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ABSTRACT

The production of the neutron-capture isotopes beyond iron that we observe today

in the solar system is the result of the combined contribution of the r-process, the s-

process and possibly the i-process. Low-mass AGB (2 < M/M� < 3) and massive (M >

10 M�) stars have been identified as the sites of the s-process. In this work we consider

the evolution and nucleosynthesis of low-mass AGB stars. We provide an update of the

NuGrid Set models, adopting the same general physics assumptions but using an up-

dated convective-boundary mixing model accounting for the contribution from internal

gravity waves. The combined data set includes the initial masses MZAMS/M� = 2, 3

for Z = 0.03, 0.02, 0.01. These models are computed with the MESA stellar code and

the evolution is followed up to the end of the AGB phase. The nucleosynthesis was

calculated for all isotopes in post-processing with the NuGrid mppnp code. The convec-

tive boundary mixing model leads to the formation of a 13C-pocket three times wider

compared to the one obtained in the previous set of models, bringing the simulation

results now in closer agreement with observations. We also discuss the potential impact

of other processes inducing mixing, like rotation, adopting parametric models compat-

ible with theory and observations. Complete yield data tables, derived data products

and online analytic data access are provided.
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Subject headings: stars: abundances — evolution — interiors

1. Introduction

Around half of the elements beyond Fe, are the result of s-process nucleosynthesis (’slow’

neutron-capture process Cameron 1957; Burbidge et al. 1957; Gallino et al. 1998) taking place in

massive stars ( M> 10 M�) and low mass AGB stars (2<M/M� < 3). In particular, low-mass AGB

stars are the main site of the main s-process component (Gallino et al. 1998), i.e. the nucleosynthesis

process mainly responsible for around half of the neutron-capture element abundances between Zr

and Bi in the Solar System. The AGB phase starts when the star has exhausted both H and

He in the center, leaving an inert degenerate carbon-oxygen (CO-) core surrounded by a thin He-

intershell and a H-burning shell where nuclear energy is released and the structure is maintained

in equilibrium. These shells are surrounded by an extended H-rich convective envelope. For the

majority of the AGB lifetime, nuclear energy is released in the H-burning shell. At the same time

He and other H-burning ashes are accumulated on the top of He-intershell underneath, until He-

burning starts and thin-shell instability occurs (Kippenhahn & Weigert 1990), triggering a violent

thermonuclear-runaway known as thermal-pulse (TP) at typical temperature around 3×108 K,

enough to activate the neutron release via 22Ne(α,n)25Mg with high density (about 1011 neutrons

cm−3) lasting a few years. In these conditions the neutron exposure (defined as the total neutron

flux integrated over time) is low because of the very short timescales, preventing the neutron-

capture flow to feed anything beyond the Sr-peak, but leaving a clear fingerprint in the isotopic

ratios around branching points (unstable nuclei whose lifetimes are comparable to the neutron-

capture timescale). An example is the production of 96Zr, which requires high neutron densities to

trigger neutron captures on 95Zr that has a half-life of 64 days (Lugaro et al. 2014). The TP will

develop a pulse-driven convective zone (PDCZ), which mixes in the whole intershell the neutron-

capture isotopes just synthetised and causes the expansion of the outer convective envelope (Herwig

2005). The temperature in the outer layer of the expanding convective envelope will thus decrease

and opacity increase, which will make the convective motions more efficient. This last fact has

two main consequences: 1) C and heavy element-rich material from the intershell is mixed into the

convective envelope and brought to the surface (this event is known as third dredge-up, hereafter

TDU Straniero et al. 1995; Herwig 2005); 2) p-capture reactions are triggered on the abundant
12C which will produce ∼10−4 M�

13C-rich material at the top of the intershell, known as 13C-

pocket. This represents the main neutron source for the s-process via the 13C(α,n)16O reaction (at

typical intershell temperature T ∼ 0.09 GK) (Straniero et al. 1995; Gallino et al. 1998). For these

reasons, the s-process is very sensitive to how convective boundaries and hence chemical mixing

across them are described. Because of the about three times lower temperature compared to typical

