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Abstract

New sets of functions with arbitrary large finite cardinality are constructed for two-electron

atoms. Functions from these sets exactly satisfy the Kato’s cusp conditions. The new functions

are special linear combinations of Hylleraas- and/or Kinoshita-type terms. Standard variational

calculation, leading to matrix eigenvalue problem, can be carried out to calculate the energies of

the system. There is no need for optimization with constraints to satisfy the cusp conditions. In

the numerical examples the ground state energy of the He atom is considered.
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I. INTRODUCTION

For a Coulombic system an exact eigenfunction has strange local behaviors namely it

has cusps. The first derivative of the wave function is discontinuous at those points in the

configuration space where two or more charged particles come together. This phenomena is

characterized by the Kato’s cusp conditions [1]. These conditions were also derived for the He

atom in [2] and the general treatment was developed in [3]. A deficiency of the configuration

interaction method is that it can not describe the electron-electron (e-e) cusp condition [2, 4].

It is not possible to describe the cusp using products of smooth orbital functions. Under

special circumstances explicitly correlated trial wave functions can exactly satisfy the cusp

conditions. The importance of the Kato’s cusp conditions have been demonstrated several

times [5–7]. For example in the derivation of the double photo-ionization cross section it

was assumed that the cusp conditions are fulfilled [5]. The role of the cusp conditions is

investigated in electron-atom double ionization [8–10].

For the description of S states of two-electron atoms the standard Hylleraas-variables s, t

and u are used. The Hylleraas-type trial function [11] is a power series expansion in terms of

the variables s, t and u. A more general expansion was introduced by Kinoshita [12] where

negative powers of the s and u variables can appear. The space part of a Kinoshita-type

trial wave function is a finite superposition of basis functions of the form

wl,m,n(s, t, u) = exp(−αs)sl
(u

s

)m
(

t

u

)n

. (1)

Here l, m and n are non-negative integers and α is a positive real number. In this paper,

starting from Hylleraas- and Kinoshita-type basis new sets of functions are constructed in

analytic form in order to exactly fulfill the cusp conditions.

There are two types of approaches to get a trial function with correct cusp conditions.

Either the mean value of the Hamiltonian-operator is minimalized subject to the cusp condi-

tions [7, 13, 14] or special basis functions are used in the calculations [15–27]. Very recently

a simple but nontrivial Hylleraas-type function is suggested [28] which exactly fulfills the

cusp conditions.

In our earlier paper [14] finite terms trial wave functions of Hylleraas- or Kinoshita-type

were considered and the consequences of the cusp equations are studied. Based on the

results of [14] in the present paper first it is shown that the trial wave function of [28] can be

2



obtained very easily from the formalism of [14]. Our main result is the construction of new

highly nontrivial function sets which can be composed from finite number of Kinoshita-terms

in such a way that the new functions exactly fulfill the Kato’s cusp conditions.

In section II the results of the paper [14] relevant to the present work are summarized and

methods to fulfill the cusp conditions using interparticle coordinates are shortly reviewed.

The determination of the new basis functions and a few explicit examples are contained

in section III. Numerical results are presented in part IV by calculating the ground state

energy of the He atom. Finally a summary is given in part V.

II. TRIAL WAVE FUNCTIONS AND CUSP CONDITIONS

The coordinates of the electrons are denoted by r1 and r2 and a nucleus with infinite mass

with charge number Z is assumed. In the description of the S states of two-electron atoms it

is enough to use three scalar variables. The Hylleraas-variables are s = r1 + r2 = |r1|+ |r2|,

t = r1−r2 = |r1|−|r2| and u = r12 = |r12| = |r1−r2|. The variables r1, r2 and r12 are called

interparticle coordinates. In the study of the Kato’s cusp conditions mainly interparticle

coordinates are used. In the next section approaches, where the cusp conditions are exactly

fulfilled using special forms for the trial function, are shortly surveyed.

A. Trial functions using interparticle coordinates

Using finite number of Slater-determinants as in the standard configuration interaction

method the e-e cusp condition can not be satisfied [2, 4]. Explicitly correlated trial func-

tions have to be used. It was suggested in [2] the following form for the trial wave function

Φ(r1, r2)χ(r12). The closed shell wave function is of the form Φ(r1, r2) = φ(r1)φ(r2), the

open shell function looks like Φ(r1, r2) = φ(r1)ψ(r2) + ψ(r1)φ(r2). This type of wave func-

tion satisfies the cusp equations if the individual functions φ(r), ψ(r) and χ(r) fulfill the

conditions [2] φ′(0) = −Zφ(0), ψ′(0) = −Zψ(0) and χ′(0) = 1
2
χ(0). Usually for φ(r) and

ψ(r) the hydrogenic Coulomb-functions are used.

A few suggestions along this line of approach for the correlation function χ(r12) are men-

tioned in the followings. Abbot and Maslen [29] takes the form exp(1
2
r12). The correlation

function
(

1 + 1
2
r12
)

can be obtained from the study of the asymptotic form of the exact
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wave function [21]. For the correlation function, due to the structure of the Hamiltonian, it

is a natural choice uk(r12), the hydrogenic wave function for an electron in the continuum

with energy k2/2 [17]. This so called Pluvinage-type function can be generalized [18]. The

so called 3C Coulomb wave function is widely used in three body Coulomb scattering cal-

culations. Bound state analog of this type of trial function is recently introduced [19, 20].

