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1 Introduction

The Bose—FEinstein enhancement of the production of two identical pions at low relative momenta (or,
in other words, quantum statistics correlations) was first observed in the pp annihilation more than 50
years ago [E|]. These correlations encode information about the space—time structure of the interaction
region of particles created in collisions at kinetic freeze-out (“particle-emitting source’) [E—@] Since that
time the correlation method has been developed [B, ] and it is now known as “correlation femtoscopy”.
Femtoscopy measures the apparent width of the distribution of the relative separation of emission points,
which is conventionally called the “radius parameter”. The method was successfully applied to the mea-
surement of the space—time characteristics of particle production processes at high energies in particle
[EL ] and heavy-ion collisions (see, e.g., [@ ] and references therein).

Identical boson correlations, especially of identical charged pions, have been used extensively over the
years to experimentally study properties of the emitting source created in various collision systems [@].
Identical charged kaon femtoscopy studies were also carried out, for example, in Au—Au collisions at
V/SnN = 200 GeV by the STAR and PHENIX [@] collaborations and in pp collisions at /s = 7 TeV
and Pb—Pb collisions at /sy = 2.76 TeV by the ALICE collaboration [B, 1.

The study of femtoscopic correlations in asymmetric collision systems is particularly interesting because
it provides a bridge between small (pp) and large (A—A) collision systems, and may lead to additional
constraints on model scenarios which were successfully used to describe pp and A—A collisions. The
A-A femtoscopy results are interpreted within the hydrodynamic framework as a signature of collective
radial flow [@é—lﬂ] Attempts to describe the pp data in the same framework have not been successful
so far and it is speculated that additional effects related to the uncertainty principle may play a role in
such small systems [IE]. The results obtained in asymmetric collisions are difficult to interpret unam-
biguously. For instance, the femtoscopic study of the data obtained at RHIC for d—Au collisions [IE, @]
suggest that a hydrodynamic evolution may be present in such a system, while at the LHC the ALICE
three-pion [Iﬂ] and three-dimensional two-pion [@] analyses in p—Pb collisions at /syy = 5.02 TeV
demonstrate the more important role of the initial state shape and size of the created system.

The excellent particle identification capabilities of the ALICE detector [IE] and the data sample collected
in p-Pb collisions at /sxy = 5.02 TeV in 2013 allow one to perform the K*K* femtoscopic analysis.
Kaons are a convenient tool to study Bose—Einstein correlations because they are less influenced by
resonance decays than pions and therefore more effectively probe femtoscopic correlations of directly-
produced particles. The comparison of kaon and pion correlation radii ﬁi, |£|, ] as a function of

pair transverse momentum kt = ]pm + Ppr2|/2 or transverse mass my = 4 /k% +m?, where pr; (pr2)
is the transverse momentum of the first (second) particle and m is the kaon or pion mass, allows one
to understand the collective dynamics (collective flow) of the source created in high-energy collisions.
In particular, in the system created by colliding heavy ions, the decrease of the correlation radii with
increasing kt (mrt) is usually considered as a manifestation of the strong collective expansion of the
matter created in such collisions. If the dependence of the interferometry radii on pair momentum in p—
Pb collisions followed the trends seen in heavy-ion collisions, it would be an indication of collectivity or
the creation of a hot and dense system expanding hydrodynamically [IZII , ]. In addition, comparing
kaon femtoscopic results in pp, p—A, and A—A collision systems can provide experimental constraints
on the validity of hydrodynamic [@, @] and/or color glass condensate [@? ] approaches proposed
for the interpretation of the p—Pb data. In this work, the kaon femtoscopic radii in p—Pb collisions at
VSN = 5.02 TeV are shown as a function of k1 and multiplicity, and are compared with those in pp
and Pb-Pb collisions at /s = 7 TeV ] and /syn = 2.76 TeV [IZII], respectively. The presented data
are also compared with the EPOS 3.111 model [44], an event generator based on a (3+1)D viscous
hydrodynamical evolution starting from flux tube initial conditions, which are generated in the Gribov-
Regge multiple scattering framework. The approach contains a full viscous hydrodynamical simulation
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and a more sophisticated treatment of nonlinear effects in the parton evolution by considering individual
(per Pomeron) saturation scales than in previous EPOS versions , ]. There are also changes in the
core—corona procedure [? ] crucial in proton—nucleus collisions, so that the initial energy of the flux tubes
is separated into a part which constitutes the initial conditions for hydrodynamic expansion (core) and the
particles which leave the “matter” (corona). This model reasonably reproduces multiplicity distributions,
transverse momentum spectra, and flow results, and it gives the best description of kaon spectra [@? ?

