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Abstract. This paper describes a novel moment matching based fit-
ting method for phase-type (PH) distributions. A special sub-class of
phase-type distributions is introduced for the fitting, called generalized
hyper-Erlang distributions. The user has to provide only two parameters:
the number of moments to match, and the upper bound for the sum of
the multiplicities of the eigenvalues of the distribution, which is related
to the maximal size of the resulting PH distribution. Given these two pa-
rameters, our method obtains all PH distributions that match the target
moments and have a Markovian representation up to the given size. From
this set of PH distributions the best one can be selected according to any
distance function.

1 Introduction

Since their introduction, phase-type (PH) distributions have played an impor-
tant role in performance and reliability modeling. PH distributions are simple,
numerically tractable and easy to integrate into complex stochastic models.

However, the applicability of PH distributions for modeling real systems relies
on efficient fitting procedures. A fitting procedure constructs a PH distribution
based on empirical samples or based on an other known distribution.

A large number of PH fitting procedures have been published in the literature.
This paper presents a fitting procedure that is based on moment matching. The
moment matching problem of PH distributions can be formulated as the solution
of a system of polynomial equations. It is possible, however, that none of the
solutions is a valid PH distribution. To overcome this problem we introduce a
sub-class of PH distributions, called generalized hyper-Erlang distributions, that
can grow in size if the set of moments can not be realized with a given size. It
is guaranteed that above a given size the generalized hyper-Erlang distributions
can realize any valid moment set, thus any moment set that belongs to a positive
distribution.

The rest of the paper is organized as follows. Section 2 introduces phase-
type distributions, and shows how a Markovian representation is obtained from



a non-Markovian one. Section 3 provides an overview on the PH fitting methods
published in the literature, with an emphasis on the moment matching-based
solutions. Section 4 describes generalized hyper-Erlang distributions, and how
they are used to fit distributions. Some numerical examples are given in Section
5, and Section 6 concludes the paper.

2 Phase-type distributions

Phase-type distributions are given by two parameters: an initial vector α =
{αi, i = 1, . . . ,K}, α1 = 1, and a matrix A = {qij , i, j = 1, . . . ,K}. The vector-
matrix pair (α,A) is called the representation of the PH distribution, and K is
the size of the representation. The probability density function (pdf, denoted by
f(x)), the cumulative distribution function (cdf, denoted by F (x)) and the kth
moment of a PH(α,A) distributed random variable X are

f(x) = αeAx(−A)1, (1)

F (x) = P (X < x) = 1− αeAx1, (2)

µk = E(X k) =

∫ ∞
0

xkf(x)dx = k!α(−A)−k1, (3)

where 1 is a column vector of appropriate size.

A representation is called a Markovian representation, if the entries of the
initial vector are probabilities (0 ≤ αi ≤ 1, i = 1, . . . ,K) and matrix A is a gen-
erator of a transient continuous time Markov chain, thus, qii < 0, qij ≥ 0,∀i 6= j,

and for the row sum we have that
∑K
j=1 qij ≤ 0, i = 1, . . . ,K, with at least one

state where the row sum is strictly negative. If (α,A) is a Markovian representa-
tion, then the corresponding PH distribution has a probabilistic interpretation as
well: X is the absorption time of the transient Markov chain with sub-generator
A and initial state probability vector α of the non-absorbing states.

The pdf can be expressed in a spectral form as well. Suppose the number
of distinct eigenvalues is nd. Let us denote the eigenvalues by −λi, and their
multiplicity by ri (

∑nd

i=1 ri = N ≤ K). From (1) we have

f(x) =

nd∑
i=1

ri∑
j=1

bij
(λix)j−1

(j − 1)!
λie
−λix. (4)

Note that if λi ∈ C\IR then ∃j 6= i : λj = λ̄i (λ̄i denotes the complex conju-
gate of λi). To define a valid distribution re〈λi〉 > 0, i = 1, . . . , nr must hold.
Furthermore, as a consequence of the Perron-Frobenius theorem, the dominant
eigenvalue (i.e., the eigenvalue with the largest real part) must be real.