Moreover, by construction, the 3C wave function fulfills Katos cusp conditions at all two-

body coalescence points. From the analysis of the asymptotic form of the exact wave function

such trial functions were suggested where the use of the hydrogenic Coulomb-functions are

avoided [21].

A general method to construct a wave function with correct Kato’s cusp conditions is

described in [15, 16]. Assume that a function ΨCF (r1, r2, r12) with correct cusp conditions

is given. A better trial function can be obtained if the following ansatz is considered

ΨCF (r1, r2, r12)×
∑

i,j,k
i 6=1,j 6=1,k 6=1

Ci,j,kr
i
1r

j
2r

k
12, (2)

where i, j, k are non-negative integers. If the above restrictions are made in the summa-

tion then (2) also satisfies the cusp conditions. In the works [15, 16] for the function

ΨCF (r1, r2, r12) the expression e−Z(r1+r2)
(

1− 1
1+2λ

e−λr12
)

was used. The latter form of its

own was used as a trial function in [27]. Interesting expressions for the trial wave function

were suggested in [22] and [26]. They are of the form (2) for the ΨCF (r1, r2, r12) the function

e−Z(r1+r2)
(

1 + 1
2
r12e

−λr12
)

is taken which was suggested in [24].

B. Hylleraas- and Kinoshita-type trial functions

For space part of the wave function of a two-electron atom the following form is taken

φ(s, t, u) =
∑

l,m,n

kl,m,nwl,m,n(s, t, u). (3)

The terms in this trial function are characterized by a triplet of non-negative integers. The

notation [l, m, n] is used for such a triplet. When an [l, m, n] term is mentioned it means the

function wl,m,n(s, t, u). For wave functions with singlet spin part n is even. If the restriction

l ≥ m ≥ n is used such a wave function is gained which was suggested by Hylleraas [11].

Since its introduction the Hylleraas-type form of variational trial functions have huge number
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of successful applications. The general form (3) is due to Kinoshita [12]. The characteristic

of this form is that negative powers of the variables s and u are allowed.

In the rest of this section those results of [14] are collected which are used later in the

paper. The singularities for the electron-nucleus (e-n) coalescences are at the points (s,−s, s)

and (s, s, s). The e-e coalescences occur at the points (s, 0, 0). The following notation is

used: a triplet of numbers in parentheses corresponds to the s, t and u values. The Kato’s

cusp conditions in Hylleraas-coordinates are given by the equations [14, 28]

φs(s,−s, s) + φt(s,−s, s) = −Zφ(s,−s, s), (4)

φs(s, s, s)− φt(s, s, s) = −Zφ(s, s, s) (5)

and

φu(s, 0, 0) =
1

2
φ(s, 0, 0). (6)

Here the standard mathematical notation is used for the partial derivatives with respect to

s, t and u.

The coefficients kl,m,n of the trial wave function (3) have to obey certain equations in

order to satisfy the cusp conditions. The e-n cusp condition can be expressed by

∑

m,n

(m+ n)k0,m,n = 0 (7)

and
∑

m,n

[(m+ n− l)kl,m,n + ᾱkl−1,m,n] = 0, l > 0. (8)

Here the abbreviation ᾱ = α − Z is introduced. The fulfillment of the e-e cusp condition

leads to k0,1,0 = 0 and

kl,1,0 =
1

2
kl−1,0,0, l > 0. (9)

For finite terms wave functions two more groups of constraints present. The restrictions

kl,0,n = 0, n > 0 assure the limit of the trial wave function at the singularity points

(s, 0, 0), s 6= 0. The second group of restrictions kl,1,n = 0, n > 1 ensures the limit of

φu at the e-e coalescence line (s, 0, 0), s > 0. To satisfy the cusp conditions in the triple

coalescence point (0, 0, 0) the terms with l = 0 and l = 1 are severely restricted. The only

possible terms are [0, 0, 0], [1, 1, 0] and [1, 0, 0].
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III. BASIS FUNCTIONS WITH EXACT CUSP CONDITIONS

Using the l = 0 restriction i.e. for l = 0 the only possible term is [0, 0, 0], Eq. (7) turns

into 0 k0,0,0 = 0 which can be fulfilled for arbitrary k0,0,0.

First it is assumed that ᾱ = 0, in this case the e-n cusp conditions are simplified. From

(8) it follows that
∑

m,n

(m+ n− l)kl,m,n = 0, l ≥ 1. (10)

Using the l = 1 restriction i.e. for l = 1 the only possible terms are [1, 0, 0] and [1, 1, 0], from

Eqs. (10) and (9) it can be deduced k1,0,0 = k2,1,0 = 0.

A. Simple solutions

A trivial solution of the e-n cusp equations (10) can be obtained if such terms are used

only where l = m+ n and ᾱ = 0. Because of these strict restrictions only the l = 1 e-e cusp

condition has to be considered and according to (9) k1,1,0 = k0,0,0/2. In such a circumstances

the trial function satisfying all cusp conditions can be written into the form

k0,0,0

(

w0,0,0 +
1

2
w1,1,0

)

+
∑

l,m,n
l=m+n,l>1

kl,m,nwl,m,n. (11)

To save space the s, t and u arguments of the functions wl,m,n(s, t, u) are not shown.