a7,

The paper is organized as follows: Section 2 shortly describes the ALICE experimental setup and charged
kaon selection criteria used in the presented work. In Section 3, the femtoscopic correlation function
analysis is described in detail and the sources of systematic uncertainties are discussed. The extracted
radii and correlation strengths are shown and compared with model predictions in Section 4. The ob-
tained results are summarized in Section 5.

2 Description of the experiment and data selection

2.1 Experiment

The ALICE detector and its performance in the LHC Run 1 (2009 — 2013) are described in ] and
[@], respectively. About 55x10% p—Pb collision events collected in 2013 at a center-of-mass energy
per nucleon—nucleon pair of /sy = 5.02 TeV were analyzed in this work. Given the energies of the
colliding p and Pb beams, the nucleon—nucleon center-of-mass system is shifted with respect to the
ALICE laboratory system by 0.465 units of rapidity in the direction of the proton beam. Throughout this
paper 1 represents the pseudorapidity measured in the laboratory frame.

The analyzed events were classified according to their multiplicity [Iﬁ ] using the measured energy
deposition in the VO detectors [@], which consist of two arrays of scintillators located along the beamline
installed on each side of the interaction point and covering 2.8 < 11 < 5.1 (VOA, located on the Pb-
remnant side) and —3.7 < n < —1.7 (VOC) [@]. Charged kaons were reconstructed with the central
barrel detectors placed inside a solenoidal magnet providing a 0.5 T field parallel to the beam direction,
namely the Time Projection Chamber (TPC) ] and the Inner Tracking System (ITS) ]. The primary
vertex was obtained from the ITS. Its position along the beam direction (the “z-position”) was required
to be within +10 cm of the center of the ALICE detector to ensure uniform tracking performance. The
TPC was used to reconstruct tracks and their momenta. The TPC is divided by the central electrode into
two halves, each of which is composed of 18 sectors (covering the full azimuthal angle) with 159 pad
rows placed radially in each sector. A track signal in the TPC consists of space points (clusters), each
of which is reconstructed in one of the pad rows. The TPC covers an acceptance of || < 0.8 for tracks
which reach the outer radius of the detector and |1| < 1.5 for shorter tracks. The parameters of the track
were determined by performing a Kalman fit to a set of clusters with an additional constraint that the
track passes through the primary vertex. The quality of the fit is required to have y2/NDF less than
2. The transverse momentum of each track was determined from its curvature in the uniform magnetic
field. The track selection criteria based on the quality of the track reconstruction fit and the number of
detected tracking points in the TPC [IE, ] were used to ensure that only well-reconstructed tracks were
considered in the analysis.