When N = K, the (α,A) representation is called minimal. If N < K then
matrix A has at least one eigenvalue that does not play a role in the pdf, because
the corresponding coefficients are zero.



2.1 Similarity transformation of the representations

The (α,A) representation of PH distributions is not unique. According to the
following Theorem, different similarity transformations generate different repre-
sentations of the same distribution.

Theorem 1. (From [5], Theorem 3.) If there exists a matrix W ∈ IRN,M ,M ≥
N , such that W1 = 1, AW = WB and αW = β, then (α,A) and (β,B)
define the same distribution.

Transforming a representation (α,A) with matrix W can destroy the Marko-
vian property of the representation. In this paper, however, we are using sim-
ilarity transforms to achieve the opposite effect, thus to find a Markovian rep-
resentation starting from a non-Markovian one, which may require to inflate to
size of the representation (M > N).

2.2 Obtaining a Markovian representation from a non-Markovian
one

In [12] a special representation, called monocyclic representation is defined,
which has an important feature phrased by the following Theorem.

Theorem 2. [12] Every PH distribution has a Markovian monocyclic represen-
tation.

A monocyclic representation consists of Feedback-Erlang Blocks (FEB) ar-
ranged in a row. FEBi is characterized by a rate parameter νi, a size parameter
ki and a feedback probability zi (see Figure 1, where k1 = 1, k2 = 4, k3 = 1).

ν2 ν2 ν2

z2 ν2

FEB3

ν1 ν3(1-z2)ν2
α2 α3 α4 α5α1 α6

FEB2FEB1

Fig. 1. Monocyclic representation of a PH distribution

[12] provides a constructive algorithm to obtain the Markovian monocyclic
representation. We will rely on this result heavily in this paper, as the equations
solved to match the moments typically result in a non-Markovian representation.

The transformation of a non-Markovian representation (α,A) to a Markovian
(monocyclic) representation (β,B) consists of the following steps ([12]).

1. In the first step matrix B is constructed. Each FEB implements one real
eigenvalue or a conjugate complex eigenvalue pair of A. Let us denote the
jth eigenvalue of A by −λj , or, if it is a complex conjugate eigenvalue pair,
by −λj = aj + bji and −λ̄j = aj − bji.



– If λj is real, the parameters of the jth FEB are νj = λj , kj = 1, zj = 0.
– If λj is complex, the parameters of the corresponding FEB are deter-

mined as

kj = the smallest integer for which aj/bj > tan(π/kj), (5)

νj =
1

2

(
2aj − bj tan

π

kj
+ bj cot

π

kj

)
, (6)

zj =

(
1−

(
aj − bj tan

π

kj

))kj
. (7)

With these parameters matrix B is Markovian by construction and contains
all eigenvalues of A with the proper multiplicities. However, the size of matrix
B can be larger than the size of matrix A, meaning that new eigenvalues are
introduced. These extra eigenvalues do not play a role in the pdf, as vector
β will be such that they have zero coefficients.

2. The second step of the procedure is calculating the initial vector β. To this
end, we need to obtain the transformation matrix W that transforms matrix
A to matrix B.
According to Theorem 1 matrix W is the solution of AW = WB, W1 = 1,
which is a linear system of equations with regards to the entries of W . With
the presented construction of B, this linear system always has a unique
solution. If the size of A is N , and the size of B is M , equation AW = WB
has N×M unknowns and defines N×M equations. However, only N×M−N
equations will be independent, since N eigenvalues of A and B are the same.
With W1 = 1, however, we get N ×M independent equations and obtain
a unique solution.
The initial vector is then given by β = αW , which may not be a probability
vector.

