the study of a significant number of the most sensitive neutron capture

rates related to the formation of the the N=82 r-process abundance peak. Further it

would allow checks on the ratio between direct and statistical neutron capture [465].

6.6. Experimental studies of fission

Although, as discussed in Section 7.2.5, information on fission rates and fragment

distributions of neutron-rich heavy nuclei is crucial to understand r-process

nucleosynthesis, little is known experimentally as well as theoretically. Pioneering work

to investigate fission fragment distributions in proton-rich nuclei [466] has demonstrated

the feasibility of fission studies with radioactive ion beams, but the information obtained
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so far is still too limited to help theorists in establishing more reliable theoretical

predictions.

Experimental approaches to study fission have recently been summarized in a

review article [467]. New experiments are proposed at RIKEN Nishina Center to

determine fission barrier heights and fragment distributions in the region of Z=82–

85. The experiments employ the (p, 2p) knockout reaction in inverse kinematics. Precise

measurements of scattering angles and energies of the two protons allow one to determine

the excitation energy in the residual nucleus using the missing mass technique. The

expected resolution for the excitation energy is 2 MeV. The residual nucleus, whether

or not fission takes places, is identified with the SAMURAI spectrometer and its focal

plane detector setup.

A new aspect in the experiments is that both Z and A of the fission fragments

are identified event-by-event and their distributions are determined as a function of

excitation energies. This provides nearly complete experimental information of nuclear

fission and will be an essential input both to r-process network calculations and to

theories of fission.

6.7. (α,n) reactions

Most current r-process models predict that the r-process site creates its own seed from

a mix of protons, neutrons, and α-particles at high temperatures. Charged particle

reactions such as 3α, ααn and (α,n) reactions on heavier nuclei create seed nuclei,

typically in the A ≈ 80− 90 mass region as the increasing Coulomb barrier makes such

reactions on heavier nuclei inefficient. These seed nuclei serve then as starting points

for the rapid neutron captures and β-decays that constitute the r-process.

While it is typically assumed that the seed production is a hierarchical freeze-out

sequence from equilibrium and therefore relatively insensitive to the individual reaction

rates (except for major bottle necks such as the ααn reaction, or rather its slower

subsequent 9Be(α,n)12C reaction), it has recently been shown that in a weak r-process

producing predominantly elements in the Sr, Y, and Zr range, (α,n) reaction rates do

affect the nucleosynthesis significantly [61]. An example is the fast-expanding (∼few ms)

neutrino-driven winds following core collapse supernovae [247]. Under these conditions,

the neutron-to-seed ratio is small, and the r-process ends in the A=80-90 region with the

final abundances produced by a mix of (α,n) reactions, neutron captures, and β-decays.

Recent studies [335] show that (α, n) reactions can have a strong impact on the synthesis

of Sr-Zr elements at temperatures between ∼2−5 GK (see also Sec. 5). The most

important (α, n) reactions involve neutron-rich nuclei about ∼ 2−10 neutrons away from

stability in the region between Ga and Sr. Unfortunately, none of the important (α, n)

reaction rates are experimentally known at T∼2−5 GK [335], and must consequently

be calculated with reaction codes like e.g. TALYS [458] and NON-SMOKER [459].

Recent studies have shown that the theoretical uncertainty of calculated rates for these

reactions can reach factors up to 10 in the range of temperatures relevant for the α
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process [468] (see Sec. 7.1.5). These results emphasize the need to experimentally study

the relevant (α, n) reactions in detail.

As the importance of (α,n) reactions in the weak r-process has only been discovered

recently, experimental work has only just begun. The required neutron-rich low energy

beams are not too far from stability, and some are available with sufficient intensity

at existing facilities. A first program to measure these reactions has started at MSU’s

NSCL ReA3 facility that provides reaccelerated radioactive beams at low astrophysical

energies. A first experiment using a He gas cell and the newly developed HABANERO

neutron detector has been carried out and is currently under analysis. HABANERO is

a 3He- and BF3-based long counter with a polyethylene moderator matrix, similar to

NERO [441]. The main difference is a redesign optimized for higher energy neutrons

from reactions in inverse kinematics that provides a relatively constant efficiency up to

20 MeV.

In the future, there are also opportunities for measurements at other facilities such

as TRIUMF/ISAC or ANL/ATLAS. Alternative detection methods to be explored may

involve active targets such as the NSCL Active-target Time Projection Chamber (AT-

TPC) [469] or the ATLAS MUlti-Sampling Ionization Chamber (MUSIC) [470], possibly

in conjunction with neutron detectors [471].

7. Theoretical methods

The majority of data used in r-process calculations have to be obtained from theoretical

models. For the “hot” r-process, experimental β-decay half-life measurements have

reached the r-process path only up to around A<140. For masses and β-delayed neutron

emission branching ratios a much smaller number of nuclei have been reached. There is

no experimental information available on neutron capture rates, fission rates, or fission

fragment distributions in the r-process. Even when selected observables such as half-

lives or masses are measured, they need to be corrected for astrophysical conditions.

For the “cold” scenario, the r-process path runs near the neutron dripline completely

outside of current experimental reach (though as the r-process progresses, the path shifts

closer to stability were some data are available). With continued experimental efforts at

RIKEN, and in later years with the new generation of radioactive beam facilities now

under construction, the amount of experimental data available for r-process studies will

increase dramatically. For example, more than 200 β-decay half-lives were measured

and remeasured for neutron-rich isotopes between 72Co up to 163Pm by the EURICA

collaboration at RIKEN (see Sec. 6.2). The ongoing experimental campaigns of the

BRIKEN collaboration (see Sec. 6.4.2) are expected to complement this dataset with

more half-life measurements of neutron-rich isotopes, as well as a (re)measurement of β-

delayed neutron branching ratios for nuclei with A=30−210. In 2017 alone the BRIKEN

experiments have covered 231 βn-emitters between 64Cr up to 151Cs, many of them for

the first time, as well as about 50 new β-decay half-lives.

Nevertheless, depending on the astrophysical models, some sections of the r-process
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path, such as the heavy-element fission region, are going to remain out of experimental

reach. In addition, theoretical corrections for the astrophysical environment will

always be required. Nuclear theory will thus always be an integral part of r-process

studies. Of key importance will be to take full advantage of experimental capabilities to

improve theoretical predictions, and the reliable characterization of the uncertainties

of theoretical predictions - also guided by data. With new experimental data on

neutron-rich nuclei, and advanced uncertainty quantification techniques, astrophysical

information can be extracted from observations in a fully quantitative way.

7.1. Theoretical data in current r-process models and their limitations

Theoretical predictions of masses, decays, neutron capture rates, and fission-related

observables have made great strides. However, astrophysical r-process model

calculations do not typically employ the most cutting-edge nuclear theory. There are

two chief reasons for this:

(1) Progress in nuclear theory often does not translate into improved predictions for

global data sets that include all nuclei. Such consistent global data sets are required for

astrophysical calculations. The challenge is that advanced theoretical approaches are

often only possible in limited regions of the nuclear chart, or they are computationally so

expensive that global calculations are not feasible. Nevertheless, the generation of new

large-scale datasets should be accelerated. In addition, opportunities to benchmark and

then improve global theoretical surveys using computationally more demanding smaller-

scale simulations should be exploited in order to ensure that progress in nuclear theory

has its full impact on nuclear astrophysics.

(2) Predicted observables are often strongly correlated. This requires a consistent

recalculation of all datasets once improvements in a global model are made. For example

masses, through the corresponding Q-values, affect predictions of decay properties,

neutron capture rates, and fission properties. Many current r-process models still rely

on the FRDM mass model from 1995 [472] or the HFB-21 mass model from 2010 [473],

despite newer versions being available. One reason is that the available decay and

reaction rate datasets are based on the older mass models. A capability to timely update

global datasets used for r-process calculations is needed. This would also facilitate

sensitivity studies, where variations in one nuclear quantity should be propagated to

other observables, see Sec. 5.

7.1.1. Masses Nuclear masses are crucial for r-process simulations for any

astrophysical scenario (see Sec. 5.1). As many of the relevant nuclei are out of

experimental reach, present r-process model calculations must rely on global mass

models. The most commonly used mass models in current r-process simulations are the

finite range droplet model FRDM 1995 [472] (though there is a newer version FRDM

2012 [330]), the Hartree-Fock Bogoliubov mass model series with the most commonly

used HFB-21 version [473] (though HFB-31 is the most recent model [474]), the Duflo-



Connecting RIB facilities with the cosmos 72

Zuker (DZ) mass formula [475], and the more recently developed WS3 mass formula

[476]. The FRDM is a microscopic-macroscopic approach and HFB-n is rooted in

a self-consistent mean-field approach with some phenomenological corrections added;

in both cases parameters are globally optimized to experiment. The rms deviations

from experimental masses typically range from 500−700 keV for FRDM and HFB-n to

300−400 keV for WS3 and DZ [321]. These deviations are significantly larger than the

≈100 keV uncertainty required for astrophysical applications.

However, as all mass models are fitted to experimental data, the rms deviation

only provides a lower limit of the model uncertainty in predicting unknown masses.

Rather, the predictive power of the models towards more unstable nuclei is the key

criterion to assess the quality of a mass model for r-process studies. This predictive

power is difficult to determine. One approach is to compare models to new masses

that were not known at the time the mass prediction was published. The most recent

study of this type has been performed in Ref. [477] who compared the performance

of 10 different models for the masses measured before and after the AME2003 mass

evaluation. The study has some limitations: it does group nuclei by mass region, but

does not look specifically at neutron-rich nuclei of relevance for the r-process. It also

includes mass models developed after 2003, for which the new masses were used in the

mass fit. Nevertheless it is clear that the mass models such as FRDM 1995 or HFB-21

show only a limited increase in rms when compared to new masses (up to about 20% or

100 keV), while phenomenological mass formulae with their lower overall rms deviation

show much stronger increase in relative and absolute errors. In fact, the paper finds an

interesting anti-correlation between global rms mass deviation and extrapolation quality,

with the models with the worst rms deviations compared to known masses performing

the best in terms of extrapolation. This demonstrates the inadequacy of the rms mass

deviation as a measure of global quality of a mass model. Indeed, if a model does

not have sound microscopic foundations it cannot be trusted when it comes to huge

extrapolations outside the experimentally-known regions.