Particle identification (PID) for reconstructed tracks was carried out using the TPC together with the
Time-of-Flight (TOF) [@] detector. The TOF is a cylindrical detector consisting of 18 azimuthal sectors
divided into five modules along the beam axis at a radius r ~ 380 cm. The active elements are multi-
gap resistive plate chambers. For TPC PID, a parametrized Bethe-Bloch formula was used to calculate
the specific energy loss dE /dx in the detector expected for a particle with a given mass, charge, and
momentum. For PID based on TOF information, the particle mass was used to calculate the expected
time-of-flight as a function of track length and momentum. For each PID method, the signal for each
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Table 1: Charged kaon selection criteria.

pr 0.14 < pr < 1.5GeV/c
ul <08

DCA ransverse to primary vertex <24 cm
DCAlongitudinal to primary vertex <3.0cm

ng tpc (for p < 0.5 GeV/e) <2

ng tpc (for p > 0.5 GeV/c) <3

ne tor (for 0.5 < p <0.8GeV/e) | <2
netor (for 0.8 < p <1.0GeV/e) | <1.5
netor (for 1.0 < p < 1.5 GeV/e) | <1.0
Number of track points in TPC >70

reconstructed particle is compared with the one expected for a kaon taking into account the detector
resolution. The allowed deviations (ns) depend on the momentum of the particle [Iﬂ, @, ].

2.2 Charged kaon selection

Track reconstruction for the charged kaon analysis was performed using the signals in the TPC. To ensure
a good momentum resolution, each track was required to be composed of at least 70 out of the 159
TPC clusters. Tracks were selected based on their distance of closest approach (DCA) to the primary
vertex, which was required to be less than 2.4 cm in the transverse plane and less than 3.0 cm in the
longitudinal direction. The kinematic range for kaons selected in this analysis is 0.14 < pt < 1.5 GeV/c
and || < 0.8. Charged tracks with momentum p < 0.5 GeV/c were identified as kaons if they satisfied
the requirement ns tpc < 2 in the TPC. Tracks with p > 0.5 GeV/c were required to match to a signal in
the TOF, and satisfy ns tpc < 3 as well as the following momentum-dependent 74 selection: ng tor < 2
for 0.5 < p < 0.8 GeV/c, ng tor < 1.5 for 0.8 < p < 1.0 GeV/c and ng tor < 1 for 1.0 < p < 1.5 GeV/e.
All selection criteria are listed in Tab. Il

The estimation of purity for p < 0.5 GeV/c was performed by parametrizing the TPC dE/dx distribu-
tion of the experimental data in momentum slices and computing the fraction of particle species that
could mistakenly contribute to the kaon signal [@]. The use of momentum-dependent values for ns Tpc
and ns tor was the result of studies to obtain the best kaon purity, defined as the fraction of accepted
kaon tracks that correspond to true kaons, while retaining a decent efficiency of the PID. The dominant
contamination for charged kaons comes from e* in the momentum range 0.4 < p < 0.5 GeV/c. The
parameters of the function which fits the TPC distribution in momentum slices depend on the fit inter-
val and can be a source of the systematic uncertainty associated with the single purity. The purity for
p > 0.5 GeV/c, where the TOF information was employed, was studied with DPMJET [@] simulations
using GEANT [IZII] to model particle transport through the detector. Based on the results of this study, the
ns tor values were chosen to provide a charged kaon purity greater than 99%. The momentum depen-
dence of the single kaon purity in the region of maximal contamination is shown in Fig. The pair
purity is calculated as the product of two single-particle purities for pairs with gj,, < 0.25 GeV/c, where
the momenta are taken from the experimentally determined distribution. The obtained K* pair purity is
shown in Fig. as a function of kt. It can be seen from the figure that, despite the lower purity for
single kaons in the range 0.45 < p < 0.5 GeV/c, the pair purity remains high in the wide kt bins used
in the analysis due to the effects of averaging over low-purity 0.45 < p < 0.5 GeV/c and high-purity
p < 0.45 GeV/c or p > 0.5 GeV/c bins in the full single-kaon momentum range. The systematic uncer-
tainties of the single purity values lead, in turn, to systematic uncertainties of the obtained pair purity.