3. The third, last step is necessary only if vector β is not a proper probability
vector. In this case, an Erlang tail needs to be appended to the row of FEBs.
This Erlang tail is added to matrix B, the corresponding transformation
matrix W is calculated, and we get a new initial vector. It is proven in [12]
that an appropriate Erlang tail always makes the representation Markovian,
if (α,A) defines a PH distribution. Unfortunately there is no explicit way to
obtain the size and the rate parameter of the Erlang tail. We apply a simple
heuristic that increases the size of the Erlang tail successively and applies
the secant method to find its rate parameter such that β is a probability
vector.

3 Fitting methods for Phase-type distributions

In this section we give a short overview on some PH fitting procedures published
in the past. This overview will not be exhaustive, and concentrates on the mo-
ment matching based solutions, as the fitting method presented in this paper
belongs to this category as well.



Generally speaking, PH distribution fitting means to find a vector α and a
matrix A such that the corresponding PH distribution is as close to the target
distribution as possible. The most popular methods can be classified as follows.

– Expectation-maximization (EM) based methods. These iterative methods pro-
vide a PH distribution from a measurement trace (given by samples) by in-
creasing the likelihood in each iteration. Some variants operate on the whole
class of PH distributions ([1] and [13]), some others restrict themselves to a
specific sub-class like hyper-exponential distributions ([7]) or hyper-Erlang
distributions ([15]). The EM algorithm based methods have the advantage
that they are very user friendly, the only input parameter required for the
fitting is usually only the number of states of the resulting PH distribution.
The execution time, however, increases with the length of the measurement
trace, furthermore, these methods perform a local maximization and possibly
can not find the global optimum.

– Other optimization based methods. Some PH fitting methods formulate and
solve the PH fitting as a non-linear optimization problem. For instance,
[9] applies sequential linear programming to optimize the parameters of
an acyclic PH distribution according to a user-selectable distance function
(some possible distance functions can be found in [3]). The optimization can
take a long time, and there is no guarantee that the global optimum is found.

– Matching based methods. Matching based methods intend to match some sta-
tistical quantities of the target distribution exactly. In [8] a hyper-exponential
distribution is constructed such that its pdf matches the pdf of the target
distribution at selected points. The point selection needs to be done by the
user by manual tuning, and the resulting distribution might not be a valid
distribution in some cases. The moment matching based methods fall into
this category as well, that we discuss in more details soon.

In the practice, the selection between the large number of PH fitting methods
depends on many factors. Typically several methods are used and the one that
gives the best result is selected.

3.1 PH distribution fitting based on moment matching

Fitting distributions based on the moments has some distinct advantages:

– The moments of random variables are easy to obtain. This holds for mea-
surement and for simulation as well. When only the moments are required,
there is no need to collect and store all the samples of the observed variable,
moments can be calculated in a progressive way with negligible memory and
computation effort.

– Some performance measures depend only on the moments of some random
variables, thus it makes sense to capture them accurately. For instance, the
mean waiting time in an M/G/1 queue depends only on the first two mo-
ments of the service time distribution.

On the other hand, there are some drawbacks as well:



– Solving the equations to match the moments explicitly can be difficult if the
number of moments to match is high, or if the structure of the PH is not
simple enough.

– There are heavy tailed distributions with infinite moments. Moment match-
ing can not be applied to fit such distributions.

There are a number of moment matching methods available in the literature.
Based on how flexible the structure of the PH distribution is, we can distinguish
between fixed structure and flexible structure methods.

– Fixed structure methods use a PH representation in which the number of
parameters equals the number of moments to match. In [14] a PH of size 2
is used to match 3 moments, while [10] is able to match 5 moments with 3
states (it is known that the canonical form of 2-state PH distributions have
3, the one of 3-state PH distributions have 5 parameters). In [6] a hyper-
exponential distribution of size N is obtained based on 2N − 1 moments.
Methods belonging to this category have the drawback that only those mo-
ments can be matched that fall into the region of feasible moments of the
applied PH distribution. The region of feasible moments can be quite restric-
tive in the practice. Suppose we have a distribution whose first 3 moments
can not be matched with a 2-state PH distribution. One would think that
increasing the size of the PH can help, and there will be a better chance that
a 3-state PH distribution will match the required moments. Actually the
opposite is true. The contradiction is, that more (namely 5) moments need
to be matched to obtain a 3-state PH distribution. The more moments we
have to match, the larger the chance is that at least one of them lies outside
of the feasible region.