Another challenge is that progress in mass measurements towards more neutron-rich

nuclei has been slow. For this reason, studies of mass model extrapolability are based

on a small number of masses of nuclei located just a few mass units away from the

masses used to optimize the model. They do therefore not necessarily provide a reliable

estimate for the predictive power of mass models in the r-process path that can be 10

or more mass units away. Mass measurements at the new generation of rare isotope

facilities will dramatically change this picture. With the large number of new masses

of neutron-rich nuclei expected from these facilities we will be able to quantify better

the predictive power of the global mass models used in r-process simulations. In this

respect, as discussed in Sec. 7.2.1, modern statistical tools such as hierarchical Bayesian

approaches utilizing our prior knowledge of systematic trends in mass residuals, can

significantly improve quality of extrapolations based on global microscopic models.

Another approach to assess the predictive power of current theory is to assess the

spread of predictions using different models that have demonstrated good reproducibility
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r-process	

FRIB	reach	

Figure 9. Two-neutron separation energies (S2n) of Gd isotopes obtained in various

mass models often used in r-process simulations shown relative to DZ mass formula

predictions. The experimental values from AME2016 [399, 400] are also shown. The

gray band marks the important region suggested by the sensitivity studies for a typical

hot r-process [321]. The reach for mass measurements at FRIB (assuming an intensity

limit of around 10−3 pps) is also indicated.

of known masses. Another measure of a mass model’s performance is its ability to

reproduce important binding energy differences such as neutron separation energies or

Q-values for β-decay. For such quantities, the model performance is often significantly

better compared to masses as many systematic theoretical errors are expected to cancel

out.

Figure 9 shows a typical example of the current theoretical situation, using the

two-neutron separation energies S2n of the Gd isotopes and mass models often used for

r-process simulations. In general, mass predictions are consistent where experimental

data are available.

A few mass units past the last measured point, as one enters the region of

interest for the r-process, differences between models increase significantly. Nevertheless,

discrepancies stay within about 800 keV for about 24 mass units across the r-process

path. Around the N = 126 shell closure and towards the neutron dripline, differences

between S2n values become much larger and can reach up to 2 MeV. While this may

provide some indication of the expected uncertainties, it is not necessarily a reliable

measure. Uncertainties may be overestimated because of one low-performing model, or

uncertainties may be underestimated because not all models shown in Fig. 9 are based on

similar phenomenology near stability. An indication for the latter is the good agreement

between mass models near stability, despite large discrepancies with data. Such model
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dependencies introduce an appreciable nuclear physics uncertainty into calculation of r-

process abundances, especially because mass errors exponentially impact the half-lives.

See for example Refs. [321, 478, 329] for r-process model calculations based on different

mass models.

7.1.2. β-decay half-lives In a hot r-process, β-decay half-lives determine, for a given

reaction path, the speed at which the r-process can create heavier elements and the

abundance pattern that is created along the path (with more abundance accumulating

where the decays are slow). For a cold r-process, the competition of β-decay and neutron

capture directly determines the reaction path. Sensitivity studies indicate that β-decay

half-lives need to be known to at least a factor of 2 (see Sec. 5).

There are two global sets of theoretical predictions of β-decay half-lives that are

currently used in most r-process calculations: the QRPA model of Ref. [412] and the

gross theory model of Ref. [479]. The half-life predictions depend strongly on the mass

model used. Datasets available for r-process calculations include the QRPA predictions

based on FRDM 1995 masses, and gross theory predictions using the HFB-21 mass

model (see Sec. 7.1.1).

The performance of the two approaches is comparable when it comes to the

reproduction of measured β-decay half-lives of neutron-rich nuclei [321]. For short-

lived nuclei with half-lives below 1 s, deviations from experiment are within about a

factor of 10. For very short-lived nuclei below a few 100 ms, the accuracy becomes

somewhat better. Predictions for short-lived nuclei are more reliable because the larger

Q-value window enables contributions of many transitions, and reduces the sensitivity to

the excitation energy of a particular transition (which depends on (Qβ−Ex)
5). Clearly,

theoretical accuracy is still far from the desired factor of 2. Note, however, that these

deviations are due to a combination of mass uncertainty and intrinsic model uncertainty

as for most experimental half-life data far from stability no mass measurements have

been carried out.

While the majority of β-decay half-lives for r-process models needs to be predicted

theoretically, the number of available experimental β-decay half-lives is steadily

increasing with new rare isotope production capabilities coming online. One issue with

some of the experimental half-lives is the possible existence of isomers. In this case, the

measured half-life may be related to a long-lived excited state, or it may be a mixture

of ground and excited state decays. It is not always possible to clarify this aspect

experimentally and theory is needed to provide guidance. Even if the ground state

half-life has been measured, it needs to be corrected for possible decays from excited

states that can be thermally populated in the hot astrophysical environment where

the r-process occurs. For nuclei far from stability, where Q-value windows are large

and many allowed transitions are typically possible, such a correction for thermally

populated excited states is expected to be smaller than in some cases near stability.

Initial estimates indicate that the effects of excited state β-decays can be significant

enough to affect final r-process abundance distributions [480].
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7.1.3. β-delayed neutron branching ratios In addition to predicting the β-decay

strength function, models of β-delayed neutron emission must describe the competition

between the neutron emission and the γ-ray de-excitation of excited states above the

neutron separation energy. Another challenge is to understand the competition between

the different neutron emission channels (β1n, β2n, β3n...), especially in light of the lack

of experimental data (as discussed in Sec. 6.4.6).

The QRPA approach can be employed to compute the Gamow-Teller (GT) strength

used to predict β-delayed neutron emission. Here, the standard is the QRPA model

[481, 412] using masses from FRDM 1995. The model from 2003 [412] combines GT

QRPA calculations with an empirical spreading of the quasi-particle strength and the

gross theory for the first-forbidden part of β-decay. This model is still widely used in the

community for inferring neutron-branching ratios for r-process studies. In Fig. 10 the

ratio between the measured P1n values relative to the QRPA predictions from Möller

2003 [412] are shown for the N=50, 82, and 126 regions. The experimental values are

generally reproduced within a factor of 5.

Current models typically assume that there is no competition between the various

de-excitation channels (γ-, one- and multi-neutron emission), and allow as many

neutrons as energetically possible to be emitted. Thus the predicted average number of

emitted neutrons is always overestimated.

The recent approached are these of Refs [414, 318]. In both cases, excited states

are obtained within the proton-neutron QRPA. An improvement is to combine the

theoretical β strength with emission cross-sections provided by a statistical model to

include the competition of γ-rays with neutron emission above Sn. In the model of

Ref. [318], the Hauser-Feshbach formalism is used to estimate γ spectra as well as

delayed particle spectra and probabilities. It predicts that on average more β-delayed

neutrons are emitted for nuclei near the neutron drip line compared to models that do not

consider the statistical decay. Figure 11 compares the aforementioned three models with

experimental data for isotopes around the doubly-magic 132Sn. For these six isotopic

chains, very different behavior can be observed. For indium (Z=49) the experimental

trend with the sudden jump at N=84 is reproduced until the β2n emission channel

opens. For tin (Z=50) and antimony (Z=51) all theoretical models predict a even-odd

staggering which is not reproduced by the data. This figure is just one example that

shows the necessity to improve theoretical models and their predictive power towards

β-delayed neutron emission in the r-process.

In the absence of reliable theory, phenomenological models using systematics

[482, 483, 484, 485] provide a better description of the available data and may

even allow a short-range extrapolation of P1n values of a few mass units. However,

these phenomenological models do not have the predictive power needed for r-process

applications. The large amount of new data on β-delayed neutron emission expected

from rare isotope beam facilities (see e.g. Sec. 6.4.2) will provide a unique data set

needed to asses the predictive power of various approaches.
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Figure 10. Ratio of measured and theoretical P1n ground-state values from Ref. [412]

for the N=50, 82, and 126 regions.

7.1.4. α-decay In principle, r-process models also include α-decay, which can become

relevant in the actinide and superheavy element region. If not available experimentally,

these rates are often estimated using phenomenological expressions based on the Geiger-

Nuttall α-decay law [486, 487]. α-decay is mostly important after freeze-out when heavy

elements decay back into long-lived actinides, Pb, or Bi. However, it is not clear whether

the final results are sensitive to the rates.

7.1.5. Neutron capture and (α, n) rates Neutron capture rates in r-process simulations

are exclusively based on the Hauser-Feshbach statistical model. The most commonly

used models are TALYS [458], which employs microscopic level densities and strength

functions, and NON-SMOKER [459], which uses phenomenological descriptions of these

important input parameters. Rate datasets from TALYS go beyond a compound nucleus

approximation and also include direct capture and pre-equilibrium capture effects. For
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Figure 11. Comparison of measured and theoretical P1n ground-state values from

Refs. [412, 414, 318] for isotopes with Z=47-52.

stable nuclei, where neutron capture data are available, these models can predict neutron

capture rates with typical uncertainties of around a factor of 1.4, which can increase

near shell closures to about a factor of 2 or more [460, 321]. These uncertainties would

be acceptable for r-process model calculations [321]. However, uncertainties for neutron

capture rate predictions for unstable nuclei are more difficult to estimate. Comparisons

between predictions of the two codes indicate differences that quickly increase with

neutron number and can reach up to 3 orders of magnitude (though some of this may

be due to differences in predicted masses; see also Sec. 6.5).

Another approach is to vary within TALYS various models for level density, γ-

strength functions, and optical model potentials. While the predictions with the different

options agree within a factor of a few for capture rates near stability, the differences

quickly increase to 1-2 orders of magnitude just a few mass units away from stability

[323]. Level densities and γ-strength functions seem to be particularly important.

The situation is similar for (α,n) reactions [468]. In this case, however, the most

important source of uncertainty is the α-nucleus optical potential [468, 488]. Figure

12 compares the TALYS-calculated reaction rates of 86Se(α, 1n)89Kr at temperatures

between 1 GK and 10 GK using different optical-potential models. As can be seen,

the differences in the reaction rates increase rapidly at low temperatures. Besides α-

nucleus optical potentials, there are technical aspects intrinsic to the reaction codes

that can introduce additional uncertainties. For instance, while TALYS can calculate

the exclusive reaction channels (α,×n), which must be explicitly included in network

calculations, the NON-SMOKER rates are inclusive [468]. Another important aspect

that needs to be investigated is the role played by reaction mechanisms that go beyond
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Figure 12. TALYS rates for the reaction 86Se(α, 1n)89Kr calculated using the

alpha optical-potentials from the TALYS global model (red solid line), the McFadden

and Satchler model (MS), and three versions of the Demetriou-Grama-Goriely model

(DGG1, DGG2, DGG3). The rest of the nuclear inputs are taken from the packet

TALYS 1 explained in Tables I and II of [468]. All the rates are normalized to the

results obtained using the packet TALYS 1.

the Hauser-Feshbach formalism, such as direct or pre-equilibrium components.