The analysis was performed in three event multiplicity classes [Iﬂ, @, ]: 0-20%, 20-40% and 40—
90% and two pair transverse momentum kt bins: (0.2-0.5) and (0.5-1.0) GeV/c. The multiplicity was



One-dimensional charged kaon femtoscopy in p—Pb collisions ALICE Collaboration

a r T ‘ L ‘ L ‘ L ‘ L ‘ L ‘ \7 b [ ‘ T T T ‘ T T T ‘ T T T ‘ T ]
5 Tecceces iadadn S 1-ALICE p-Pb s\, =5.02TeV -
o r B [ vttt . 7
H [ i :‘ - K*K* pairs a
©0.90 3 g8 I ]
20-9¢ 1 r 1
m0.8 [ ©0-20% a L i
[ m20-40% @ | 0.9 (0)
0.7¢ ¢ 40-90% 7 i ]
- 1 0.85- -
0.6 ﬁﬁ ] i ©0-20% |
L N - | 0, -
- K*K* pairs ] 05k u20-40% ]
0.5 ALICE p-Pb |5,y =5.02TeV 7 Bl +40-90% |

C 11 ‘ I ‘ I ‘ I ‘ I ‘ I ‘ | ‘ 1 1 ‘ 1 1 ‘ 1 1 ‘ 1

03 035 04 045 05 055 0.2 0.4 0.6 0.8
p (GeVic) k; (GeVic)

Fig. 1: (color online) Single (a) and pair (b) K* purities for different event multiplicity classes. The systematic
uncertainties associated with the purity correction are shown as boxes. Statistical uncertainties are negligible. The
momentum p (kt) values for lower multiplicity classes (blue and green symbols) are slightly offset for clarity.

determined based on the sum of the signal amplitudes of VOA and VOC detectors, commonly referred
to as VOM. Table [2] shows the corresponding mean charged-particle multiplicity densities (dN.,/dn)
averaged over || < 0.5 using the method presented in [27]. The (dNg,/dn) values were not corrected
for trigger and vertex-reconstruction inefficiency, which is about 4% for non-single diffractive events

]. At least one particle in the event had to be reconstructed and identified as a charged kaon. The
correlation signal was constructed from events having at least two identical charged kaons. Events with
a single kaon were included in the event mixing procedure to determine the reference distribution.

Table 2: VOM event classes and their corresponding (dNgp, /dn) [Iﬂ]. The given uncertainties are systematic only
since the statistical uncertainties are negligible.

Event class | (dNe,/dn), |n] < 0.5
0-20% 47.3+0.7
20-40% 24.3+0.7
40-90% 17.3+1.5

The femtoscopic correlation functions (CF) of identical particles are sensitive to two-track reconstruction
effects because the considered particles are close in momentum and have close trajectories. Two kinds of
two-track effects were investigated. Track “splitting” occurs when one track is mistakenly reconstructed
as two. Track “merging” is the effect when two different tracks are reconstructed as one. To remove
these effects, pairs with relative pseudorapidity |An| < 0.02 and relative azimuthal angle |A@*| < 0.045
were rejected. The modified azimuthal angle ¢* takes into account the bending of the tracks inside the
magnetic field and was calculated at a radial distance of 1.2 m [@].

3 Analysis technique

The correlation function of two particles with momenta p; and p; is defined as a ratio

Alpy,
C(p1,p2) = % (1)
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of the two-particle distribution in the given event A(p;,p2) to the reference distribution B(p;,p>) [@].
The reference distribution is formed by mixing events containing at least one charged kaon, where each
event is mixed with five other events which have similar z position of the primary vertex and similar mul-
tiplicity [IE]. The mixed particles come from events for which the vertex positions in the beam direction
agree within 2 cm and the multiplicities do not differ by more than 1/4 of the width of the given multi-
plicity class. The correlation function is measured as a function of the invariant pair relative momentum

Ginv = 1/ |q]* — q(z), where gg = E| — E»> and = p1 — p2 are determined by the energy components E1, E>
and momenta py, pz2 of the particles, respectively. The correlation function is normalized to unity such
that C — 1 in the absence of a correlation signal.