– Flexible structure methods use PH representations that have more parame-
ters than the number of moments to match. A set of parameters are set to
ensure the matching of moments, while the remaining parameters add some
extra degrees of freedom to obtain a valid PH distribution to match any set
of moments. Such a method is described in [11], which uses a representation
called mixture of Erlang distributions of common order (MECO). Mixing
N Erlang distributions of common order has 2N parameters: N − 1 initial
probabilities (which Erlang to choose, sums up to 1), the intensity param-
eters of the Erlang distributions (there are N of them), and the common
order of the Erlang distributions (1 parameter). With these 2N parameters
this procedure can match 2N −1 moments. The free parameter not involved
in moment matching is the order parameter. The moment matching is per-
formed with order=1, order=2, etc., the order is increased till a Markovian
solution is found. It is guaranteed that, with appropriately large order, this
procedure is able to match any set of 2N−1 moments belonging to a positive
distribution. The other method operating on a flexible structure has been
published in [2]. It matches 3 moments with an exponential and an Erlang
distribution connected after each other in a row. The degree of freedom is
the order of the Erlang component again. It is proven that, by choosing the



order of the Erlang component appropriately large, it is possible to match
any 3 moments with this structure.

As this quick summary suggests, moment matching methods having a flex-
ible structure are very convenient to use in the practice. The user just has to
enter the moments, and these procedures find the appropriate PH distribution
of appropriate size automatically. The method presented in this paper falls into
this category as well.

4 Moment matching with generalized hyper-Erlang
distributions

In this section we propose a new sub-class of PH distributions for matching
moments.

Definition 1. Random variable X has order-N generalized hyper-Erlang distri-
bution iff its density function is

f(x) =

N∑
i=1

αi
(λix)ri−1

(ri − 1)!
λie
−λix, (8)

with f(x) ≥ 0 and
∫∞
0
f(x)dx = 1. For the parameters we have that λi ∈

C, re〈λj〉 ≥ 0, αj ∈ C,
∑N
i=1 αi = 1 and ri ∈ IN for i = 1, . . . , N .

Thus, generalized hyper-Erlang distributions (GHErD) are similar to hyper-
Erlang distributions, the difference is that coefficients αi do not need to be valid
probabilities, and that λi can be complex as well. The kth moment of generalized
hyper-Erlang distributions is calculated as

µk =

∫ ∞
0

xkf(x)dx =

N∑
i=1

αi
(k + ri − 1)!

(ri − 1)!

1

λki
, k ≥ 0. (9)

(Note that µ0 = 1).

4.1 Solution of the moment matching problem when the ri
parameters are fixed

For matching moments µ1, . . . , µ2N−1 with order-N GHErD having the ri pa-
rameters fixed we have to solve a system of polynomial equations defined by (9)
for k = 0, . . . , 2N−1, such that the unknown variables are λ = {λi, i = 1, . . . , N}
and σ = {αi, i = 1, . . . , N}, which give 2N unknowns in total.

Due to the structure of the system of polynomial equations we were not
able to derive an explicit solution for arbitrary N . However, there are excellent
tools available that are able to solve polynomial systems numerically. For this
purpose, we are using PHCpack (see [16]), which is a multi-platform open-source



tool and is under continuous development and refinement. We would emphasize
that this does not mean that we are applying a non-linear programming or other
optimization methods to find the solution of the moment matching problem (as
it is done in [4]). What we are doing is the numerical solution of the polynomial
system, that is able to provide all the solutions of the system of polynomial
equations.