7.1.6. Fission rates and yields Fission plays a critical role in most r-process models.

Neutron-induced fission provides a natural endpoint of the r-process that most models

predict to lie in the A≈260 mass region. Neutron-to-seed ratios in neutron star merger

r-process models are predicted to be large enough to not only reach this mass region,

but also to undergo so-called ”fission (re)cycling” [316], where the fission fragments

serve as new seeds for the r-process. Fission cycling has been proposed as a possible

explanation for the apparent robustness of the r-process indicated by observations of

r-process signatures in metal-poor stars [489] (see Sec. 2.1.2). Systematic sensitivity

studies have not yet been performed for fission rates in the r-process. r-process model

calculations with different fission model predictions indicate a significant impact on the

final abundance distribution [490, 337, 491].

The most important fission mechanism is neutron-induced fission during the r-

process. β-delayed fission plays a role when heavy nuclei decay back to stability and

can for example affect the final U and Th abundances [65]. Both mechanisms are

governed by fission from excited states. The key observables here are fission rates, and

fission fragment distributions.

Only recently have r-process models begun to incorporate comprehensive models

for fission rates and fragment distributions. One commonly used set of rates for neutron

induced [492] and β-delayed fission [493] uses the statistical model code SMOKER

and the same QRPA model used for the β-decay rate set of [412], respectively. A

variety of schematic approaches utilizing computed fission saddle points obtained in
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various mass models are employed to generate fission rates [412, 494, 490]. Fission

fragment distributions are typically obtained from simple parametrizations, often guided

by limited experimental data (see for example Ref. [337] for a brief overview).

7.2. Developments in nuclear theory

7.2.1. New mass predictions Most of the masses of nuclei that are required for the

r-process element abundance calculations come from theoretical models. Theoretically,

there has been exciting progress in global modeling of nuclear properties, greatly

facilitated by high-performance computing. A microscopic tool that is well suited to

provide quantified microphysics throughout the nuclear chart is nuclear DFT [495].

The in-medium effective interaction of DFT is modeled in terms of the energy density

functional (EDF), whose parameters have been fit to measured mass data and other

global nuclear properties [340, 496, 474, 497, 498, 499, 500, 501]. This approach

is capable of predicting a variety of observables needed, and is able to assess the

uncertainties on those observables, both statistical and systematic [342, 502]. Such

a capability is essential in the context of making extrapolations into the regions where

experiments are impossible.

A basic test of any EDF parameterization is its ability to reproduce binding energies

and other basic nuclear properties across the nuclear chart. The overall rms deviation

between theoretical and experimental masses for A=16-250 is 500 keV or greater

[474, 497, 499]. Currently, the best overall agreement with experimental masses obtained

with the Skyrme-like EDF is 0.561 MeV (HFB-31) [474]. However, this excellent result

was obtained at a price of several corrections on top of the EDF used.

The binding energy residuals (i.e., differences between experimental and theoretical

values) for the 520 even-even nuclei are shown in Fig. 13 for SLy4 [332] and UNEDF0

[333] EDFs. A pronounced systematic trend is seen for SLy4. By contrast, carefully

optimized UNEDF0 shows a much flatter behavior, while simultaneously reducing the

mass residuals: from rms deviation of 4.80 MeV in SLy4, to 1.45 MeV in UNEDF0. By

inspecting Fig. 13 it is apparent that – while the global trend of binding energy residuals

in UNEDF0 has been improved – significant systematic variations remain.

To quantify this, Fig. 14 shows two-neutron separation energy residuals. The rms

deviations of S2n for SLy4 and UNEDF0 are, respectively, 0.99 and 0.76 MeV. This

improvement is expected as some systematic uncertainties cancel out in binding energy

differences. For the subset of heavy nuclei (A ≥ 80), the rms variations are 0.85 MeV

for SLy4 and 0.45 MeV for UNEDF0.

In the context of the r-process, the challenge is to carry out reliable model-based

extrapolations into the neutron-rich region where experiments are not available. To

improve the quality of theoretical input, advanced statistical techniques of uncertainty

quantification must be used.

If the experimental mass (or binding energy) mexp(Z,N) is known, it can be related
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520 even-even nuclei [333]. The DFT results were obtained with functionals SLy4 (top)
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Figure 14. Similar as in Fig. 13 but for two-neutron separation energy residuals

to the model prediction mth(Z,N) via:

mexp(Z,N) = mth(Z,N, θ) + δ(Z,N), (3)

where θ is the vector of model parameters and δ(Z,N) is the mass residual, which can be

further split into the systematic part due to imperfections of the nuclear physics model
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(incorrect model assumptions, uncontrolled simplifications, etc.) and the statistical

uncertainty stemming from uncertainties on model parameters θ and experimental

errors. In the following, we neglect the experimental errors on masses as those are

usually well below theoretical uncertainties. In general, the problem is to calibrate the

model (i.e., estimate θ), predict the mass of isotopes inside and outside the range of

experimental data, and estimate the uncertainty of the prediction.

The statistical uncertainty can be estimated by means of the linear regression

technique [342, 503, 504, 505, 506] or Bayesian inference methods [502, 507]. By

propagating theoretical statistical uncertainties to unknown neutron-rich nuclei, one

concludes that – apart from the few closed-shell, waiting-point nuclei – the statistical

error on the position of the dripline is on the order of 15 to 20 nucleons [502].

The systematic uncertainty on masses and separation energies can be estimated by

comparing predictions of different DFT frameworks and different EDF parametrizations

[340, 498, 500, 501]. The resulting error on the dripline position is comparable to the

statistical uncertainty. Such a strategy has been employed in Ref. [329] to estimate

mass-related systematic uncertainties on r-process abundances by using a well-defined

set of different EDFs to create a range of mass predictions.

One can do much better by taking advantage of modern statistical tools. Current r-

process simulations utilize predicted masses, mth(Z,N, θ), whenever experimental data

are not available. A more powerful strategy is to estimate residuals δ(Z,N) of Eq. (3)

by training the corresponding emulator on the set of known masses using hierarchical

Bayesian approaches, such as Gaussian processes, neural networks, or frequency-domain

bootstrap [508, 509, 510, 511, 512, 513, 514, 515, 516]. The unknown masses (or other

theoretical quantities needed such as β-decay rates [517]) are then obtained from Eq. 3

by combing the theoretical mass prediction and estimated residual. Of course, the

quality of a theoretical mass model is important when making such extrapolations. It

is essential that the model

• is global (i.e., can be applied throughout the nuclear chart);

• is capable of reproducing known global nuclear properties (such as the emergence

of shell structure);

• is based on an effective nuclear interaction, which makes the extrapolation in isospin

and mass number meaningful.

In this respect, nuclear DFT applying quantified EDFs is the method of choice. It

is worth noting that by developing reliable emulators for δ(Z,N), which take into

account correlations between masses of different nuclei, one can significantly refine mass

predictions and estimate uncertainties on predicted values [513, 515, 516].

Naturally, by studying the surface of residuals δ(Z,N) one can learn a great deal

about the deficiencies of the model itself. This information is crucial for developing

higher fidelity models. Meanwhile, there are other ways of reducing the calculated mass

uncertainty. For instance, it may be possible to decrease the mass residuals locally

by fine-tuning model parameters to selected regional data. Such a strategy has been
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successfully employed in heavy nuclei [518]. More systematically, new EDFs for r-

process studies can be obtained by assigning higher weights to observables in neutron-

rich regions during the optimization process [341]. In this respect, experimental masses

measured at RIB facilities will greatly add to the data set that can be used in such fits,

however, see also Ref. [502].

A significant challenge for nuclear theory is its predictive power for odd-A and

odd-odd nuclei as the currently employed EDFs do not have the necessary spectroscopic

quality [519, 497, 520, 521, 522, 523, 524]. Moreover, the odd-even staggering of binding

energies is only roughly reproduced by the current pairing functionals [525, 526, 527].

Clearly, novel pairing functionals are called for to describe pairing in neutron-rich

systems [528, 529, 530, 531, 532]. While the pairing EDF optimization often employs

data on odd-even binding energy differences, it has recently been pointed out [533] that

the pairing-rotational moments of inertia, extracted from binding energy differences

of even-even nuclei (hence free from ambiguities attributed to odd-mass systems), are

excellent pairing indicators.

7.2.2. New approaches to β-decay Modern large-scale calculations of β decay based on

the proton-neutron QRPA begin with the work of Ref. [412] within the macroscopic-

microscopic model. Other approaches used include the extended Thomas-Fermi plus

Strutinsky integral method [534] and nuclear DFT with Fayans [535], Skyrme [536, 537],

Gogny [538], and covariant [539, 540] EDFs. In Ref. [414], global β-decay rates,

including first-forbidden transitions, have been carried out in the covariant DFT+QRPA

approach, with the approximations that all nuclei are spherical and that odd-A and odd-

odd nuclei can be treated as even-even systems but with the expectation value of the

particle number operator constrained to an odd number of protons and/or neutrons.

Recently, Ref. [541] employed a newly developed finite-amplitude method (FAM)

for solving proton-neutron QRPA equations [542] for almost all neutron-rich even-

even spherical and deformed nuclei in Skyrme DFT. They used experimental β-decay

rates and energies of Gamow-Teller and spin-dipole resonances to optimize previously

unconstrained parameters in the charge-changing time-odd part of the functional that

have no effect on the ground-state properties of even-even systems. More recently,

the FAM+DFT calculations were extended [322] to odd-even and odd-odd nuclei in

the “equal filling” approximation, which includes some of the polarization of the even-

even nuclear core by the valence nucleon(s) [521]. They optimized Skyrme parameters

locally in the rare-earth and A = 80 region and investigated the consequences of newly

calculated rates for r-process simulations.