The restriction l = m + n means that the form of the basis functions are wm+n,m,n =

exp(−Zs)snum−ntn. In the case of Kinoshita-type function this means that only u may

have negative exponent and the powers of s and t are the same. If Hylleraas-type func-

tion is considered it can be written that m = n + k (0 ≤ k) so the allowed function form

is w2n+k,n+k,n = exp(−Zs)snuktn. Separating the n = 0 term from the rest (11) can be

rewritten

exp(−Zs)






k0,0,0

(

1 +
1

2
u

)

+
∑

n,k
n>0

k2n+k,n+k,ns
nuktn +

∑

k
k>1

kk,k,0u
k






. (12)

The third term in (12) can be neglected and still the cusp conditions are fulfilled since it

is not necessary to use all functions with the condition l = m + n. In this case the trial
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function is

exp(−Zs)






k0,0,0

(

1 +
1

2
u

)

+
∑

n,k
n>0

k2n+k,n+k,ns
nuktn






. (13)

This last form was derived in a recent paper [28] using other reasoning. It can be expected

that the very simple forms of the trial functions (12) and (13) would result in not very

accurate energy eigenvalue. In the rest of this section the restriction ᾱ = 0 is overcome and

the simplicity of the allowed terms is surmounted.

B. Basis functions with exact cusp conditions

Let’s assume that a trial wave function is given in the form

L
∑

l=0

kl,0,0(wl,0,0 +
1

2
wl+1,1,0) +

′
∑

l,m,n

kl,m,nwl,m,n(s, t, u). (14)

The sign ′ above the summation means that [l, m, n] 6= [l, 0, 0] and [l, m, n] 6= [l, 1, 0]. Here

the general case is considered i.e. ᾱ 6= 0. Since a finite term wave function is looked for, the

values of l are restricted, and the maximum of the values of l is denoted by L. It is assumed

that for a given l only finite number of m and n values are taken into account. The special

summation notation also means the summation over l in the second summation of (14) runs

between l = 2 and l = L.

Considering (9) it is obvious that (14) satisfies the e-e cusp conditions for l = 1, . . . , L.

The coefficients kl,m,n are arbitrary in the second summation in (14) whereas the kl,0,0 coeffi-

cients in the first term of (14) are dependent ones. They can not be determined variationally

if such a wave function is looked for where the cusp conditions are exactly satisfied. A re-

cursive solution of the cusp equations is given in [14] the coefficients kl,0,0 are given by

kl+2,0,0 = Bl+2 +
1

l + 2

(

ᾱ−
l + 1

2

)

kl+1,0,0 +
ᾱ

2(l + 2)
kl,0,0 l ≥ 0 (15)

where

Bl =
1

l

∑

m>1,n

[(m+ n− l) kl,m,n + ᾱkl−1,m,n] l ≥ 2. (16)

The initial conditions for the recursion are: k0,0,0 is arbitrary and k1,0,0 = ᾱk0,0,0. This last

initial condition stems from (8) when l = 1. The explicit form of kl,0,0 reads

kl,0,0 =
ᾱl

l!
k0,0,0 +

(−1)l

l
1
2l

∑l

i=2 i(−1)i2iBi

+ (−1)l

l!2l

∑l−1
k=1(−1)kᾱk(l − k − 1)!2k

∑l−k

i=2 i(−1)i2iBi l ≥ 2. (17)
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Here the convention is used that if in a summation the lower bound is larger than the upper

one then the value of the summation is zero. The proof of (17) is given in the Appendix .

The recursive solution (15) and (17) are valid if the e-e cusp conditions (9) are also fulfilled.

A set of integer triplets D is introduced it contains the dependent variables D =

{[l, 0, 0], [l, 1, 0]|1 ≤ l ≤ L} ∪ {[L + 1, 1, 0]}. The set of the integer triplets [l, m, n] ap-

pearing in the second summation of (14) together with the special integer triplet [0, 0, 0] is

denoted by F . Earlier at the beginning of section III it was found that the cusp conditions

do not fix the value of k0,0,0. The set F contains the free, independent kl,m,n expansion

coefficients.

If the solution (17) is used in (14) then all cusp conditions are fulfilled for 0 ≤ l ≤ L.

Unfortunately the term [L+ 1, 1, 0] is present in (14) so the the coupled e-n cusp equations

(8) for l = L + 1 and l = L + 2 have to be explicitly considered and solved. This can be

achieved if extra terms [L+1, m, n] or [L+2, m, n] are added to (14). The m and n indexes

of these extra terms are called auxiliary parameters. If trial function with minimal number

of terms are requested then the term [L + 1, 0, 0] could not be added to the trial function

(14).

There is large freedom how to satisfy the e-n cusp conditions for l = L+1 and l = L+2.

Two simple cases are considered. Two l = L+1 terms can be added to (14) they are denoted

by [L+1, m0, n0] and [L+1, m1, n1]. An alternative way is to add three extra terms to (14)

and they are signed by [L + 1, m0, n0], [L + 2, mα, nα] and [L + 2, mβ, nβ]. In this case the

e-n cusp equation for l = L+3 has to be also considered but with the restriction that terms

with l ≥ L + 3 are not in the trial function. We have to exclude the terms [L + 2, 1, 0]

and [L + 2, 0, 0] from the selected ones since we do not want to bother about new e-e cusp

conditions and do not want terms such that l ≥ L+ 3.