He-flash conditions, the s-process in the 13C-pocket is characterized by low neutron densities (Nn

∼107cm−3), but lasts for several thousand years, achieving high-neutron exposure and producing

second (Ba-region) and third (Pb-region) elements (Herwig 2005).
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Over the last 20 years, many efforts were dedicated to clarify the mixing mechanism at the

boundary between the convective envelope and the He-intershell responsible for the formation of

the 13C-pocket. Herwig et al. (1997), guided by multi-D simulations by Freytag et al. (1996),

proposed an exponentially-decaying diffusion mixing operating during the TDU. Later on, Langer

et al. (1999) investigated the impact of rotational induced mixing, which was shown by Herwig

et al. (2003) to not produce a large enough 13C-pocket. Denissenkov & Tout (2003) proposed a

model based on internal gravity waves (IGW) induced by the convective motion in the envelope.

Moreover, Straniero et al. (2006) and Cristallo et al. (2009) proposed an advection scheme as an

alternative to the diffusion scheme. Finally, Nucci & Busso (2014) suggested magnetic-buoyancy

as a physical mechanism to transport H from the envelope into the He-C rich intershell.

Recently, Ritter et al. (2018) (hereafter RI18) computed a grid of stellar evolution and full-

nucleosynthesis models over a wide range of both initial mass and metallicity, from 1 M� to 25 M�.

The same stellar evolution code, post-processing code and nuclear reaction network was adopted

over the whole initial mass range, ensuring a high degree of internal consistency. The overshoot

model by Herwig et al. (1997) and Herwig (2000) was adopted to describe the convective-boundary-

mixing (CBM) processes. This formed 13C-pockets producing a surface s-process enrichment be-

tween three and four times weaker than the highest abundances observed on C-stars (Busso et al.

2001; Abia et al. 2002; Zamora et al. 2009) and barium stars (Pereira et al. 2011; Cseh et al. 2018).

This motivated Battino et al. (2016) to develop a new CBM prescription guided by the model

proposed by Denissenkov & Tout (2003), and tested it at the bottom of the convective envelope

during TDU episodes. The main result was a large increase of the pocket size up to around 10−4

M� .

In this work, we provide an update of the NuGrid data set presented in RI18, focusing on low-

mass AGB models with initial metal content around solar value. In particular, we want to apply

the Battino et al. (2016) CBM model to increase the s-process production of NuGrid’s Set II models

(Ritter et al. 2018), keeping the other initial settings and stellar evolution code the same (MESA ,

revision 3709. See Paxton et al. (2010a) for details) and using the post-processing nucleosynthesis

code mppnp (Herwig et al. 2008; Pignatari et al. 2016). This work is organized as follow. In Section

2 we describe the stellar code and post-processing nucleosynthesis tools. In Section 3 the stellar

models are presented, while in Section 4 we present our results, comparing them with a large set

of observables. Our conclusions are given in Section 5.
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2. Computational methods

The stellar models presented in this section are computed using the stellar code MESA (revision

3709, Paxton et al. 2010b). We used the solar distribution from Grevesse & Noels (1993). The

modelling assumptions are the same as in RI18, except we also computed Z=0.03 models. We

adopted for Z=0.03 models the same modelling inputs as for Z=0.02 and Z=0.01 models, including

the same mass-loss formula (Bloecker 1995) and efficiency parameter ηR during the C-rich phase.

After the TDU event that makes the surface C/O ratio larger than 1.15, we choosed the ηR value

only depending on the initial mass, being ηR = 0.04 and ηR = 0.08 for the 2 and 3 M� models

respectively. For the simulations the MESA nuclear network agb.net is used, including 18 isotopes

from protons to 22Ne linked by nuclear-reactions as in RI18. Here we also included 20Ne, 24Mg, 28Si

and 56Fe in order to avoid mass-conservation issues at the beginning of the simulations, without

linking them to the other isotopes with nuclear reactions. The CBM modelling is included the same

way as in Battino et al. (2016).

The post-processing code mppnp was used, which is described in detail in Pignatari et al.