The β-decay half-lives calculated in nuclear DFT [414, 541, 322] are fairly similar

to those obtained in other global calculations. Figure 15 from Ref. [541] compares

predictions of half-lives grouped by half-life range for a number of different models: the

first nine from Ref. [541] with different methods for fitting the parameters of the time-

odd Skyrme EDF, and the remaining ones from prior work. All these computations yield

predictions of similar quality. Some improvements are expected by refining EDFs used in
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Figure 15. Comparison of the mean and standard deviation of the lg t values for

several EDF models of Ref. [541]. The results from prior work are contained in [412]

(Mö), [543] (Ho), [544] (Na), [517] (Co), and [414] (Ma). Only even-even isotopes are

considered. (From Ref. [541].)

β-decay calculations, especially in the spin-isospin sector. It is to be noted, for instance,

that tensor terms were neglected in the calculations of Refs. [541, 322]. Another option

will be to include more correlations than the ones included in the QRPA. Although

some beyond-QRPA schemes have been proposed [545, 546], they are restricted thus far

to spherical nuclei. The next few years should see the development of such schemes and

their application to decays across the isotopic chart.

7.2.3. Improved predictions of β-delayed neutron emission A review of models used to

describe β-delayed neutron emission can be found in the Appendix 2 of Ref. [547]. The

current leading global models based on QRPA and Hauser-Feshbach approach [414, 318]

are discussed in Sec. 7.1.3 around Fig. 11.

As indicated in Sec. 7.2.2, global models of β- decay, based on microscopic

DFT+QRPA and EDFs that have been optimized to charge-exchange processes, are

now becoming available. Importantly, some of these models include the contributions of

the forbidden transitions on equal footing with allowed GT transitions. It is anticipated

that those modern DFT+QRPA frameworks, such as the FAM+DFT approach [322],

will be used to globally predict half-lives and Pxn-values of neutron-rich nuclei.
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7.2.4. Improved predictions of capture rates The statistical Hauser-Feshbach theory

[548] is the commonly used tool to generate theoretical reaction rates for the r-process.

This theoretical framework is suitable for the description of reactions involving the

decay of nuclei excited at a sufficiently high energy to contain a large number of levels

per MeV. When this condition is met, an energy-averaged reaction cross section in the

region of highly overlapping resonances is meaningful. The main source of physics-

related uncertainty in the calculated reaction rates is the modeling of the formation and

decay of the excited compound nucleus through the respective transmission coefficients.

Such calculations use nuclear level densities to describe the excitation of each compound

nucleus, optical potentials to describe the emission or absorption of particles, and γ-ray

strength functions to describe the emission of γ-rays. In the Hauser-Feshbach picture all

energetically possible reaction channels are in statistical competition with a probability

evaluated by dividing over the sum of transmission coefficients for all channels. In the

context of r-process nucleosynthesis (α,n) and (n,γ) reactions are of particular interest.

Neutron capture rates are sensitive to the parameters that describe the formation

of the compound system and its decay by γ-ray emission. The calculated reaction

rates strongly depend on the nuclear level density and γ-ray strength, and much less

on the choice of the neutron-nucleus optical potential [549, 465]. The Hauser-Feshbach

approximation is valid in the limit of high density of resonances in the compound system.

If this condition is not met, a procedure based on the generation of statistical resonances

can be used [550]. This technique is more realistic than Hauser-Feshbach approach for

neutron-rich nuclei or at low energies.

The nuclear level density is often approximated through the back-shifted Fermi-gas

formalism [551]. Microscopically, several approaches have been proposed that relate the

level density to the actual Hamiltonian, or density functional. Within nuclear DFT, the

combinatorial model [552, 553, 554] predicts the experimental low-` neutron resonance

spacings and provides a reliable extrapolation at low energies. Another DFT-based

approach to nuclear level density is finite-temperature DFT [555], see Ref. [556] for

recent applications. The above approaches are of particular interest if one’s goal is

to provide the global nuclear structure input for r-process simulations based on one

consistent framework (here: DFT).

Hamiltonian-based approaches include the schematic pairing model [557] and the

finite-temperature shell model quantum Monte Carlo approach [558, 559, 560, 561, 562,

563], recently enhanced to circumvent the odd-particle sign problem. This method has

been applied to deformed heavy rare-earth nuclei and provides good agreement with

experimental data obtained by various methods, including level counting at low energies,

charged particle spectra and Oslo method data at intermediate energies, neutron and

proton resonance data, and Ericson’s fluctuation analysis at higher excitation energies.

(n,γ) rates in the r-process strongly depend on the photon de-excitation probability,

which is related to the γ-ray strength function. Here, large-scale DFT+QRPA

calculations of the E1 strength function for the r-process were carried out with Skyrme

[564, 565, 566], Gogny [567], and covariant [568] EDFs. In addition to E1, a low-energy
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enhancement of the radiative M1 strength function is also anticipated [569, 570] in the

large-scale shell model. So far, no global DFT+QRPA calculations of both, the M1 and

E1 strength have been carried out.

7.2.5. Advances in fission theory Fission impacts the formation of heavy elements

through the recycling mechanism [571, 317, 572, 493, 573, 574, 5, 489, 575, 490, 338].

Information on fission rates and fission yield properties are thus key ingredients of r-

process reaction network calculations.

Unfortunately, a comprehensive, microscopic explanation of nuclear fission still

eludes us due to the complexity of the process [576]. This fundamental nuclear decay

is an example of a quantal large-amplitude collective motion. During fission, the

nucleus evolves in a multidimensional manifold of collective coordinates, often through

a classically forbidden region. The resulting evolution can be understood in terms of the

competition between the static structure of the collective manifold and the stochastic

dynamics involving transitions between mean fields with different intrinsic symmetries.
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Figure 16. Nuclear DFT approach to fission. Calculations are based on

quantified density functionals optimized for large deformations, such as UNEDF1 [577]

(upper left) and state-of-the art numerical techniques. Large-scale calculations in

multidimensional collective spaces are needed to produce accurate potential energy

surfaces, which enable us to identify the multiple fission channels [578, 579] (lower

left). Based on this information, dynamical simulations are carried out [580, 581]

(upper right) to calculate fission properties [582, 583] (lower right).
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The goal of modern nuclear theory is to obtain a comprehensive understanding of

the nuclear fission process by taking advantage of state-of-the-art theoretical techniques

and advanced computational tools, including the leadership-class computers [584].

Figure 16 presents key elements of the microscopic approach to fission within nuclear

DFT. The quality of a DFT calculation relies an underlying energy density functional. A

significant effort has been devoted to develop validated energy functionals that produce

correct physics at large shape elongations [585, 586, 587, 577], advance numerical

techniques and tools that would facilitate constrained DFT calculations, and benchmark

theoretical models of fission [588].

A starting point in many approaches to fission is the capability to compute

accurate multidimensional potential energy surfaces (PES), and use them to predict

observables such as fission half-lives or fragment distributions. The methodology to

compute multidimensional PESs and corresponding collective mass (inertia) tensor is

in place. It allows us to characterize competing fission pathways and compute the

collective action [589] needed to predict half-lives and properties of fission fragments. It

is worth noting that calculations of self-consistent PESs in many-dimensional collective

spaces are computer intensive; hence, massive parallel computing platforms must be

used. In practice, one considers the nuclear collective coordinates associated with shape

(elongation, triaxiality, mass asymmetry, necking) and pairing (proton and neutron

pairing gaps). The collective inertia (or mass) tensor can be obtained from the self-

consistent densities by employing the ATDHFB approximation [589, 338]. Since static

fission barriers are often both high and wide, at low energies fission lifetimes can obtained

semiclassically by minimizing the action integral in the collective space [590, 591]. To

evaluate the barrier penetration probability, or a fission half-life, one has to integrate

the collective action along the optimum path.

It is important to realize that predicted fission pathways strongly depend on the

choice of the collective inertia [580, 581, 592, 593, 594, 595, 338, 596]. In particular,

it has been realized that pairing correlations can dramatically alter fission trajectories.

For instance, in 240Pu pairing correlations basically restore the axial symmetry along the

dynamic fission trajectory [581]. This result indicates that, in the dynamical description

of nuclear fission, pairing correlations should be considered on the same footing as

those associated with shape degrees of freedom. In some cases, the dynamical coupling

between shape- and pairing degrees of freedom can lead to a dramatic departure from

the static picture; hence, the very notion of fission barrier, typically extracted from a

saddle point of a static PES, is very limited.

The fissioning r-process nuclei are produced by neutron capture at some excitation

energy. Therefore, in reaction network simulations a multitude of possible decays of

heavy nuclei must be considered. Figure 17 shows the dominating decay channel of

heavy and superheavy nuclei predicted in DFT calculations of Ref. [338] for typical

conditions during the r-process in neutron star mergers. On can see that – according

to this model – r-process nucleosynthesis of nuclei with N > 184 is going to be strongly

hindered due to the dominance of fission channels over neutron capture. Moreover, for
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transfermium nuclei with N < 184, neutron-induced fission is expected to dominate.

Figure 17. Dominating decay channels predicted in DFT calculations of Ref. [338]

for typical conditions of r-process in neutron star mergers (T = 0.9 GK, nn =

10× 1028cm−3) [478]: spontaneous fission, α-decay, neutron capture, neutron-induced

α emission, neutron-induced fission and two-neutron emission.

The neutron-induced fission rates are estimated in Ref. [338] within the Hauser-

Feshbach theory. A more microscopic treatment of neutron induced fission can be carried

out using finite-temperature DFT [555, 597, 598], see recent Refs. [599, 600].

The characterization of fission fragments poses additional challenges as it involves

many-dimensional tunneling followed by a dissipative motion from the outer turning

points to scission where the nucleus splits. In principle, time-dependent DFT

(TDDFT) methods should be able to describe this latter phase of fission process

[601, 602, 603, 604]. Unfortunately, each such calculation simulates only one possible

fission event: reconstructing the entire distribution of fission fragment yields, based on

different initial conditions outside the outer turning point, can become prohibitively

expensive especially when pairing correlations are considered.

The situation becomes more complicated for induced fission from excited states,

where pairing is quenched and dynamics becomes strongly dissipative and non-adiabatic

[605]. In this regime, stochastic transport theories have been successfully applied to

describe the energy transfer between the collective and intrinsic degrees of freedom

of the fissioning nucleus [606, 607]. Of particular interest are dynamical approaches

based on the Langevin equation and its derivatives; such methods have been remarkably

successful in reproducing properties of fission fragments [608, 609, 610, 607, 582, 583].