This polynomial system has typically several solutions, and it is also possi-
ble that it has no solutions at all (it is inconsistent). If it does have solutions,
each solution either defines a valid PH distribution, or it does not. To decide
if a solution is valid, we try to obtain a Markovian representation by using the
method described in Section 2.2. From a solution given by vectors λ and σ the
initial (non-Markovian) representation is obtained in a direct way as

α =
[
α1 0 . . . 0︸ ︷︷ ︸

r1−1

α2 0 . . . 0︸ ︷︷ ︸
r2−1

αN 0 . . . 0︸ ︷︷ ︸
rN−1

]
,

A =



−λ1 λ1
. . .

. . .

−λ1
−λ2 λ2

. . .
. . .

−λ2
. . .

−λN λN
. . .

. . .

−λN



.

 r1

 r2

 rN

(10)

If the output (β,B) of the algorithm of Section 2.2 is Markovian, then we
found a valid solution. Given vector r it may happen that several different PH
distributions are found, but it is also possible that no solutions exist. In the
latter case the entries of vector r need to be increased to obtain a valid solution.

4.2 Optimizing the ri parameters

Finding the appropriate vector r can be made automatic as well. In this case
the user just has to enter a single parameter, R, and the algorithm repeats the
moment matching with all vectors r satisfying

∑N
i=1 ri ≤ R.

As the MECO is a sub-class of GHErD, furthermore, according to [11] it is
always possible to find a MECO for any set of moments, our procedure always
finds a Markovian solution (with an appropriately large R parameter).

Our algorithm is depicted in Figure 2. First, the algorithm solves the mo-
ment matching problem with different r vectors up to

∑N
i=1 ri ≤ R and collects

all solutions that have a Markovian representation in set res. Notice that all
solutions in res match the first 2N − 1 moments of the target distribution. In



1: procedure FitGHErD(µ1, . . . , µ2N−1, R,D(·))
2: res← {}
3: for all r =

[
r1 . . . rN

]
with

∑N
i=1 ri ≤ R do

4: {(λ, σ)i} ← Solve polynomial equations of (9) for k = 0, . . . , 2N − 1
5: for each solution (λ, σ) do
6: (α,A)← Create non-Markovian representation based on (10)
7: (β,B)← Transform (α,A) to a Markovian representation (Section 2.2)
8: if (β,B) is Markovian then
9: Add (β,B) to set res

10: end if
11: end for
12: end for
13: if res is {} then
14: error ”No solutions found up to size R. Parameter R has to be increased.”
15: end if
16: (γ,G)← arg min(β,B)∈resD(β,B)
17: return (γ,G)
18: end procedure

Fig. 2. GHErD fitting algorithm based on moment matching

the second step (last line of the algorithm) the best solution is selected by a
distance function D(·). Any distance function can be used that quantifies the
distance between two distributions. Two possible distance functions are:

– Moment distance (MD): the sum of the squared relative difference of the mo-
ments up to moment K. Denoting the kth moment of the target distribution
by µ̂k this means

D(β,B) =

K∑
k=1

(
µ
(β,B)
k − µ̂k

µ̂k

)2

. (11)

(Note that for k ≤ 2N − 1 we have µ
(β,B)
k = µ̂k).

– Relative entropy (RE): the relative entropy has been introduced in [3] as a
measure of goodness of the approximation. By denoting the pdf of the target
distribution by f̂(x) it is

D(β,B) =

∫ ∞
0

f(x)| log
f(x)

f̂(x)
|dx, (12)

where f(x) = βeBx(−B)1.

Both distance functions have their advantage. The moment distance still re-
lies only on the moments, thus the exact shape of the target distribution (eg.
the pdf) is not required. The relative entropy, however, may quantify the simi-
larity of the shape of the density functions better. Both distance functions will
be evaluated in the subsequent numerical examples.



5 Numerical examples

In this section we apply the presented fitting method on two well known traffic
measurement traces, the BC-pAug89 and the LBL-TCP-3 traces4. The former
one records one million packet arrivals on an Ethernet network, while the latter
one captures two hours of wide-area TCP traffic. These traces are too old to be
representative for the network traffic in these days, the only reason we selected
them is that they both are frequently used as demonstration of various traffic
fitting algorithms, thus they serve as a kind of benchmark.