(2016). The stellar structure evolution data are computed and saved with MESA for all zones at

all time steps, and then used as input and processed with mppnp . This means that the stellar

structure and the full nucleosynthesis are computed separately, hence requiring less computing time

and resources.

The network is the same as in RI18. Exceptions relevant for this work are the neutron-capture

cross sections of 90,91,92,93,94,95,96Zr: for which we adopted rates recommended by Lugaro et al.

(2014), based on recent experimental measurements (Tagliente et al. 2012).
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3. Description of the stellar models

Table 1 lists the six stellar models calculated in this work, corresponding to three different

initial metallicities (Z=0.01, Z=0.02 and Z=0.03) and two initial masses (M=2,3 M� ). All models’

name start with a ′m′ followed by a number indicating the initial mass in solar masses. After this,

initial metallicity is expressed by what follows ′z′. For example, considering m3z2m2 ′m3′ means

that this is a 3 M� model, ′z2m2′ is to be read as Z=2×10−2 , where ′m2′ means ′minus two′

referring to the exponent. Key global features like core masses and lifetimes are given for all the

models, which have all been computed with the same stellar code and input physics of RI18, but

with the CBM model by Battino et al. (2016) during TDUs. This is why we also included the

values from RI18 in Table 1 (with the exception of Z=0.03 models which were not considered in

RI18) and we compared our results to it all along the present study.

Fig. 1 shows the HR diagram tracks from all the models listed in Table 1 from the pre main-

sequence to the tip of the AGB phase. Additionally, a comparison between HR diagrams of our

m3z2m2 model and the corresponding one (same initial mass and metallicity) from RI18 is given in

Fig. 2. The two models are globally consistent along the evolution towards the AGB phase, where

it is evident that the TP events experienced by the m3z2m2 model are more luminous than RI18

by Log(L)∼0.7 L�. Given the relation between core mass and luminosity during the AGB phase

(Paczyński 1970), this is consistent with core masses listed in Table 1 being significantly larger than

in RI18.

3.1. The impact of different third-dredge-up efficiencies

The difference in core mass between RI18 and the present study is linked to the different CBM

model here during TDUs. TDU affects the core-mass growth along the thermally-pulsing AGB

(TP-AGB) phase. We recall here that the efficiency of the TDU is usually expressed with

λ = (δMDUP /δMc) (1)

defined as the fraction of the dredged-up mass (δMDUP ) over the core mass increment along

an inter-pulse period (δ Mc). Every time a dredge-up episode takes place with an efficiency λ, the

core mass decreases over the TDU duration by λ δMc (see Marigo 2012; Kalirai et al. 2014). As

a consequence, the growth of the core-mass is smaller in models adopting CBM than in models

not including it, or adopting a less efficient CBM. This aspect can be clarified looking at Fig. 3.

The CBM profiles from the m3z2m2 model and RI18 are shown. The dark-shaded area represents

the convective envelope, with the Schwarzschild boundary placed at the left border. Typically, the

convective mixing coefficient in the envelope is around Log(D/(cm2s)) ∼ 15. In RI18 the mixing

coefficient decays exponentially as a function of distance from the Schwartchild boundary, using the

exponential overshooting formalism of Herwig (2000). In order to consider the IGW contribution,
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which is not included in RI18, we adopt the double-exponential CBM of Battino et al. (2016). The

CBM input parameters for all models in Table 1 are given in Table 2. All three input parameters

were calibrated to fit the IGW-mixing profile by Denissenkov & Tout (2003) in the layers where

the 13C-pocket forms, as shown in Fig. 4. Hence, no fine-tuning was done to directly match

observables, since this calibration is purely theory and simulations-based. In Table 2, we include

the 3M� , Z=0.02 model from RI18 for comparison, which only required the f1 parameter since

it was calculated with the single exponential overshooting scheme of Herwig (2000). We also add

two models, m3z2m2-hCBM and m3z3m2-hCBM, calculated with a D2 parameter 4.3 times larger

than the others, consistently with the typical IGW mixing uncertainty described by Denissenkov

& Tout (2003). As a consequence, it experiences more efficient TDUs and form larger 13C-pockets.