In the first case, when to extra terms are added to (14), the two coupled e-n cusp equations

(8) for l = L+ 1 and l = L+ 2 can be solved for the variables kL+1,m0,n0
, kL+1,m1,n1

and the

results can be put into the form

kL+1,m0,n0
= 1

m0+n0−m1−n1

((

m1+n1−1
2

− ᾱ
)

kL,0,0 −
ᾱ
2
kL−1,0,0

)

− ᾱ
m0+n0−m1−n1

∑′

m,n kL,m,n (18)
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and

kL+1,m1,n1
= − 1

m0+n0−m1−n1

((

m0+n0−1
2

− ᾱ
)

kL,0,0 −
ᾱ
2
kL−1,0,0

)

+ ᾱ
m0+n0−m1−n1

∑′
m,n kL,m,n. (19)

The solutions are written down such a way that the dependent variables are separated

out and the e-e cusp conditions are considered. The set of dependent variables is D =

{[l, 0, 0], [l, 1, 0]|1 ≤ l ≤ L}∪{[L+1, m0, n0], [L+1, m1, n1], [L+1, 1, 0]}. Here it is required

that m0 + n0 −m1 − n1 6= 0. Although there is no summation over l in (18) and in (19) the

special summation notation has the same meaning as before since it is obvious what is the

value of l. The final form of the wave function which fulfills the Kato’s cusp conditions is

∑′

l,m,n kl,m,nwl,m,n +
∑L

l=0
kl,0,0

(

wl,0,0 +
1
2
wl+1,1,0

)

+ kL+1,m0,n0
wL+1,m0,n0

+ kL+1,m1,n1
wL+1,m1,n1

. (20)

In the second case, when three extra terms are added to (14), the three coupled e-n cusp

equations (8) for l = L+1, l = L+2 and l = L+3 can be solved for the variables kL+1,m0,n0
,

kL+2,mα,nα
and kL+2,mβ ,nβ

. They can be expressed as

kL+1,m0,n0
=

1

m0 + n0 − L− 1

(

(

L

2
− ᾱ

)

kL,0,0 − ᾱ

(

1

2
kL−1,0,0 +

′
∑

m,n

kL,m,n

))

, (21)

kL+2,mα,nα
= − ᾱ

(m0+n0−L−1)(mα+nα−mβ−nβ)

×
(

(

1
2
(m0 + n0 − 1)− ᾱ

)

kL,0,0 − ᾱ
(

1
2
kL−1,0,0 +

∑′

m,n kL,m,n

))

(22)

and kL+2,mβ ,nβ
= −kL+2,mα,nα

. For the selection of the extra terms the restrictions are m0 +

n0 − L − 1 6= 0 and mα + nα − mβ − nβ 6= 0. The set of the dependent variables is

D = {[l, 0, 0], [l, 1, 0]|1 ≤ l ≤ L}∪{[L+1, m0, n0], [L+2, mα, nα], [L+2, mβ, nβ], [L+1, 1, 0]}.

In the second case the final form of the wave function which fulfills the Kato’s cusp conditions

is

∑′

l,m,n kl,m,nwl,m,n +
∑L

l=0
kl,0,0

(

wl,0,0 +
1
2
wl+1,1,0

)

+ kL+1,m0,n0
wL+1,m0,n0

+ kL+2,mα,nα
wL+2,mα,nα

+ kL+2,mβ ,nβ
wL+2,mβ ,nβ

. (23)

The most important point of our method is to rewrite the trial functions (20) and (23)

which exactly fulfill the cusp conditions into the following form

∑

[l,m,n]∈F

kl,m,nw̃l,m,n(s, t, u). (24)

9



To do this the set of the dependent variables D have to be taken into account . Substituting

the values of the dependent variables into (20) and (23) the coefficients w̃l,m,n(s, t, u) of the

free expansion variables kl,m,n can be collected. The coefficients of the free kl,m,n variables

are functions of the Hylleraas-coordinates. These coefficients define the new basis functions

w̃l,m,n(s, t, u). To do this task easily it is good to know what is the coefficient of the free

variable kl,m,n in kr,0,0. This is denoted by Cr(l, m, n) and it is given for r ≥ 2 by the

expression

Cr(l, m, n) = (m+ n− l) (−1)l+r2l−r

r!

(

(r − 1)! +
∑r−l

k=1(−1)kᾱk(r − k − 1)!2k
)

− ᾱ (−1)l+r2l−r+1

r!

(

(r − 1)! +
∑r−l−1

k=1 (−1)kᾱk(r − k − 1)!2k
)

(25)

if [l, m, n] ∈ F \ {[0, 0, 0]} and r ≥ l + 1. If r = l only the first term should be used for the

calculation of Cr(l, m, n). Of course if [l, m, n] 6∈ F or r < l then Cr(l, m, n) = 0. It is easy

to see from (17) that

Cr(0, 0, 0) =
ᾱr

r!
r ≥ 2. (26)

If the trial function (20) is considered the coefficient of k0,0,0 is

w̃0,0,0(s, t, u) = w0,0,0 +
1
2
w1,1,0 +

∑L

l=1
ᾱl

l!

(

wl,0,0 +
1
2
wl+1,1,0

)

+
wL+1,m0,n0

ᾱL

(m0+n0−m1−n1)L!