The obtained correlation function Ci,y, was also corrected for purity before the fit [IEI ] according to
Ccorrected - (Craw -1+ P) /P7 (2)
where the pair purity P is taken from Fig.

3.1 Correlation function parametrization

The CFs can be parametrized by various formulae depending on the origin of correlations between the
considered particles. The pairwise interactions between K*K™* that form the basis for femtoscopy are
quantum statistics and the Coulomb interaction. Strong final-state interactions between kaons are negli-
gible [@]. Assuming a Gaussian distribution of a particle source in the pair rest frame, the fit of the kaon
CF is performed using the Bowler-Sinyukov formula [@, @]

C(qgmv) =N [1 — A+ AK (7, Giny) (1 —+exp (_Riznvqiznv))] D(Giny)- 3)

The factor K(r,giny ) describes the Coulomb interaction with a radius r, D(giny) parametrizes the baseline
including all non-femtoscopic effects, for instance resonance decays, and N is a normalization coeffi-
cient. The Coulomb interaction is determined as
CQs+Coulomb
K(rqny) = =5 202, 4)
QS

where Cqs is a theoretical CF calculated with pure quantum statistical (QS) weights (wave function
squared) and Cqs+Coulomb corresponds to quantum statistical plus Coulomb weights ,43]. The pa-
rameters Rj,, and A describe the size of the source and the correlation strength, respectively.

3.2 Fitting procedure

The parameters Rj,, and A can be extracted using Eq. (3) with various assumptions to handle the non-
femtoscopic baseline D from background effects outside the femtoscopic peak region. There are various
methods to deal with the baseline. The simplest way is to assume that it is flat, D(giny) = 1, which can be
reasonable in cases where non-femtoscopic effects are negligible. As can be seen in Fig. 2] the baseline
of the obtained experimental functions is not flat. Therefore, it would be more reasonable to describe it,
for instance, by a first-order polynomial function D(giny) = N(1 + aginy) which reproduces this baseline
slope. It interpolates the baseline behavior at high gj,, taking into account all non-femtoscopic effects
which make it non-flat. Then being extrapolated to low gy, it is supposed to imitate the existing non-
femtoscopic effects. The most natural way to describe the baseline is to use Monte Carlo (MC) models
where events are generated from physical considerations and contain all but QS and Coulomb effects. A
suitable MC model has to reasonably describe the baseline at high ¢gj,,, where non-femtoscopic effects
are significant, and also contain non-femtoscopic effects at low gi,y. The EPOS 3 [@] model without
QS and Coulomb interaction effects included was used to describe the baseline D(giyy). As seen from
Fig. @l EPOS 3 describes the experimental CF outside the correlation peak. The extracted parameter
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values depend on the fit range, which should be chosen taking into account the characteristic width of the
femtoscopic effect observed. In this analysis, the EPOS 3 baseline was fit with a first-order polynomial
in 0 < gjny < 1.0 GeV/e (to flatten statistical uncertainties) and then the experimental CF was fit with
Eq. @) in the range 0 < gy < 0.5 GeV/c. The Coulomb interaction radius was set to » = 1.5 fm, which
is on average close to the extracted radii values.

3.3 Systematic uncertainties

The effects of various sources of systematic uncertainty on the extracted parameters were studied as
functions of multiplicity and kt. The systematic uncertainties were estimated by varying the selection
criteria used for the events, particles, and pairs (with variation limits up to +20%). The influence of
the fit range was estimated by variation of the gi,, upper limit by £40%. Another source of systematic
uncertainty is the misidentification of particles and the associated purity correction. A £10% variation
of the parameters (Sec. used for the purity correction estimation was performed. To reduce the
electron contamination, the PID criteria were tightened, in particular by extending the momentum range
where the TOF signal was used and the energy-loss measurement was required to be consistent with the
kaon hypothesis within ng pc < 1.