In Fig. 3 we compare the CBM profiles from the m3z2m2 model and RI18. It is important to

notice how the CBM profile in RI18 is more than two orders of magnitude higher in the medium-

shaded area compared to the CBM adopted here, i.e. in the intershell zone immediately below

the convective envelope. In this area the mixing coefficient in RI18 is still high enough to impact

the TDU λ value, hence directly lowering the core-mass. This picture is consistent with the λ

temporal evolution shown in Fig. 5. A dedicated comparison between m3z2m2 and RI18 is shown

in the upper panel, while a zoom into the early AGB-phase is shown in the lower panel. The

plot shows how TDUs in the RI18 model has a systematically higher λ (starting already in the

early stage of the AGB) because of the higher CBM efficiency in the stellar layers right below the

convective envelope. This indeed impacts as well the core-mass in an indirect way: every TDU

causes a surface enrichment in primary carbon, causing the surface C/O ratio to increase. As soon

as the number of carbon atoms exceeds that of oxygen (passing from the oxygen-rich phase to the

carbon-rich phase, i.e. C/O > 1) a sudden rise in the atmospheric opacity occurs Marigo (2002).

This results in an envelope expansion, lower effective temperatures and increased mass-loss from

dust-driven winds (Marigo & Girardi 2007; Mattsson et al. 2010; Nanni et al. 2018). Therefore,

the AGB lifetime is shorter and consequently also the number of TPs and TDUs experienced by

the star, making the growth of the core mass smaller than otherwise predicted in models with a

slower carbon surface enrichment due to less efficient TDUs (Kalirai et al. 2014). Table 3 shows

the total number of TPs and number of TPs occurring during the oxygen-rich AGB phase. Also

the 3 M� , Z=0.02 model from RI18 is shown as a comparison with m3z2m2, showing a significant

reduction of the total number of TPs. This is visible already during the oxygen-rich phase, during

which RI18 model needs two TPs less to become carbon-rich. The same conclusions can be reached

looking at the Kippenhahn diagrams in Fig. 6, where our m3z2m2 is again compared to RI18:

location of convective boundaries and core mass as a function of time are presented. In particular,

the formation of the PDCZ is visible every time a TP occurs. λ temporal evolution for all the other

models listed in Tables 1 and 3 is shown in Fig. 7.
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3.2. 13C-pocket formation and intershell abundances

As mentioned in Section 1 and as described in Battino et al. (2016), the most direct impact of

our CBM model is an increased 13C-pocket size (defined as the mass-coordinate difference between

the points where the mass fraction of 13C, X(13C), exceeds 0.001 and X(13C)>(14N)) compared to

RI18, where the classic single-exponentially decaying diffusion mixing scheme is adopted. Fig. 8

compares two 13C-pockets, from our m2z1m2 model and the corresponding model in RI18, around

the same mass coordinate and at the beginning of the carbon-rich phase. It shows how the pocket-

size is larger by around a factor of three. As we will see in the following sections, this will have

profound consequences for s-process nucleosynthesis. In addition to the pocket-size, another im-

portant feature, from the comparison between our models and RI18, is the very similar abundance

peak value of 13C inside the pocket. This is directly linked to the almost identical 12C abundance

in the intershell during the interpulse period, which comes from the same CBM adopted at the

intershell bottom during TPs. Moreover, including CBM during TPs at the intershell bottom is

very important to reproduce key observables like surface abundances of H-deficient post-AGB stars

(Werner & Herwig 2006; Battino et al. 2016), as this is to date the only way to reproduce the

observed enrichment in carbon and oxygen, at the expenses of helium abundance, in the intershell

at the end of the AGB phase. This is shown in Fig. 9, where final intershell abundances of m2z1m2

are compared to surface abundance of four representatives H-deficient post-AGB stars, showing a

very good agreement between our model with observations. High abundances of 12C in the He-

intershell region cause high 13C abundances and a more efficient neutron flux in the 13C-pocket.

At the same time, lower abundances of 4He lead to higher temperatures during the TP, leading to

a stronger activation of the 22Ne neutron source (Lugaro et al. 2003a, 2018).