(

1
2
(m1 + n1 − 1)− ᾱ− 1

2
L
)

−
wL+1,m1,n1

ᾱL

(m0+n0−m1−n1)L!

(

1
2
(m0 + n0 − 1)− ᾱ− 1

2
L
)

. (27)

The coefficients of the other free variables kl,m,n read

w̃l,m,n(s, t, u) = wl,m,n +
∑L

i=l Ci(l, m, n)
(

wi,0,0 +
1
2
wi+1,1,0

)

+
wL+1,m0,n0

m0+n0−m1−n1

(

(1
2
(m1 + n1 − 1)− ᾱ)CL(l, m, n)− ᾱ(1

2
CL−1(l, m, n) + δl,L)

)

−
wL+1,m1,n1

m0+n0−m1−n1

(

(1
2
(m0 + n0 − 1)− ᾱ)CL(l, m, n)− ᾱ(1

2
CL−1(l, m, n) + δl,L)

)

. (28)

If the trial function (23) is considered the coefficient of k0,0,0 is

w̃0,0,0(s, t, u) = w0,0,0 +
1
2
w1,1,0 +

∑L

l=1
ᾱl

l!

(

wl,0,0 +
1
2
wl+1,1,0

)

− wL+1,m0,n0

ᾱL+1

(m0+n0−L−1)L!

−
ᾱL+1(wL+2,mα,nα−wL+2,mβ,nβ

)

(m0+n0−L−1)(mα+nα−mβ−nβ)L!

(

1
2
(m0 + n0 − L− 1)− ᾱ

)

(29)

10



and the coefficients of the other independent variables are

w̃l,m,n(s, t, u) = wl,m,n +
∑L

i=l Ci(l, m, n)
(

wi,0,0 +
1
2
wi+1,1,0

)

+
wL+1,m0,n0

m0+n0−L−1

(

(L
2
− ᾱ)CL(l, m, n)− ᾱ(1

2
CL−1(l, m, n) + δl,L)

)

−
(wL+2,mα,nα−wL+2,mβ,nβ

)ᾱ

(m0+n0−L−1)(mα+nα−mβ−nβ)

(

(1
2
(m0 + n0 − 1)− ᾱ)CL(l, m, n)− ᾱ(1

2
CL−1(l, m, n) + δl,L)

)

. (30)

The function w̃l,m,n(s, t, u) is called cusp function (CF). If the forms (27) - (28) and (29)

- (30) are used than it is called first- and second-type CF. In both cases the number of terms

in the final trial function (24) is the same. The number of CF’s is the cardinality of the set

F . It is obvious from our derivation that the set of the cusp functions are determined by L,

the auxiliary parameters and the set F . Any change in these parameters modifies the set

of the CF’s. Let’s assume that L and the auxiliary parameters are fixed. It follows from

(27) and (29) that w̃0,0,0(s, t, u) is independent of F . Assume that there are two sets of free

parameters F and F ′. The expressions (25), (28) and (30) show that if [l, m, n] ∈ F ∩ F ′

then in both CF sets the functions w̃l,m,n(s, t, u) belong to F and F ′ agree with each others.

According to our derivation the function (24) exactly fulfills the cusp conditions. It can

be shown that this is true also for any individual CF w̃l,m,n(s, t, u). First w̃0,0,0(s, t, u) is

considered. Let’s take F = {[0, 0, 0]} than w̃0,0,0(s, t, u) agrees with (24) and this proves

that w̃0,0,0(s, t, u) satisfies the cusp conditions. For a given L and given auxiliary parameters

the CF w̃0,0,0(s, t, u) does not depend on the set F . Now the set F = {[0, 0, 0], [l, m, n]}

is considered. In this case (24) turns into k0,0,0w̃0,0,0(s, t, u) + kl,m,nw̃l,m,n(s, t, u), since this

superposition and w̃0,0,0(s, t, u) fulfill the cusp conditions it is easy to see that w̃l,m,n(s, t, u)

also satisfies the differential cusp conditions (4), (5) and (6).

In the special case ᾱ = 0 the expressions of the CF’s are much simpler than the general

case. The function (25) for r ≥ 2 has a simple form Cr(l, m, n) = (m+ n− l)(−1)l+r2l−r/r

if [l, m, n] ∈ F \{[0, 0, 0]} and r ≥ l otherwise its value is zero and obviously Cr(0, 0, 0) = 0.

Both for the first- and second-type CF the function w̃0,0,0(s, t, u) has the same form and

according to (29) and (27) it is given by

w̃0,0,0(s, t, u) = w0,0,0 +
1

2
w1,1,0 = exp(−Zs)

(

1 +
1

2
u

)

. (31)
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The other first type CF looks like

w̃l,m,n(s, t, u) = wl,m,n + (m+ n− l)(−1)l2l
∑L

i=l

(−1)i

i2i

(

wi,0,0 +
1
2
wi+1,1,0

)

+ (m+ n− l)(−1)l+L2l−L wL+1,m0,n0

m0+n0−m1−n1

1
2L
(m1 + n1 − 1)

− (m+ n− l)(−1)l+L2l−L wL+1,m1,n1

m0+n0−m1−n1

1
2L
(m0 + n0 − 1). (32)

The second-type CF reads

w̃l,m,n(s, t, u) = wl,m,n + (m+ n− l)(−1)l2l
∑L

i=l

(−1)i

i2i

(

wi,0,0 +
1
2
wi+1,1,0

)

+ (m+ n− l) (−1)l+L 2l−L−1

m0+n0−L−1
wL+1,m0,n0

. (33)

Notice that if l = m + n and ᾱ = 0 then the CF w̃m+n,m,n(s, t, u) agrees with the original

Kinoshita-term w̃m+n,m,n(s, t, u) = wm+n,m,n.