In particular, the width of the fission yield distributions is primarily determined by

near-scission fluctuations caused by the random force [608, 583].

The rupture of the neck is a rapid and violent process. As demonstrated in

Refs. [611, 612, 583], prefragments are strongly entangled near the scission point and a

full quantum mechanical treatment is needed to describe the split. In this respect, the

stochastic mean-field technique coupled to TDDFT [613] offers interesting opportunities

for microscopic studies [614] that go beyond the Langevin approach.
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8. Facilities

Radioactive beam facilities have come a long way since the first half-lives of r-

process nuclei have been measured in 1986 - the 80Zn waiting point at OSIRIS in

Studsvik [615], and the 130Cd waiting point at ISOLDE/CERN [406]. Over the last

decades a large number of facilities around the world have made significant progress

in developing capabilities in beam production, beam purification, and experimental

techniques. Experiments exploiting these new capabilities have generated an increasing

body of data on r-process nuclei. Despite this progress, the majority of r-process nuclei

have been out of reach, and the vast number of successful measurements have been

limited to decay studies, primarily half-lives, but also branchings for β-delayed neutron

emission (see Fig. 7) in the mass regions around A≈ 80 and A ≈ 130, and to some

extent in between. Examples include measurements at ISOLDE [616], NSCL [617, 618],

TRIUMF [408], GSI [409], and more recently RIKEN/RIBF [402, 403, 404, 405]. Mass

measurements have only recently reached the r-process in a few cases, for example with

Penning Trap measurements at Jyväskylä [344], TRIUMF [364], ISOLDE [354], and

ANL [360]. Measurements to constrain neutron capture rates have been performed

using neutron transfer reactions at ORNL on radioactive beams of 130Sn [456] and 132Sn

[457], and more recently using the new β-Oslo technique at NSCL [461, 323]. These

experiments and techniques are discussed in more detail in Section 6.

We are now at the threshold of major new capabilities for experimental r-process

studies with the emergence of a new generation of very powerful radioactive beam

facilities. These facilities promise to bring the majority of r-process nuclei up to

A ≈ 200 within experimental reach. The broadest reach is provided by fragmentation-

type radioactive beam facilities, where an intense heavy ion beam is fragmented on a

thin production target at energies in the range of 50-1000 MeV/u. All the produced

radioactive fragments leave the target with somewhat lower energies per nucleon. A

fragment separator is therefore essential to limit the radioactive beam to the species

of interest. The most powerful new facility of this type will be FRIB in the US (400

kW beam power). FRIB is currently under construction at Michigan State University

and is expected to be completed in 2022. Complementary to FRIB will be the planned

FAIR facility in Darmstadt, Germany, with somewhat less beam power (50 kW) but

higher energy and a beam time structure that is well-suited for an extensive storage ring

program. RIKEN/RIBF with 10 kW beam power is the first of the new generation of

facilities to come online and has in its first 10 years of operation produced spectacular

results related to r-process nuclei. The RISP project at the planned RAON facility in

Korea will also have a fragmentation capability.

At ISOL facilities, radioactive isotopes far from stability are produced via

fragmentation, spallation and fission induced by impinging intense light particle beams

onto a solid target or a gas cell. While for thick solid target facilities the resulting

radioactive beam intensities are strongly dependent on the chemical properties of the

produced radioactive isotopes, beam intensities in facilities employing gas cells are
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chemically insensitive. Radioactive beam intensities at ISOL facilities can be higher

compared to fragmentation facilities in favorable cases, especially for low-energy high-

quality beams that are needed for reaction studies. TRIUMF/ISAC, CERN/ISOLDE,

and IGISOL at Jyväskylä continue to be the leading facilities in this area. The new

RISP/RAON facility will also have an ISOL capability. A new generation ISOL facility

is under discussion in Europe as EURISOL [619] with the goal to exceed radioactive

beam intensities of facilities existing or under construction by at least a factor of 100. As

an organizational step towards this goal, the EURISOL Distributed Facility (EURISOL-

DF) collaboration has been formed by various European ISOL facilities.

Gas stopping and reacceleration schemes are being developed to use beam

production via fragmentation to produce ISOL-quality low energy radioactive beams

for reaction studies that are also relevant for the r-process. This is currently pursued at

the NSCL ReA3 facility, which will later become part of FRIB. The goal is to produce

low energy beams that are difficult or impossible to produce with the ISOL technique.

A third type of facility uses fission, either spontaneous or induced by photons,

electrons, or light ion beams, to produce neutron-rich radioactive nuclei. The nuclei that

can be produced are limited to what is included in actinide fission fragment distributions

but intense beams of neutron-rich nuclei near or in the r-process can be produced in two

localized mass regions around A = 90−110 and A = 130−140. The CARIBU facility at

ANL uses an intense 252Cf source to successfully produce neutron-rich r-process nuclei.

Next generation facilities under construction include ARIEL at TRIUMF/ISAC (using

photofission) and SPIRAL2 at GANIL. These facilities are expected to have significant

reach into the r-process.

With these developments we can expect that in the coming 10-20 years r-process

research will change dramatically. Large amounts of experimental nuclear data with

well defined uncertainties will be available, and improved nuclear theory will be able to

predict much better the nuclear data that remain out of experimental reach.

8.1. Fragmentation facilities

A number of facilities are using in-flight fragmentation to produce radioactive beams.

A heavy ion beam is accelerated to energies in the 50 MeV/u to 1000 MeV/u range and

impinges on a relatively thin target. Fragmentation of the beam particles produces

a broad range of stable and radioactive nuclides that emerge from the target with

energies per nucleon of the same order of magnitude as the incident beam. The desired

fragment is then selected with a fragment separator, typically employing magnetic

dipoles. The advantages of this technique are flexibility to quickly select a broad range

of beams simply by adjusting the fragment separator, radioactive beam production that

is independent of the chemistry of the respective element, fast transport (typically 100s

of nano seconds) of the radioactive beam to the experiment that minimizes decay losses,

and relatively high beam energies, which allow the use of thick secondary targets, and

enable particle-by-particle identification of beam particles with various detector systems.
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The latter capability can be used to run with impure beams to measure large numbers of

nuclides simultaneously, and to achieve nearly 100% selectivity enabling measurements,

for example of decay half-lives, with very low beam intensities pushing measurement

capabilities to the most exotic nuclides. Disadvantages are the poor beam quality

that often requires tracking of beam particles for reaction studies, losses from stopping

or slowing down the beam for measurements of masses or decay properties, and the

difficulty to reduce the beam energy to astrophysical energies for reaction measurements

- this can be overcome by employing a gas stopping and reacceleration scheme. The

fast transport to the experiment also means that nuclei arriving at the experiment can

be in isomeric excited states, which can cause difficulties in some experiments (while in

others it may be used as an advantage).

8.1.1. NSCL and FRIB The National Superconducting Cyclotron Laboratory (NSCL)

is a world class international users facility dedicated to the production and study

of radioactive isotopes. The research undertaken at the facility falls into a few

broad categories including basic nuclear science, nuclear astrophysics, fundamental

symmetries, accelerator physics, and the application of isotopes for societal benefit.

The accelerator is capable of ionizing any chemical element and delivering it directly to

an experimental apparatus with an energy up to 200 MeV/nucleon with a beam power

up to 1 kW. These high-energy stable ion beams are fragmented through collisions with a

target to produce a wide variety of radioactive nuclei that are subsequently separated out

in flight by a high-acceptance fragment separator, the A1900, and delivered to various

experimental facilities. The secondary, radioactive nuclei are delivered to experimental

facilities either at high energies (fast beams), thermal energies from a gas stopping

system (stopped beams), or reaccelerated to near the Coulomb barrier. To date, more

than 1000 isotopes have been produced and used at the NSCL.

The Facility for Rare Isotope Beams (FRIB) will be one of the next-generation

radioactive ion beam (RIB) facilities that will allow access to the uncharted territories

of the chart of nuclides. Most of the expansion in terms of the reach will be on

the neutron-rich side towards the location of the r-process path. Hence, with FRIB

coming on-line, a large array of atomic masses critical for our understanding of the

r-process will be within our reach (see Fig. 7). The baseline design of FRIB is based

on a 200 MeV/u superconducting linac with a delivered beam power of up to 400

kW for beams up to uranium. Construction of FRIB conventional facilities began

in the spring of 2014. Project completion is expected in 2022 with management

toward early completion in 2021. The predicted rates for FRIB are provided at

https://groups.nscl.msu.edu/frib/rates/fribrates.html and are expected to exceed NSCL

capabilities by at least three orders of magnitude.

Much of the experimental equipment for FRIB r-process experiments exists already

or is under development, and will be used for experiments at NSCL until FRIB turns

on. A state of the art decay station to measure β-decay properties using the implant-

correlation method (see section 6.2.1) is currently in the planning stage and will be of
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particular importance to fully exploit the capabilities of FRIB for r-process studies.

r-process masses will be measured using two complementary techniques. Time-of-

flight mass measurements (see section 6.1.3) with the existing S800 spectrometer and,

in the future, the new High Rigidity Spectrometer HRS currently under development,

will cover broad regions of nuclides simultaneously with essentially no limit on short

half-lives, and will therefore enable a complete mapping of the mass surface into the

r-process relatively quickly but with accuracies that for some key nuclides will not be

sufficient for r-process studies. Complementary to this technique will be high precision

mass measurements using Penning-trap mass spectrometry (see section 6.1.1) using the

LEBIT facility [620, 621]. Upgrades of LEBIT are underway [622], in particular a single

ion capability (SIPT) that can peform mass measurements with production rates as

low as one per day. This will enable to push high precision mass measurements to

more exotic r-process isotopes, though it is limited to somewhat longer lived isotopes

compared to the time-of-flight method. The Penning Trap measurements will provide

high accuracy for the most important r-process nuclei within the technique’s reach, and

will provide essential calibration data for the time-of-flight approach, which will be able

to push mass measurements to a broader range of more exotic nuclei. Figure 18 shows

the current and future reach of these mass measurement techniques at FRIB. As it can

be seen, a large number of atomic masses will be within reach with these techniques.