3.3. Approximating rotationally induced mixing: models with additional constant

mixing coefficient

Busso et al. (2001) presented a compilation of s-process observational data, including the

ratio of the s-process production around the barium peak (hs) over the nucleosynthesis around

the strontium peak (ls). In particular, -0.6 < [hs/ls] < 0.0 characterizes stars of solar metallicity,

adopting the square-bracket notation defined as:

[X/Y ] = log((X∗/Y∗)/(X�/Y�)) (2)

with X∗/Y∗ and X�/Y� being the ratios of two quantities measured in a given star and in the

Sun respectively. It also seems that models applying CBM at the bottom of the helium-intershell

during TPs can reproduce only the largest observed hs/ls ratios, suggesting a neutron exposure in

the 13C-pocket at the maximum of the observed range (Lugaro et al. 2003a; Herwig 2005). The first

study where the IGW-driven CBM was tested and calibrated was done by Battino et al. (2016):

the stellar models presented were all non-rotating and [hs/ls] 0.0 was obtained. On the other hand,
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Herwig et al. (2003), Siess et al. (2004) and Piersanti et al. (2013), have shown that by considering

rotation in AGB models the final [hs/ls] ratio tends to be reduced compared to non-rotating models.

The reason for this is that during the AGB phase the slowly rotating envelope and the fast-rotating

compact core are in contact. Hence, shear mixing sets in during the interpulse period polluting the
13C-pocket with the neutron poison 14N from the 14N-pocket just above (also visible in Fig. 8),

reducing the neutrons available for the s-process, in particular the neutron/seeds numeric ratio,

hence the barium-peak production. The inclusion of a stochastic process like rotation, where a range

of initial angular velocities is possible, could explain the spread in s-process efficiencies, observed in

spectroscopic data and laboratory measurements of some isotopic-ratios in presolar grains (Herwig

et al. 2003; Herwig 2005; Battino et al. 2016). We are not going to present models including a self-

consistent implementation of rotation, yet, given the essential role rotational-induced mixing has in

reproducing AGB observables, we want to explore its possible impact in s-process nucleosynthesis.

For this reason, we apply a low constant mixing across the intershell during the interpulse period,

in order to mimic the effects of shear mixing, following a method very similar to Herwig et al.

(2003), models with rotationally-induced mixing predict mixing coefficients around log(D[cm2s−1])

∼ 2, which eventually totally suppress the s-process production by an excessively large poisoning of

the 13C-pocket. Cantiello et al. (2014) showed that models only accounting for angular momentum

conservation (as in Herwig et al. 2003) produce cores rotating about 10-1000 times faster than what

has been found from asteroseismology, suggesting a missing angular-momentum transport process.

Since rotationally shear mixing coefficients depend on the square of the vertical velocity gradient

(Zahn 1992; Maeder & Meynet 2000; Mathis et al. 2004) and the compact core rotates with velocity

vcore, faster than but similarly in order of magnitude to the expanded envelope which rotates with

velocity venv, so that vcore ∼ C×venv (typically 2.C.4, see Deheuvels et al. 2015), we have:

Drot ∼ (K/N2)(dv/dr)2 ∼ (K/N2)((vcore−venv)/(δ (r)))2 ∼ ((C−1)/C)2(K/N2)((vcore)/(δ (r)))2

(3)

where K is the thermal diffusivity, N the Brunt-Väisälä frequency and rotational velocity

changes from vcore to venv over a distance δ(r) along the stellar radius. Therefore, if vcore from

models is 10-1000 times faster than observed (as suggested by asteroseismology), then the expected

mixing coefficients from rotationally-induced mixing should decrease from log(Drot/(cm2s−1))∼2

to -4<log(Drot)(cm2s−1)<0. Hence, in order to mimic the effects of shear mixing and following a

method very similar to what was done in Herwig et al. (2003), we present in Table 4 six additional

models with an additional low constant mixing across the intershell, consistent in the range we have

just defined, during the interpulse period. It is anyway important to notice the big assumption we

are making here, that is stellar rotation being an efficient extra-mixing source in AGB stars. This

is actually still a matter of debate (see Straniero et al. 2015; Deheuvels et al. 2015; Herwig 2005).