Our method has been implemented in MATLAB. To solve the system of
polynomial equations we used PHCpack v2.3.765, that has a MATLAB interface
as well. All the results have been calculated on an average PC with a CPU
clocked at 3.4 GHz and 4 GB of memory.

In general, our experience with PHCpack is positive. We got some warnings
that the polynomial system is ill-conditioned initially, but normalizing the trace
(such that the mean value is one) solved this issue. The solution time of the
polynomial system depends on N heavily. We got prompt results in case of
N = 2, it took about 0.5s in case of N = 3, and 25s in case of N = 4. As
our method relies on the iterative solution of a large number of polynomial
equations, we did not increase parameter N above 4, which means that we
are going to match at most 7 moments in the numerical examples. When N
is large, the number of solutions is large as well, however trying to create the
corresponding Markovian representations is such fast that is has negligible effect
on the execution time. The total execution time of the algorithm depends on
parameter R as well. If R is large, a large number of r vectors are considered,
and a large number of polynomial systems are solved.

In the subsequent case studies we compare the following 4 moment matching-
based PH fitting methods:

1. Our method, where the PH distribution with the smallest moment distance
is selected from the set of all PH distributions matching the moments of the
trace;

2. Our method, where the PH distribution with the smallest relative entropy
is selected from the set of all PH distributions matching the moments of the
trace;

3. Moment matching with a mixture of Erlang distributions of common order
(MECO, [11]);

4. The method of [2], which is able to match the first three moments only.

5.1 The LBL trace

In this example the R parameter (the sum of the multiplicities of the eigenvalues)
is set to 20. According to the algorithm in Figure 2 this means that the moment

4 Downloaded from http://ita.ee.lbl.gov/html/contrib/BC.html and from
http://ita.ee.lbl.gov/html/contrib/LBL-TCP-3.html, respectively

5 It can be obtained from http://homepages.math.uic.edu/ jan/download.html



matching is performed with all vectors r satisfying
∑N
i=1 ri ≤ R. With a given

vector r, the moment matching problem can result in several different valid PH
distributions. At the end we have a large number of PH distributions from which
we can select the best according to some distance function. Table 1 shows how
many r vectors and valid solutions there are, and how long the execution time
of the algorithm is.

Table 1. The number of different r vectors, the number of valid solutions, and the
total execution time in the LBL example

# of moments # of different # of valid Execution
to match r vectors solutions speed

3 100 88 28 sec

5 237 688 337 sec

7 408 3920 810 min

The numerical results are shown in Table 2. When the first three moments
are matched, all methods found the same solution. Even if a large number of r
vectors have been checked by our method, the best solution has been found to
be the same according to both distance functions.

When 5 moments are matched, the MECO matching method returned a
hyper-exponential distribution that was found to be optimal by our method as
well according to the distance of moments. However, our method was able to
find a PH distribution that has lower relative entropy. This PH distribution has
5 states and the corresponding r vector is r =

[
1 1 2

]
. The sum of the elements

of vector r is only 4, which means that a new eigenvalue has been introduced and
the size of the PH has been increased by 1 to obtain a Markovian representation
(this new eigenvalue cancels out, it has no effect on the pdf).

The advantage and the flexibility of our method can be seen the best when
7 moments are matched. Our method was able to find a PH distribution with
significantly lower moment distance, and an other one with significantly lower
relative entropy as well.

Figures 3, 4 and 5 plot the density functions belonging to the methods dis-
cussed, both on linear and on logarithmic scale. While the tail of the pdf is fitted
well by all methods, the plots differ significantly in the body of the pdf. Based on
a visual comparison, the solution found by our method by matching 7 moments
and selecting the best according to the RE distance seems to capture the shape
of the pdf best.