Indirect determinations of neutron capture rates will be performed at FRIB using

transfer reactions and the β-Oslo technique [461, 323] (see section 6.5). FRIB’s ReA3

reaccelereated beam capability will be critical to directly measure cross sections for

important (α,n) reactions in the weak r-process (see section 6.7)

8.1.2. RIBF The Radioactive Isotope (RI) Beam Factory (RIBF) [623, 624] at RIKEN

Nishina Center is regarded as the first among a new generation of RI-beam facilities

and has been in operation since 2007. Heavy ion beams ranging from 2H to 238U

are accelerated up to 345 MeV/u in the accelerator complex comprised of four ring

cyclotrons, the SRC (Superconducting Ring Cyclotron) with K=2600 MeV, the IRC

(Intermediate-stage Ring Cyclotron) with K=980 MeV, the fRC (fixed-frequency Ring

Cyclotron) with L=570 MeV, and the RRC (RIKEN Ring Cyclotron) with L=540 MeV,

together with three injectors. As of summer 2016, intensities of heavy-ion beams reach

49 pnA for 238U, 530 pnA for 48Ca, and 1000 pnA for light ions including 18O. The

world-record intensity RI-beams are produced and separated with BigRIPS[625] through

projectile fragmentation and in-flight fission reactions of the primary beams. r-process

nuclei are produced mainly via the in-flight fission reaction of 238U.

There are on-going experimental activities related to r-process nucleosynthesis

using RI-beams from BigRIPS: Half-life measurements with the EURICA setup

[402, 403, 404, 405] have been most successful (see Section 6.2 for details). Decay

activities have been extended to measurement of β-delayed neutron emitters with the

BRIKEN setup in 2016 [443] (see Sec. 6.4.2). In the future, masses in the same region

of the nuclear chart will be measured with newly-constructed devices: the Rare RI Ring
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Figure 18. Predicted reach of various mass measurement techniques at the NSCL

and FRIB, based on LISE calculations. Shown is the reach for Penning Trap (PT)

measurements (green) and the time-of-flight technique using the S800 or, for the most

exotic isotopes, the HRS spectrometer (red).

[380, 381] (see Section 6.1.4) and the MRTOF [392]. Both devices have capabilities to

measure masses of nuclei whose half-lives are far shorter than 100 ms.

A new attempt to determine barrier heights and fragment distributions in fissions

of heavy unstable nuclei is being initiated with the SAMURAI spectrometer. The

experiment will provide novel and crucial information related to fission recycling (see

also Section 6.6).

8.1.3. Chinese facilities HIRFL (Heavy Ion Research Facility in Lanzhou) is a major

user facility for nuclear physics research in China [375, 377]. HIRFL consists of ECR

(Electron Cyclotron Resonance) ion sources, a Sector Focus Cyclotron (SFC,k=69), a

Separated Sector Cyclotron (SSC,k=450), and a Cooler Storage Ring (CSR). The CSR is

a double cooler-storage-ring system including a main ring (CSRm) and an experimental

ring (CSRe), coupled together by a recoil separator (RIBLL2) and a beam transport line.

HIRFL can provide beams of all stable isotopes from hydrogen through uranium with a

wide energy range. The maximum energies available at HIRFL for proton, carbon and

uranium beams are 2.8 GeV, 1000 MeV/u and 100 MeV/u, respectively. Radioactive

ion beams (RIBs) are produced via fragmentation reactions or direct reactions using

two recoil separators (RIBLL1 and RIBLL2), separately, for measurements of masses,

decay properties, and critical nuclear reactions for astrophysics.

BRIF (Beijing Radioactive Isotope Facility) is a newly constructed ISOL facility

based on an existing 15 MV tandem accelerator at China Institute of Atomic Energy

[626]. A proton beam with an energy of 100 MeV and an intensity up to 100 µA
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impinges an ISOL target such as UCx, and neutron-rich isotopes are produced by fission.

The desired isotope with one unit of positive charge is selected by a separator with a

mass resolution of 20,000. It is converted into a negative ion to be post-accelerated

by the tandem accelerator. After the tandem, a super-conducting LINAC sector is

being planned to further boost the beam energy by 2 MeV/q. After the facility is

commissioned, nuclear decay spectroscopy and nuclear reaction studies relevant to the

rp-process or the r-process will be carried out.

HIAF (High Intensity heavy ion Accelerator Facility) is a new project recently

approved by the Chinese central government. This new facility consists of a low energy

LINAC, a synchrotron, a recoil separator, and an experimental ring, to be commissioned

by 2023. For 238U34+, the maximum available beam energy is 17 MeV/u out of the

LINAC with an intensity of up to 30 pµA. The maximum beam energy out of the

synchrotron is 0.8 GeV/u. This facility will focus on the production of super-heavy

nuclei and neutron-rich heavy isotopes, using intense low energy heavy ion beams, for

mass measurements, decay spectroscopy, and studies of nuclear reactions.

Beijing ISOL (known as CARIF before 2012) is another project under review [626].

This project will accelerate the neutron-rich fragments produced by a reactor or an

ISOL target up to a few hundred of MeV/u to produce even more neutron-rich nuclei via

fragmentation reactions for r-process research and the synthesis of super-heavy isotopes.

8.1.4. FAIR At the International Facility for Antiproton and Ion Research (FAIR) at

GSI Darmstadt/ Germany [627, 628] radioactive ions will be produced via fragmentation

of ions as heavy as uranium. FAIR is currently under construction and the first stage is

expected to be operational in 2021. FAIR is a major upgrade of the existing GSI facility.

The philosophy from the very beginning was to enable fixed-target experiments as well

as ring experiments with highest energies and intensities in a multi-user mode. The

solution was an accelerator complex, which starts with different ion sources followed by

a universal linear accelerator and a synchrotron. The heart of the GSI facility is the

SIS18, a synchrotron with a magnetic rigidity of 18 Tm. The center of the first stages

of the FAIR complex will be the synchrotron SIS100 (100 Tm), which will receive the

beam from SIS18. Later stages of FAIR will host the synchrotron SIS300 (300 Tm).

The intensity of the radioactive ion beam will be up to 104 times higher than currently

achievable at GSI. The beams can be delivered to fixed-target experiments like CBM

[629] or ring-based experiments like PANDA [630]. The experiments relevant for nuclear

astrophysics are either under the umbrella of NUSTAR [631] or APPA [632] and can be

fixed-target or ring-based [633].

FAIR will offer unique, unprecedented opportunities to investigate many of the

astrophysically important reactions. The high yield of radioactive isotopes, even far

away from the valley of stability, allows the investigation of isotopes involved in processes

as exotic as the r or rp processes.

The proposed R3B setup [634], a universal setup for kinematically complete

measurements of Reactions with Relativistic Radioactive Beams will cover experimental
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reaction studies with exotic nuclei far off stability. R3B is a versatile reaction setup with

high efficiency, acceptance, and resolution for reactions with high-energy radioactive

beams. The setup will be located at the High Energy Cave, which follows the high-energy

branch of the new fragment separator (Super-FRS). The experimental configuration is

based on a concept similar to the existing LAND setup at GSI introducing substantial

improvements with respect to resolution and an extended detection scheme. It comprises

the additional detection efficiency of light (target-like) recoil particles and a high-

resolution fragment spectrometer. The setup is adapted to the highest beam energies

(corresponding to 20 Tm magnetic rigidity) provided by the Super-FRS capitalizing

on the highest possible transmission of secondary beams. The experimental setup

is suitable for a wide variety of scattering experiments, such as heavy-ion induced

electromagnetic excitation, knockout and breakup reactions, or light-ion (in)elastic and

quasi-free scattering in inverse kinematics, thus enabling a broad physics program with

rare-isotope beams [634]. Applying the Coulomb dissociation method [635, 636] R3B

contributes already now to almost every astrophysical scenario [637]. In particular

neutron-capture reactions [638] can be investigated via the time-reversed (γ, n) reactions

contributing to the understanding of the r process. With the expected increase in

the production of radioactive species at FAIR, even more exotic reactions can be

investigated.

The suite of rings available already now and getting constructed over the course

of the next 10 years will allow measurements of masses and different decay properties

of exotic nuclei on the r-process path [633, 639]. The high-energy storage ring (HESR)

offers an interesting complement to the 1-pass R3B setup mentioned above. With a

magnetic rigidity of 50 Tm the HESR allows to store fully stripped uranium ions up

to 5 AGeV, which covers the desired energy range for Coulomb excitation experiments.

The HESR has a circumference of 574 m and features very long straight sections of

about 100 m, which enable the detection of reaction products outside of the beam pipe

even at very small angles (e.g. neutrons). The HESR is ideally suited for stacking over

long periods, which is extremely useful when isotopes with very low production yield

are investigated. Depending on the desired reaction mechanism, the interaction zone

would then be a gas jet target featuring hydrogen, helium or a high-Z gas for Coulomb

breakup studies.

8.2. ISOL facilities

In the ISOL (Isotope Separator OnLine) technique thick targets of different materials

(up to a few 100 g/cm2) are bombarded with high-energetic proton beams of µA intensity

(beam energies can be in the range of 100 - 2000 MeV/u). The proton-induced spallation

of the target material produces exotic isotopes which are extracted via the ion source.

The ISOL method is driven by target chemistry, so the most intense beams that can be

extracted are those which have the lowest ionization potentials. These so-called surface-

ionized species (e.g. alkali and earth-alkali metals) are a specialty of ISOL facilities.
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Other elements with high ionization potentials have quite low extraction yields. For

cleaning of the beam and suppression of isobaric contaminants, additional purification

steps are required. The various techniques range from the use of a neutron converter (to

suppress neutron-deficient species via neutron-induced fission), element-selective laser

ionization, and the use of quartz tubes or cold transfer lines etc. One limitation of the

ISOL technique is the diffusion time of the radioactive species out of the target material.

This restricts this method so far to isotopes with half-lives longer than ≈10 ms.

8.2.1. CERN-ISOLDE The ISOLDE facility is located within the European Particle

Physics Laboratory CERN in Geneva, Switzerland [640]. It was one of the earliest

facilities in the world to apply the ISOL method for the production of rare isotope beams.