There is also an uncertainty associated with the choice of the radius of the Coulomb interaction. It was
set to 1.5 fm as a result of averaging of the three radii values that were extracted from the respective
multiplicity bins and varied by £0.5 fm. The relative difference was taken as a systematic uncertainty.
Uncertainties associated with momentum resolution were estimated using a MC simulation with the
DPMIJET 3.05 [@] model. The effect is limited to low pair relative momentum, where it smears the
correlation function and is especially pronounced for narrow femtoscopic peaks. In p—Pb collisions the
giny region of the femtoscopic effect is one order of magnitude wider than the region affected by this
inefficiency and, consequently, the corresponding uncertainty is minor.

As was explained in Sec. the fitting procedure requires knowledge of the non-femtoscopic back-
ground shape and magnitude. In this analysis, the EPOS 3 model was used for this purpose. The system-
atic uncertainty associated with the baseline was estimated using an alternative MC model, DPMIJET, as
well as the two methods based on the use of polynomials described in Sec.

Table [3] presents the uncertainty range for all considered sources of systematic uncertainty, where the
minimum (maximum) was chosen from all available values in all multiplicity and k1 bins. For each
source and each multiplicity and kt bin, the maximum deviation from the parameters obtained with the
optimal data selection criteria and fitting methods was taken and applied symmetrically as the uncertainty.
The limited data sample for p—Pb collisions leads to quite high statistical uncertainty values and most
of the systematic uncertainty contributions were found to be much smaller than the quadratic difference
of the statistical uncertainties. Therefore, the systematic uncertainty values were added in quadrature,
considering only those whose statistical significance level exceeded 50% [? ]. As can be seen from
Table 3 the main sources of systematic uncertainty on the extracted parameters are the pair selection
criteria, the influence of the fit range, the radius of the Coulomb interaction and the baseline description.
All of them contribute to the uncertainty associated with the radii. The extracted correlation strengths
have higher statistical uncertainties than the radii and, consequently, for them the pair selection criteria
is the only source of systematic uncertainty which exceeds the statistical significance level chosen in this
analysis.
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Fig. 2: (color online) K*K* experimental correlation functions corrected for purity according to Eq. @) (red
points) and EPOS 3 model baselines [44] (black points) versus pair relative invariant momentum gj,y,. The CFs
are presented in three event multiplicity classes: 0-20%, 20-40% and 40-90% and two pair transverse momentum
kt bins: (0.2-0.5) and (0.5-1.0) GeV/c. The black line shows the fit of EPOS 3 by a first-order polynomial for
0 < ginv < 1.0 GeV/c. The red line shows the subsequent fit of the CF up to g,y <0.5 GeV/c by Eq. (B). The CFs
are normalized to unity in the range 0.5 < gipy < 1.0 GeV/c. Statistical (lines) and systematic uncertainties (boxes)
are shown.
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Table 3: Minimum and maximum uncertainty values for various sources of systematic uncertainty (in percent),
the punctuation ‘—’ means that the contribution from the given source is negligible. Note that each value is the
minimum-maximum uncertainty from a specific source, but can pertain to different multiplicity or kT bins. Thus,
the maximum total uncertainties are smaller than (or equal to) the sum of the maximum individual uncertainties
shown in this table. Systematic uncertainties whose statistical significance level exceeds 50% were included in the
total systematic uncertainty value.