Our approach has two very important aspects. First the number of CF’s can be arbitrary

large, the number of terms in the trial function can be arbitrary increased in order to get

better energy. The CF set can be changed versatilely by modifying the set F . Second, the

search for the optimum values for the free kl,m,n variables in (24) leads to the usual matrix

eigenvalue problem but the matrix elements have to be calculated with the CF’s. There is

no need to carry out optimization with constraints to satisfy the cusp conditions.

C. Cusp functions for L = 1 and L = 2

The explicit analytic forms of the CF’s for the simplest cases are given in this section.

The exponential part of the CF can be separated by the following definition

w̃l,m,n(s, t, u) = exp(−αs)P̃l,m,n(s, t, u). (34)

In the rest of this section only the function P̃l,m,n(s, t, u) is written down. Here it is assumed

that only Hylleraas-type terms are used in the construction of CF’s. The following values

are used for the auxiliary parameters: m0 = 2, n0 = 2, m1 = mα = 2, n1 = nα = 0 and

mβ = 3, nβ = 0.

First the simplest case L = 1 is considered, in this case there is only one choice for the

set F namely F = {[0, 0, 0]}. The first-type CF is

P̃0,0,0(s, t, u) =
1

2

(

suᾱ + 2sᾱ− t2ᾱ2 + u2(ᾱ− 1)ᾱ + u+ 2
)

. (35)
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The choices m0 = 2, n0 = 2 and m1 = 2, n1 = 0 are mandatory. In this case L + 1 = 2

and there are four possible integer pairs from which (m0, n0) and (m1, n1) can be selected

as auxiliary parameters but only the ones mentioned above fulfills the restrictions. The

second-type cusp function looks like for L = 1

P̃0,0,0(s, t, u) =
1

2

(

−ᾱ2
(

u2(u− s) + t2
)

+ u2ᾱ3(u− s) + s(u+ 2)ᾱ+ u+ 2
)

. (36)

The choice m0 = 2, n0 = 2 is obligatory because of the same restrictions as before and

in addition the expression m0 + n0 − 2 6= 0 have to be taken into account so the choice

m0 = 2, n0 = 0 is not allowed.

Next the L = 2 case is considered. Here the explicit forms of the CF’s are given only for

the first-type CF’s. In the case L = 2 there are four different sets of CF’s depending on the

set F . In the simplest case F = {[0, 0, 0]} and there is only one CF

P̃0,0,0(s, t, u) =
1
8
(sᾱ (4sᾱ + t2(−(2ᾱ+ 1))ᾱ+ 8) + su2(2ᾱ− 1)ᾱ2

+2u(sᾱ(sᾱ + 2) + 2) + 8) . (37)

Notice that this function is different from (35).

If the set of the free variables is F = {[0, 0, 0], [2, 2, 0]} then two CF’s exist. The function

P̃0,0,0(s, t, u) is given by (37) and

P̃2,2,0(s, t, u) =
1

2
sᾱ
(

u2 − t2
)

+ u2. (38)

If the set F = {[0, 0, 0], [2, 2, 2]} is selected for the independent variables two cusp func-

tions can be constructed. The function P̃0,0,0(s, t, u) is given by (37) and

P̃2,2,2(s, t, u) =
1

4
s
(

t2(1− 4ᾱ) + u2(4ᾱ− 3) + 2s(u+ 2)
)

+ t2. (39)

Finally if all possible allowed terms are used F = {[0, 0, 0], [2, 2, 0], [2, 2, 2]} then there

are three CF’s. They are given by (37), (38) and (39).

IV. NUMERICAL RESULTS

In this section the ground state energy of the He atom is calculated using the CF’s.

Such a CF’s are considered where only Hylleraas-type elementary terms are used for the

13



TABLE I. The ground state energy (E) of the He atom in atomic units using different trial wave

functions. For detailed explanations see the text. The set of the CF’s is characterized by the

parameter L and the best auxiliary parameters are shown. The number of linear variational

parameters for the models are N . The exact ground state energy is -2.903724377 a.u. [30].

L CF-S1 CF-S2 CF-Z-I CF-Z-II

E N E N m0 n0 m1 n1 E N m0 n0 E N

2 -2.876582 1 -2.878545 2 2 0 2 2 -2.898783 3 2 2 -2.902970 3

3 -2.876582 1 -2.879315 3 2 0 3 0 -2.903484 7 2 0 -2.903432 7

4 -2.887268 2 -2.887941 5 2 0 3 0 -2.903641 14 4 2 -2.903653 14

5 -2.888445 3 -2.890252 7 2 0 3 0 -2.903703 24 5 2 -2.903700 24

6 -2.889158 4 -2.891359 9 2 0 3 0 -2.903716 38 6 2 -2.903715 38

7 -2.889509 5 -2.891822 11 2 0 3 0 -2.903721 56 7 2 -2.903720 56

8 -2.889803 7 -2.892027 14 2 0 3 0 -2.903722 79 8 2 -2.903722 79

superpositions. For completeness, results when the simple solutions (12) and (13) are used

as trial functions, are also given. A CF calculation can be characterized by the value of L.