5.2 The BC trace

The numerical results corresponding to the fitting of the BC trace are summa-
rized in Table 3. When fitting the first 3 moments, the same hyper-exponential



Table 2. Results of the fitting of the LBL trace

Num. of moments Method MD RE Num. of states

3

Our method (MD) 1.786 0.3024 2 (r =
[
1 1
]
)

Our method (RE) 1.786 0.3024 2 (r =
[
1 1
]
)

MECO [11] 1.786 0.3024 2 (r =
[
1 1
]
)

ErlExp [2] 1.786 0.3024 2

5
Our method (MD) 0.0072 0.0984 3 (r =

[
1 1 1

]
)

Our method (RE) 0.0386 0.0953 5 (r =
[
1 1 2

]
)

MECO [11] 0.0072 0.0984 3 (r =
[
1 1 1

]
)

7
Our method (MD) 8.26× 10−6 3.9727 20 (r =

[
2 2 3 13

]
)

Our method (RE) 0.00499 0.0727 8 (r =
[
1 1 3 3

]
)

MECO [11] 0.00475 0.1339 8 (r =
[
2 2 2 2

]
)
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Fig. 3. Comparison of the density functions matching 3 moments of the LBL trace
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Fig. 4. Comparison of the density functions matching 7 moments of the LBL trace
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Fig. 5. Comparison of the results of our method, matching 3, 5 and 7 moments



distribution turned out to be optimal by all the methods involved into the com-
parison. When fitting 5 phases, our method has found a PH distribution with
slightly lower relative entropy. In the case when 7 moments are matched, we
have a PH distribution with better moment distance, and an other one with
significantly better relative entropy than the MECO based method.

Table 3. Results of the fitting of the BC trace

Num. of moments Method MD RE Num. of states

3

Our method (MD) 3.0509 0.30244 2 (r =
[
1 1
]
)

Our method (RE) 3.0509 0.30244 2 (r =
[
1 1
]
)

MECO [11] 3.0509 0.30244 2 (r =
[
1 1
]
)

ErlExp [2] 3.0509 0.30244 2

5
Our method (MD) 0.00198 0.30521 14 (r =

[
1 4 8

]
)

Our method (RE) 55.4699 0.30212 5 (r =
[
1 1 2

]
)

MECO [11] 55.4699 0.30212 3 (r =
[
1 1 1

]
)

7
Our method (MD) 0.0056 0.48178 20 (r =

[
1 2 2 15

]
)

Our method (RE) 0.0072 0.185 19 (r =
[
1 1 2 15

]
)

MECO [11] 0.0391 0.3536 16 (r =
[
4 4 4 4

]
)

The density functions corresponding to the investigated cases are depicted in
Figure 6, 7 and 8. Figure 7 demonstrates how different the shapes of the density
functions can be even if the first 7 moments are the same. The MECO-based
method looks to be the least successful in this example, while our method with
the relative entropy based selection managed to capture the characteristics of
the density function reasonably well.

6 Conclusion

This paper describes a unique approach to PH distribution fitting. The presented
method is based on moment matching, and allows to use an arbitrary distance
function to select the best solution from the ones matching the target moments.

Two case studies are presented to demonstrate the behavior and the capa-
bilities of the procedure when fitting real measurement traces.

The weak point of the procedure is the numerical solution of the polynomial
system, which limits the number of moments to match.
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12. Ş. Mocanu and C. Commault. Sparse representations of phase-type distributions.
Stochastic Models, 15(4):759–778, 1999.

13. H. Okamura, T. Dohi, and K.S. Trivedi. A refined EM algorithm for PH distribu-
tions. Performance Evaluation, 68(10):938–954, 2011.

14. M. Telek and A. Heindl. Matching moments for acyclic discrete and continuous
phase-type distributions of second order. International Journal of Simulation Sys-
tems, Science & Technology, 3(3-4), 2002.

15. A. Thummler, P. Buchholz, and M. Telek. A novel approach for fitting probability
distributions to real trace data with the EM algorithm. In Dependable Systems
and Networks, 2005. DSN 2005. Proceedings. International Conference on, pages
712–721. IEEE, 2005.

16. J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial
systems by homotopy continuation. ACM Transactions on Mathematical Software
(TOMS), 25(2):251–276, 1999.