Riny (%) A (%)
Single particle selection | 0-1.5 0-3.2
PID and purity - 0-0.6
Pair selection 0-3 0-6
Baseline 148 | 0.2-4.1
Fit range 0.6-7 | 0.5-5.7
Coulomb function 0-2.3 1.8-3.8
Momentum resolution 0-1 0-1

4 Results and discussion

The extracted R,y and A parameters are depicted in Figs. and [3(b)] respectively. Statistical and sys-
tematic uncertainties as described in Sec.[3.3]are shown for all results. Figure [3lalso shows comparisons
with the EPOS 3 model (with femtoscopic effects included [@, @, ]) for the same collision system
and energy in the same multiplicity and &t bins as the experimental data. Two cases are considered, one
with and another one without the hadronic cascade (UrQMD) phase [@]. The EPOS 3 calculations for
the radii without the cascade exhibit practically no kr-dependence and do not describe the data, while
the data are well reproduced by the full EPOS 3 model calculations thereby showing the importance
of the hadronic cascade phase at LHC energies. This observation agrees with the conclusion from the
three-dimensional K+ femtoscopic analysis in Pb—Pb collisions at /sy = 2.76 TeV [@] where the
hydro-kinetic model HKM ] with the hadronic rescattering phase described the charged kaon fem-
toscopic radii well. The extracted experimental A values are about 0.45, whereas the EPOS 3 ones are
about 0.65, i.e. apparently larger than the experimental A values. The value of the A parameter may
be influenced by non-Gaussian features of the correlation function [@], by a finite coherent component
of kaon emission [@, @] and also the contribution of kaons from K* decays (I' ~50 MeV, where I is
the decay width) and from other long-lived resonances [@]. The reason for the difference between the
experimental correlation strengths and those obtained with EPOS 3 could be that the model does not ac-
curately account for all contributions of kaons from various resonance decays [@]. Another explanation
could be a partial coherence of the real emitting source [IE, @, ,157], which is not taken into account
in the EPOS 3 model.

In Fig. [l the radii from pp collisions at /s = 7 TeV [IE] and p-Pb collisions at /sy = 5.02 TeV at
similar multiplicity are compared as a function of pair transverse momentum kt. The corresponding radii
in Pb—Pb collisions at /sy = 2.76 TeV [Iﬂ] are not shown because they were obtained for multiplicities
which are not available in this study. The figure shows that at the same multiplicity, the radii in p—Pb
collisions are consistent with those in pp collisions within uncertainties. The statistical significance of
this observation (4—-15%) does not allow this result to be precisely compared with the results of the one-
dimensional three-pion cumulants [ﬂ] and three-dimensional two-pion [22] analyses where the radii in
pp collisions were obtained to be 5-15% and 10-20% smaller than those in p—Pb collisions, respectively.

Figure 3] compares femtoscopic radii as a function of the measured charged-particle multiplicity density
(Nen)'/3, at low (Fig. (@) and high (Fig. kr in pp [B], p—-Pb and Pb-Pb [@] collisions. The
obtained radii increase with N, and follow the multiplicity trend observed in pp collisions. The radii
are equal in p—Pb and pp collisions at similar multiplicity within uncertainties. This result could indicate
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Fig. 3: (color online) Experimental K*K* invariant radii R,y (a) and correlation strengths A (b) shown versus pair
transverse momentum kt for three multiplicity classes and compared with the EPOS 3 model predictions with and
without the hadronic cascade phase. Statistical (lines) and systematic uncertainties (boxes) are shown. The points
for lower multiplicity classes (blue and green symbols) are slightly offset in the x direction for clarity.
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Fig. 4: Comparison of femtoscopic radii, as a function of pair transverse momentum kr, obtained in pp ] and
p—Pb collisions. Statistical (lines) and systematic uncertainties (boxes) are shown.

that the dynamics of the source in p—Pb collisions at low multiplicities is similar to that in pp collisions.
In particular, if there is a collective expansion of the sources created in pp and p—Pb collisions, these
results indicate that the expansion is not significantly stronger in p—Pb than in pp collisions [@]. As
seen from the figure, the radii in p—Pb and Pb—Pb collisions were obtained in very different ranges of
multiplicity and cannot be compared at the same N.,. In order to make a stronger conclusion between
different collision systems, as was done in the pion correlation analyses [|£|, ], a larger experimental
data set should be considered.