A pulsed proton beam is nowadays delivered by CERN’s Proton-Synchrotron Booster

as a primary beam to two separate ISOLDE target stations. The characteristics of the

currently used proton beam are a kinetic energy of 1.4 GeV and an average intensity of

up to 2 µA. More then 1200 radioactive nuclides are produced after the bombardment

of various target materials. The demands of the specific experiments require different

layouts to be used for target materials, geometries, and ion sources. For the specific

cases concerning the r-process, the preferred target material is uranium-carbide (UCx).

There are three different types of ion sources that are in use at ISOLDE: a surface,

plasma, or laser ion source [641]. Whatever the ionization method, the target/ion-

source unit is floated to a potential of up to 60 keV. The beams are then sent through

primary mass separators, either the General Purpose Separator or the High Resolution

Separator, with mass resolving powers of m/∆m = 1000 and 5000 [642], respectively.

8.2.2. TRIUMF-ISAC and ARIEL The Isotope Separator and Accelerator (ISAC)

facility [643, 644] at TRIUMF, Canadas particle accelerator centre in Vancouver, has

been in operation since 1998. It provides a wide variety of intense beams of exotic

nuclei by impinging a 480 MeV proton beam from the cyclotron with up to 100 µA on

various target materials. After passing through the mass separator (M/∆M≈1000) the

radioactive beams are guided into the experimental halls.

ISAC provides the world-wide highest intensity of e.g. the 8.75-ms halo nucleus 11Li

(up to 56,000 pps), 21Na (up to 1.1×1010 pps), or 23Mg (up to 2.6×109 pps) (as measured

at the low-energy ISAC yield station). The preferred target-ion source combination for

the most neutron-rich r-process nuclei, e.g. Rb, Sr, Cd, In, Cs, Ba, is presently a

uranium carbide (UCx) target in combination with a surface-ion source. In order to

enhance the signal-to-background ratio and suppress unwanted surface-ionized species,

laser-ion sources like TRILIS or the new ion-guide laser-ion source (IG-LIS, [645]) are

the perfect choice. The IG-LIS has proven to be a very powerful tool for low-intensity

beams since it efficiently suppresses the background of surface-ionized species which can

be orders of magnitude more intense. With this setup, spectroscopy of the 82 ms isotope
132Cd (N=84) could be performed with only 0.15 pps, the lowest yield ever measured at

ISAC.
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The ISAC-I facility uses beam energies up to 40 keV, and can re-accelerate beams

for reaction studies in a first step up to 1.8 AMeV. Further acceleration using the ISAC-

II super-conducting linac leads to beams of up to 16.5 AMeV for transfer reaction studies

for light-mass nuclei and a few AMeV for nuclei above A=150.

The neutron-rich astrophysical program at TRIUMF with focus on r-process

isotopes consists presently of the TITAN Penning trap system [646] for mass

measurements, the GRIFFIN γ-ray spectrometer and its ancillary detectors for

spectroscopic studies [426], and the new EMMA recoil mass spectrometer, which has

been commissioned recently [647].

The new Advanced Rare IsotopE Laboratory (ARIEL) [648] consists of an

independently operating electron linac that accelerates electrons in the present design

up to 35 MeV at a power of 100 kW for isotope production via photofission of uranium,

as well as an additional proton beam line from the 520 MeV cyclotron. With this added

driver beam capacity the amount of beamtime available at ISAC can almost be tripled

within the next few years. One advantage in the use of photofission versus proton-

induced spallation are the higher yields in the region around the two fission fragment

peaks and the lower amounts of neutron-deficient contaminants.

ARIEL is presently under construction, and first beams from the existing ISAC

production target will be sent by the end of 2019 through the new CANREB facilities,

consisting of a high-resolution mass separator, a RFQ cooler and buncher, an electron

beam ion source (EBIS) and a Nier spectrometer back, to be reaccelerated in the ISAC

heavy-ion linac for experiments with clean beams. First beams from the photofission of

uranium targets are expected by 2023.

8.3. Gas-catcher based ISOL facilities

Gas-catchers can be used instead of solid targets for ISOL beam production. They offer

advantages in the efficient extraction of the radioactive species from the target, and a

number of facilities exploit this technique.

8.3.1. IGISOL facility in Jyväskylä The IGISOL (Ion Guide Isotope Separator On-

Line) facility [649] is located at the University of Jyväskylä, Finland. IGISOL benefits

from the universal and fast (sub-ms) ion-guide method to extract the reaction products

[650]. Thus, no separate ion source is needed and the production is not restricted

to certain elements. The neutron-rich isotopes of interest are produced with proton-

induced fission on 238U or 232Th employing either MCC30 or K130 cyclotrons of the

JYFL Accelerator Laboratory. The reaction products are extracted out from the gas cell

using a sextupole ion guide SPIG [651], accelerated to 30 keV, and mass-separated using

a 55◦ dipole magnet (M/∆M ≈ 250) before injecting them into a radio frequency cooler

and buncher (RFQ) [652]. The ion bunches from the RFQ enter the cylindrical double

Penning trap mass spectrometer JYFLTRAP [653], which consists of a purification

trap employing mass-selective buffer gas cooling technique [654] to select the ions of
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interest for high-precision mass measurements via time-of-flight ion cyclotron resonance

technique [349] in the second trap known as the precision trap.

Overall, around 300 atomic masses have been measured at JYFLTRAP and most

of those have been neutron-rich nuclei (see e.g. [350, 655]). One of the advantages at

JYFLTRAP is the possibility to purify the beam using a Ramsey dipolar excitations

[656] by which even isomerically pure beams can be delivered for mass or post-

trap spectrosocopy experiments (see e.g. [657, 658]). To get an idea of the yields

and possibilities for mass measurements at JYFLTRAP, a recent review on the mass

measurements of fission fragments and related cross-section curves can be found from

Ref. [350]. In addition, independent isotopic fission yields have been studied thoroughly

at IGISOL [659, 660, 661]. To reach even more neutron-rich nuclei, neutron-induced

fission is being explored and developed at IGISOL [662].

8.4. New production techniques

For a full understanding of the r-process it will be important to study nuclei that cannot

be produced by fragmentation, fission, or spallation. Alternative production approaches

will be required to produce these nuclei.

The r-process that produces the heaviest elements found in nature, i.e. the third

peak and the actinides, must proceed through very neutron-rich (N > 146) nuclei that

have more neutrons than 238U. This means these nuclei are out of reach for single step

fragmentation or ISOL facilities. Moreover, most theoretical studies estimate the r-

process to cross a possible N = 184 shell closure around A ≈ 280 and end somewhere

around Z ≈ 110 and A ≈ 340 [336]. Understanding the nuclear physics of the nuclei

near the theoretical endpoint of the r-process is important for many reasons. One of

them is the importance to understand r-process actinide production for using observed

U and Th abundances as r-process chronometers. In this context it has been pointed

out that the possible N = 184 shell closure plays an important role [65]. Many r-process

models, in particular in neutron star mergers, exhibit fission cycling, where nuclei at

the endpoint of the r-process undergo fission, and the resulting fission fragments in the

A ≈ 130− 170 mass region serve then as new seeds for a continued r-process. It is then

critial to understand where exactly the r-process ends and what the resulting fission

fragments are, not only to determine to which degree fission cycling occurs, but also to

understand the produced abundances in the A > 130 region, which would be affected

by the relevant fission fragment distributions [489, 478]. Last but not least, the possible

synthesis of long-lived superheavy elements in a hypothetical island of stability, has been

a long standing question [336].

The relevant nuclides with more neutrons than 238U, as well as neutron-rich

superheavy elements, cannot be produced by fission, spallation, or fragmentation, the

most commonly employed production mechanisms. Alternative approaches are therefore

needed to address this particular problem. One approach are deep-inelastic collisions

resulting in the exchange of multiple nucleons between two heavy, neutron-rich nuclei.
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Such multi-nucleon transfer (MNT) reactions [663, 664, 665] have recently attracted

renewed attention as a possible path to the synthesis of new neutron-rich heavy nuclei.

For example [666] recently revisited 136Xe+238U induced reactions at INFN Legnaro

using modern tools of high-resolution γ-spectroscopy in connection with the PRISMA

spectrometer and showed that uranium isotopes out to 240U can be produced and

studied. Recent theoretical predictions show that with 144Xe+238U induced reactions

new neutron-rich nuclei in the Z = 88 − 96 region could be reached with reasonable

production cross sections (assuming a sufficiently intense 144Xe beam could be produced

by fission or fragmentation) [667].

Multi-nucleon transfer reactions are also of interest for enhancing the production

of N = 126 nuclei, which are critical for understanding the r-process. At RIKEN

the KEK Isotope Separation System (KISS) facility is intended to take advantage of

this production mechanism [668, 664]. KISS aims at extending r-process studies at

RIKEN/RIBF to the N = 126 nuclei relevant for the formation of the third r-process

abundance peak at A = 195. KISS is designed to provide radioactive nuclei produced

via multi-nucleon transfer reactions [663, 665]. The reaction products are captured in

a gas catcher, and reionized using a Z-selective laser-ion source. The system is being

tested and will be in operation soon.

The N=126 Factory being developed at Argonne National Laboratory (ANL) is

comparable to KISS. The N=126 Factory will similarly collect MNT products in a gas

cell, but will differ significantly from KISS in its use of a large volume, helium-filled

gas cell to stop and extract products in already-ionized form rather than laser-ionizing

the neutralized products. The former scheme has already been used with great success

at ANLs CARIBU facility. Upon leaving the gas cell, the guided radioactive beam

will be separated using a mass analyzing magnet before being cooled and bunched in a

radio-frequency quadrupole ion trap. As beam purity is critical for high precision mass

measurements, a multi-reflection time-of-flight mass spectrograph (MR-TOF) being

developed at the University of Notre Dame will be used to separate isobars before

their injection into the Canadian Penning Trap (CPT). The MR-TOF could also be

used for mass measurements when either rates are too low or half-lives are too short for

the Penning Trap approach [669].

It remains to be seen if these techniques can be used to reach r-process nuclei

beyond N = 126 in the future.