In the so called simple cases one has to keep in mind that in (12) and (13) the summations

are over k and n and they are restricted by the condition L = 2n+ k.

In a numerical calculation if the trial function is given in the forms (12) and (13) they

are called CF-S2 and CF-S1 models, respectively. If the first- and the second-type CF’s are

used they are referred as CF-α-I and CF-α-II calculations, respectively. In the case of the

models CF-α-I and CF-α-II the value of the parameter α is optimized and also the best

values of the auxiliary parameters are determined. If the α = Z choice is made for the first-

and second-type CF’s then the calculations are called CF-Z-I and CF-Z-II, respectively. As

regards the set of the free parameters F only one case is considered when at a given l all

possible m and n values are taken into account i.e.

F = {[0, 0, 0]} ∪ {[l, m, n]|l = 2, . . . , L, m = 0, . . . , l n = 0, 2, 4 . . . , m}

\ {[l, 0, 0], [l, 1, 0]|l = 2, . . . , L, }. (40)

In this case for a given odd L the number of CF’s is (21− 14L+15L2 +2L3)/24 and if L is

even then the number of CF’s is (24− 14L+ 15L2 + 2L3)/24.
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TABLE II. The same as Table I. The value of the parameter of the exponential function α is

optimized.

L N CF-α-I CF-α-II

m0 n0 m1 n1 α E m0 n0 mα nα mβ nβ α E

1 1 2 0 2 2 1.956261 -2.877782 2 2 2 0 3 2 1.999999 -2.876582

2 3 2 0 2 2 1.999868 -2.898783 2 2 2 2 3 2 2.106178 -2.903345

3 7 2 0 3 0 2.073837 -2.903527 2 0 2 2 5 0 2.109632 -2.903526

4 14 2 0 3 0 2.093215 -2.903651 5 2 2 2 6 2 2.290487 -2.903706

5 24 2 0 3 0 2.241320 -2.903717 2 2 2 0 4 0 2.333256 -2.903717

6 38 2 0 7 6 2.345606 -2.903720 7 4 3 2 8 4 2.418335 -2.903722

7 56 2 0 3 0 2.413501 -2.903723 2 2 2 0 5 0 2.481257 -2.903723

8 79 6 2 6 4 2.555501 -2.903724 9 8 3 2 10 10 2.610711 -2.903724

The Tables contain the ground state energy of the He atom calculated by our models.

The results of the simple models and the CF-Z-I and CF-Z-II descriptions are displayed in

Table I. As it was expected the CF-S1 and CF-S2 descriptions give pure energies. Since the

CF-S2 model contains functions of the form wk,k,0 its results better than the model CF-S1.

The CF-Z-I and CF-Z-II descriptions contain all the possible CF’s and the accuracy of the

results are drastically improved. For large values of L the descriptions CF-Z-I and CF-Z-II

practically give the same results.

Further distinct improvement appears if the parameter of the exponential function of the

trial function deviates from the value of Z. The results of the descriptions CF-α-I and CF-

α-II are showed in Table II. The energy gains are substantial if the value of the parameter

α is not fixed to Z but can be taken as a variational parameter. For these descriptions

too it can be observed that for large L values the use the first- and second-type CF give

almost identical results. According to our knowledge of the literature the best energy for

the ground state of the He atom is −2.90360 a.u. [16] with such a trial function where the

cusp conditions are exactly fulfilled using trial functions of special forms. This trial function

with energy −2.90360 [16] contains 29 linear variational parameters our CF-α-II model gives

energy -2.903706 and the number of linear parameters is only 14.
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TABLE III. Same as Table I. The same auxiliary parameters are used as in Table II but double

CF sets are used. The optimal values for α1 and α2 are shown.

L N DCF-α-I DCF-α-II

α1 α2 E α1 α2 E

1 2 2.172266 2.493045 -2.892378 0.939756 2.001543 -2.876617

2 6 2.056165 2.210420 -2.903466 1.978561 2.897833 -2.903597

3 14 2.049804 2.729976 -2.903696 1.884354 2.804104 -2.903691

4 28 1.821203 3.241932 -2.903723 2.139435 2.670425 -2.903722

5 48 1.974419 3.762036 -2.903724 2.215298 3.218170 -2.903724

In analogy with the double and triple basis set methods [30, 31] in order to improve the

trial function the following form of ansatz

∑

k

exp(−αks)
∑

[l,m,n]∈F

Ck,l,m,nP̃l,m,n(s, t, u) (41)

is introduced. It is obvious that the wave function (41) fulfills the cusp conditions. The

free variables to be determined by diagonalization are Ck,l,m,n. The use of trial function of

the form (41) may be called double or triple cusp function description when two or three

different α parameters are used. In the numerical examples two α parameters are considered.

Their values are optimized. When two α parameters are used in the calculations and they

are carried out with the first- and second-type CF’s they are called DCF-α-I and DCF-α-II

descriptions, respectively. The results of these type of calculations are displayed in Table

III. Only the α parameters are optimized, the auxiliary parameters are taken from Table II.

Comparing the results of the three Tables it can be observed that the DCF-α-I and DCF-

α-II descriptions give the best energy at a given number of basis size. Six decimal digits

accuracy can be achieved with these models using only 48 basis functions.