Figures [6(a) and [6(b)] show the correlation strengths A in pp [E], p—Pb and Pb-Pb [@] collisions at low
and high kr, respectively. All A values are less than unity probably due to the influence of long-lived
resonances and a non-Gaussian shape of the kaon CF peak. It can be noticed from the figure that the
correlation strength parameters in Pb—Pb collisions tend to be higher than those in pp and p—Pb collisions.
That could point to a more Gaussian source created in Pb—Pb collisions.

Figure [7] compares correlation strengths A in pp ], p—Pb and Pb—Pb collisions as a function of kr
for all available multiplicity bins. As seen from the figure, the correlation strengths in all multiplicity
and all &t bins do not show any noticeable kt or multiplicity dependence. The systematic uncertainty
values obtained for the compared collision systems are visibly different since even the same source of
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Fig. 5: Comparison of femtoscopic radii, as a function of the measured charged-particle multiplicity density
(Nch)1/3, at low (a) and high (b) kT obtained in pp [13], p—Pb and Pb—Pb [[14] collisions. Statistical (lines) and
systematic uncertainties (boxes) are shown.
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Fig. 6: Comparison of correlation strengths A, as a function of the measured charged-particle multiplicity density
(Nch)1/3, at low (a) and high (b) kT obtained in pp [13], p—Pb and Pb—Pb [[14] collisions. Statistical (lines) and
systematic uncertainties (boxes) are shown.
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uncertainty gives a rather different contribution to the total uncertainty value in every collision system.

1.5/ pp p-Pb Pb—Pb ]
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Fig. 7: (color online) The K*K* correlation strengths A in pp [IE], p—Pb and Pb-Pb [@] collisions versus pair
transverse momentum kt in all multiplicity and kt bins. Statistical (lines) and systematic uncertainties (boxes) are
shown. The data points for lower multiplicity classes (blue and green symbols) are slightly offset in k1 with respect
to the highest multiplicity classes (red symbols) for better visibility.

S Summary

In this work, one-dimensional identical charged kaon correlations were obtained and analyzed for the
first time in proton—nucleus collisions, that is in p—Pb at /sy = 5.02 TeV. The source size Rj,y and
correlation strength A were extracted from a correlation function parametrized in terms of the invariant
pair relative momentum gj,y. The obtained radii R;,, decrease with increasing pair transverse momentum
kt and with decreasing event multiplicity. This is similar to the behavior of pion radii in the three-
dimensional two-pion correlation analysis in p—Pb collisions at /sxy = 5.02 TeV and one-dimensional
three-pion cumulant results in pp collisions at /s = 7 TeV, p—Pb collisions at /syn = 5.02 TeV and
Pb—Pb collisions at /sy = 2.76 TeV.

The obtained radii Rj,, are reproduced well by the EPOS 3 model (including femtoscopic effects) cal-
culations with the hadronic rescattering phase, whose importance was also demonstrated in the three-
dimensional femtoscopic analysis of K= pair correlations in Pb—Pb collisions. The values of the correla-
tion strength parameters A in EPOS 3 are apparently larger than the experimental A values, which could
be due to coherent sources not incorporated in EPOS 3 and long-lived resonances not taken into account
accurately enough in this model.

The kaon Rj,, values in p—Pb and pp collisions show the same trend with multiplicity. However, it is
difficult to say whether the same is true for the Pb—Pb points because of a large gap in multiplicities
available in p—Pb and Pb-Pb collisions. The results disfavor models which incorporate substantially
stronger collective expansion in p—Pb collisions compared to pp collisions at similar multiplicity. The
correlation strength A does not show any trends with multiplicity or kt. The fact that the correlation
strength in Pb—Pb collisions tends to be higher than in pp and p—Pb collisions could be an indication of
a more Gaussian source created in Pb—Pb collisions. However, a stronger conclusion is prevented due to
large statistical and systematic uncertainties, especially for the Pb—Pb data.
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