9. Outlook

This is an exciting time to study r-process nucleosynthesis. The coming decade

will experience an unprecedented confluence of major capability leaps in nuclear

experimental, observational, theoretical, and computational science that will put a

comprehensive theory for the origin of the elements, including the r-process, within

reach. A new generation of rare isotope facilities such as RIKEN/RIBF, FRIB, FAIR,

and others promise for the first time to produce and study a majority of the nuclei
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that are part of the r-process. Nuclear theory continues to make progress towards self-

consistent microscopic predictions of r-process nuclear properties and the dense matter

equation of state. Multi-messenger observations of the transient universe, including

gravitational waves, neutrinos, and photons will provide direct information on explosive

nucleosynthesis sites. Guided by today’s large scale stellar surveys, a new generation

of optical telescopes, including 4MOST and E-ELT will map the chemical enrichment

history of our Galaxy. Computational capabilities have reached a point where multi-D

simulations of supernovae, neutron star mergers, and other r-process sites have enough

fidelity to model nucleosynthesis and confront the predictions with observational data,

and enable chemical evolution models that put nucleosynthesis into a cosmic context.

This era has already begun with the historic observation of the NS merger

GW170817 that establishes mergers as an important r-process site, the RIKEN/RIBF

rare isotope facility coming online, first r-process calculations based on DFT nuclear

theory data, and the observation of r-process enriched metal-poor stars in dwarf galaxies.

At this stage, progress is reflected in the large number of new open questions that have

emerged: Is GW170817 a typical merger? What is the rate of these mergers? What

elements do they create and how much do they contribute to the total inventory of r-

process elements? Can we identify particular r-process elements in future mergers? Are

there additional r-process sites and what are they? Why is the elemental abundance

pattern of the heavy r-process so robust, and why does this robustness not extend to

the actinides? How can one enrich a dwarf galaxy with r-process elements?

Nuclear data will be essential for answering many of these questions, in particular to

predict the specific elements that are created in an observed astrophysical environment,

and to connect observed abundances and kilonova features back to astrophysical

conditions and constraints on the nucleosynthesis site(s). With a new generation of

rare isotope beam facilities many r-process nuclides will come into experimental reach

for the first time. A broad range of beam capabilities – fast, stopped, reaccelerated,

and stored beams – will be needed to address the broad range of nuclear physics that

enters r-process models, including properties and reactions of extremely neutron-rich

nuclei and the nuclear equation of state. Most of the techniques and instrumentation

that will be needed have been developed over the last decade. Major experimental

challenges remain to constrain neutron capture rates far from stability, and to study the

production of neutron-rich actinides and superheavy elements in the r-process.

Most of the structural input pertaining to nuclei that enter r-process element

abundance calculations come from theoretical models. There has been exciting progress

in global theoretical modeling throughout the nuclear chart. The grand perspective is to

use one consistent theoretical framework to compute all nuclear properties needed for r-

process network calculations. A microscopic tool that is well suited to provide quantified

microphysics is nuclear density functional theory employing a validated in-medium

effective interaction (energy density functional), which can be used in calculations for

both finite nuclei and nuclear matter (including the equation of state for neutron stars).

This approach is capable of predicting a variety of observables needed, and – when aided
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by high-performance computing and statistical tools – is able to assess the uncertainties

on those observables. Such a capability is indispensable in the context of making reliable

extrapolations in isospin and mass into the regions of r-process where experimental data

are not available.

Multi-messenger observations will be key to confront nuclear-based astrophysical

models of the r-process, to identify new r-process sites, and to determine their frequency

and ejected material. When Advanced LIGO and Advanced VIRGO reach their designed

sensitivity we expect to detect neutron star mergers at a significantly faster rate and

should accumulate observations of several to several tens of events. The importance for

r-process science of an effective network of ground- and space-based observatories to

follow up any gravitational wave trigger from a neutron star merger was impressively

demonstrated in the case of GW170817. Major progress is also on the horizon

for observations of stellar spectra with major new capabilities under development,

for example the E-ELT 39m telescope in Europe. Key elements for addressing r-

process science are high-resolution spectrographs covering blue wavelengths, and large

throughput using fiber-fed instruments that enable simultaneous observations of a

large number of stars. The goal is a much enlarged non-biased stellar sample of

neutron capture element abundances that can be confronted with advanced chemical

evolution models. High resolution observations will also enable the extraction of isotopic

abundances for some elements, such as Li, C, N, O, Mg, Ba, (Nd, Sm) and Eu for a

large number of stars. This is currently only possible in small samples and will be one of

the great advances in observations in the next decade that will help trace the r-process.

Advances in atomic physics and stellar photosphere modeling will be needed to take full

advantage of these new observations.

Computational models of nucleosynthesis sites, for the r-process primarily core

collapse supernovae and neutron star mergers, are essential for understanding the r-

process. In all types of scenarios, realistic neutrino interactions and a broader range

of dense matter equations of state are key for modeling the r-process. For supernova

models it will be important to reliably predict the electron fraction of the neutrino-driven

wind. Neutron star merger simulations have advanced dramatically, driven by advanced

computational capabilities that enable the necessary 3D simulations, and the GW170817

gravitational wave detection that provides new motivation for modeling these events.

However much remains to be done. Future high resolution magneto-hydrodynamical

models with appropriate treatment of neutrino effects will provide tighter constraints on

outflow properties and ejecta masses and their dependency on binary system parameters.

The nucleosynthesis yields as well as light curve predictions will benefit from models that

consistently connect the different phases of mass ejection. Such models are a prerequisite

for the interpretation of observations and they may serve as input in galactic evolution

models.

Realistic sensitivity studies that quantify the connection between nuclear physics

and astrophysical observables are essential for guiding nuclear physics efforts, and to

arrive at a full understanding of the mechanism of element formation in the cosmos.
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Such studies need to be expanded to a broader range of realistic models, and need to

target a full range of possible observables.

Last but not least, as this workshop summary demonstrated, addressing the r-

process problem requires close links, collaboration, and rapid interaction between

experimental and theoretical nuclear physics, astronomy, and computational modeling.

Much has been achieved in this respect through coordinated efforts such as the Joint

Institute for Nuclear Astrophysics, but more needs to be done to efficiently and rapidly

synthesize progress in the various subfields expected in the coming decade into a

comprehensive theory of element formation that is consistent with the full body of

experimental and observational data.

Acknowledgments

This research was enabled by a workshop jointly organized by the Joint Institute

for Nuclear Astrophysics Center for the Evolution of the Elements (JINA-CEE),

supported by the National Science Foundation under grant no. PHY-1430152, and

the International Collaborations in Nuclear Theory program.

W.N. is supported by the U.S. Department of Energy under Award Numbers DOE-

DE-NA0002847 (the Stewardship Science Academic Alliances program), de-sc0018083

(NUCLEI SciDAC-4 collaboration), and de-sc0013365 (Michigan State University);

C. H. is supported by the U.S. Department of Energy under Award Numbers

DOE-DE-FG02-87ER40365 (Indiana University) and de-sc0018083 (NUCLEI SciDAC-4

collaboration);

H.S. is supported by the US National Science Foundation under grant no. PHY-

1102511;

A.A. was supported by the Helmholtz-University Young Investigator grant No. VH-

NG-825, Deutsche Forschungsgemeinschaft through SFB 1245, and European Research

Council through ERC Starting Grant No.677912 EUROPIUM

I.D. is supported by the Canadian NSERC Discovery Grants SAPIN-2014-00028

and RGPAS 462257-2014.

J.M-T. is supported by a Mexican grant under the project UNAM-DGAPA/PAPIIT

IV100116.

R.R. is supported by the European Research Council under the European Unions’s

Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 615126.

B.C. acknowledges support from the ERC Consolidator Grant (Hungary) funding

scheme (project RADIOSTAR, G.A. n. 724560).

B.W.O. was supported by the National Aeronautics and Space Administration

(NASA) through grant NNX15AP39G and Hubble Theory Grant HST-AR-13261.01-

A, and by the NSF through grant AST-1514700.

Support for Francois Foucart was provided by NASA through Einstein Postdoctoral

Fellowship grants numbered PF4-150122 awarded by the Chandra X-ray Center, which

http://arxiv.org/abs/de-sc/0018083
http://arxiv.org/abs/de-sc/0013365
http://arxiv.org/abs/de-sc/0018083


Connecting RIB facilities with the cosmos 102

is operated by the Smithsonian Astrophysical Observatory for NASA under contract

NAS8-03060

X.D.T. and M.W. are supported by the Chinese National Key Research and

Development program (MOST 2016YFA0400501 and 2016YFA0400504). X.D.T. also

acknowledges the supports from the National Natural Science Foundation of China under

Grant No. 11475228 and 11490564 and 100 talents Program of the Chinese Academy of

Sciences.

This material is based upon work supported by the Department of Energy/National

Nuclear Security Administration under Award Number(s) de-na0003221 and de-

na0003180. The work of S. L. was supported by the National Science Foundation under

Grants No. PHY 1102511 (NSCL)

This work was supported by the US Department of Energy through the Los Alamos

National Laboratory and has been assigned report number LA-UR- 18-22069. Los

Alamos National Laboratory is operated by Los Alamos National Security, LLC, for

the National Nuclear Security Administration of US Department of Energy (Contract

DEAC52-06NA25396).

A.A., M.B., and J.K. are supported by the U.S. National Science Foundation under

grant number PHY-1713857.

O.J. acknowledges support by the European Research Council through grant ERC

AdG 341157-COCO2CAS and by the Max-PlanckPrinceton Center for Plasma Physics

(MPPC).

J.A.C. is supported by the U.S. Department of Energy, Office of Nuclear Physics,

under Contract No. DE-AC02-06CH11357.

A.K. acknowledges the support from the Academy of Finland (grants No. 275389,

284516 and 312544).

http://arxiv.org/abs/de-na/0003221
http://arxiv.org/abs/de-na/0003180
http://arxiv.org/abs/de-na/0003180


REFERENCES 103

References

[1] Council N R 2003 Connecting Quarks with the Cosmos: Eleven Science

Questions for the New Century (Washington, DC: The National Academies

Press) ISBN 978-0-309-07406-3 URL https://www.nap.edu/catalog/10079/

connecting-quarks-with-the-cosmos-eleven-science-questions-for-the

[2] Burbidge E M, Burbidge G R, Fowler W A and Hoyle F 1957 Rev. Mod. Phys.

29(4) 547–650 URL https://link.aps.org/doi/10.1103/RevModPhys.29.547

[3] Cameron A G W 1957 Chalk River Reports CRL-41
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[593] Zhao J, Lu B N, Nikšić T and Vretenar D 2015 Phys. Rev. C 92(6) 064315 URL

http://link.aps.org/doi/10.1103/PhysRevC.92.064315
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