V. CONCLUSIONS

New type of function sets are introduced. The cardinalities of the sets can be arbitrary

large finite integer numbers. Superpositions of the new functions from the sets exactly
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fulfill the Kato’s cusp conditions. The energy eigenvalues can be calculated with the stan-

dard matrix diagonalization technique and the more difficult minimalization with constraint

approach to satisfy the cusp conditions can be avoided. The new functions are special lin-

ear combinations of the basic Kinoshita-type terms. The set of the new functions can be

changed versatilely. Obviously the introduced method is valid starting from Hyllaraas-type

basic terms. In this case numerical examples are given by calculating the ground state en-

ergy of the He atom. For a CF set approximately with fifty basis size the accuracy of the

energy is six decimal digits and the cusp conditions are exactly fulfilled.
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Appendix: Derivation of the explicit solution for kl,0,0

The solution of the recursion (15) is searched in the form

kl,0,0 = f0(l)k0,0,0 +
l
∑

i=2

f(l, i)Bi l ≥ 2, (A.1)
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where f0(l) and f(l, i) are unknown functions. Substituting (A.1) into (15) using k1,0,0 =

ᾱk0,0,0 and collecting the coefficients of k0,0,0 and Bi the following set of relations occur

f0(l + 2)−
1

l + 2

(

ᾱ−
l + 1

2

)

f0(l + 1)−
ᾱ

2(l + 2)
f0(l) = 0 l ≥ 2, (A.2)

f(l + 2, i)−
1

l + 2

(

ᾱ−
l + 1

2

)

f(l + 1, i)−
ᾱ

2(l + 2)
f(l, i) = 0 i ≤ l, l ≥ 2, (A.3)

f(l + 2, l + 1)−
1

l + 2

(

ᾱ−
l + 1

2

)

f(l + 1, l + 1) = 0 l ≥ 1, (A.4)

f(l + 2, l + 2) = 1 l ≥ 0, (A.5)

f0(2) =
ᾱ2

2
, (A.6)

f0(3) =
ᾱ3

6
. (A.7)

From the explicit solution (17) it is easy to see that

f0(l) =
ᾱl

l!
l ≥ 2, (A.8)

and

f(l, i) =
(−1)l+i2i−li

l!

(

(l − 1)! +
l−i
∑

k=1

(−1)kᾱk(l − k − 1)!2k

)

l ≥ 2, i ≤ l. (A.9)

It remains to show that these functions satisfy the equations (A.2)-(A.7).

Equations (A.6) and (A.7) are trivially fulfilled. From (A.8) we get f0(l + 1) = ᾱ
l+1
f0(l)

and f0(l + 2) = ᾱ2

(l+1)(l+2)
f0(l). Taking into account these formulas it is easy to check that

(A.2) is fulfilled.

Substituting (A.9) into the l.h.s of (A.3) we get

(−1)l+ii2i−l

l!(l + 2)

[

1

4(l + 1)

(

(l + 1)! +

l+2−i
∑

k=1

(−1)kᾱk(l − k + 1)!2k
)

+

(

ᾱ−
l + 1

2

)

1

2(l + 1)

(

l! +
l+1−i
∑

k=1

(−1)kᾱk(l − k)!2k
)

−
ᾱ

2

(

(l − 1)! +

l−i
∑

k=1

(−1)kᾱk(l − k − 1)!2k
)]

. (A.10)

The expression inside the square bracket in (A.10) is a polinomial of ᾱ with order l+ 2− i.

The constant term is

(l + 1)!

4(l + 1)
−
l + 1

2

l!

2(l + 1)
. (A.11)

19



The coefficient of ᾱn is

−l!2

4(l + 1)
+

l!

2(l + 1)
−
l + 1

2

1

2(l + 1)
(−1)(l − 1)!2−

(l − 1)!

2
(A.12)

if n = 1,

(−1)n

4(l + 1)
(l − n + 1)!2n +

(−1)n−1

2(l + 1)
(l − (n− 1))!2n−1

−
l + 1

2

1

2(l + 1)
(−1)n(l − n)!2n −

1

2
(−1)n−1(l − (n− 1)− 1)!2n−1 (A.13)

if 1 < n < l + 2− i and

(−1)l+2−i

4(l + 1)
(l − (l + 2− i) + 1)!2l+2−i +

(−1)l+2−i−1

2(l + 1)
(l − (l + 2− i− 1))!2l+2−i−1(A.14)

if n = l+ 2− i. Since the last four expressions are identically equal with zero so the square

bracket in (A.10) is equal to zero too. All this means that (A.3) is satisfied by the functions

of (A.9).

Using (A.9) the first term of the l.h.s of (A.4) is of the form

−(l + 1)

(l + 2)!2

[

(l + 1)!− ᾱl!2

]

(A.15)

and the second term of the l.h.s. of (A.4) looks like

−
1

l + 2

(

ᾱ−
l + 1

2

)

l + 1

(l + 1)!
l!. (A.16)

The comparision of these terms show that (A.4) is fulfilled.

Substituting (A.9) into the l.h.s of (A.5) it is trivial to see that (A.5) is fulfilled. All

required relations (A.2)-(A.7) are proved.
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