On the other hand, any extra-mixing process able to satisfy the conditions described above could

be considered.
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4. Post-processing nucleosynthesis calculations

The s-process nucleosynthesis in low-mass AGB stars heavily depends on the properties of the
13C-pocket. As already described, the stellar models presented in this work form a 13C-pocket that is

about 3 times larger than in RI18. This has profound consequences on the resulting heavy element

production, as shown in Fig. 10. Models described in RI18 exhibit a low s-process production

compared to what is inferred from spectroscopic observations. Changing the treatment of convective

boundaries according to Battino et al. (2016), results in about 3 times larger s-process production

factors in agreement with observations. In the same figure, we also show the results from FRUITY

calculations (Cristallo et al. 2011). The gap in barium production when comparing RI18 and

FRUITY is not present anymore in this work, while the difference persists when considering Sr

peak abundances. This is due to FRUITY models not including any CBM at the base of the

PDCZ. This leads to lower 12C abundances in the intershell in FRUITY models, hence lower 13C

abundances and a less efficient neutron flux in the 13C-pocket, which favors Sr-peak over Ba-peak

elements (see Lugaro et al. 2003b). The production factors of all our models are shown in Fig. 11: in

particular, lower metallicity models show a stronger production of the second (Ba region) and third

(Pb region) s-process peaks, while the first peak (strontium region) is favored in higher metallicity

models. In Fig. 12 we show the tracks of m3z2m2 and the models with the same initial mass and

metallicity in RI18 and FRUITY. Since there are now large enough and internally consistent data

sets of individual elements representing second-peak (hs) and first-peak (ls)elements, each symbol

in the figure gives the surface [Ce/Y] and [Ce/Fe], being an update to the classic [hs/ls] and [hs/Fe]

indices respectively, as discussed by Cseh et al. (2018). The theoretical tracks are compared to the

largest homogeneous set of Ba giant star observations presented in Cseh et al. (2018), including

data from Pereira et al. (2011) to achieve a better statistic at super-solar metallicities. As the

star evolves, TDU events gradually enrich the envelope in carbon eventually resulting in surface

C/O>1, entering the carbon-rich phase that we indicate with bigger-size symbols. The figure shows

the larger s-process efficiency in the m3z2m2 and FRUITY model compared to RI18, demonstrated

by the higher [Ce/Fe] value. Additionally, since the intershell material in RI18 and m3z2m2 has

the same [Ce/Y] the two tracks initially perfectly overlap, while FRUITY model evolves towards

negative [Ce/Y] values, reflecting the absence of CBM under the PDCZ as previously discussed.

This is not surprising, since both RI18 and m3z2m2 models treat the CBM at the bottom of the

intershell during TP in the same way, resulting in very similar 12C intershell abundance (as seen

in Section 3.2) and hence neutron exposures. Because of the larger amount of s-process material

brought to the surface at every TDU, the m3z2m2 track is pushed further away from the origin

towards a higher final [Ce/Y].

4.1. Comparison with spectroscopic observations

Low-mass AGB stars produce the bulk of the s-process material in the 13C-pocket, but a non-

negligible amount of neutrons comes from 22Ne(α,n)25Mg activated during the TP. Additionally,
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some isotopes in proximity of branching points are efficiently produced only in the high neutron

density conditions achieved during the TP (Raut et al. 2013). One example is rubidium, whose

neutron magic isotope 87Rb is produced only in high enough neutron density conditions to open the

branching at 86Rb (18.642 days half-life). Spectroscopic observables allow access to Rb abundances

as well as abundances of other s-process elements produced entirely in the 13C-pocket. Fig. 13 shows

the rubidium abundance vs the total s-process production inferred from spectroscopy analysis of

carbon stars compared to the predictions by our models. The s-process production is described by

the [s/Fe] index, expressed with formalism defined by Eq.2, with the numerator being the averaged

abundance between Sr and Ba peak elements. The slope of our models’ tracks are in agreement

with the observed relative contribution of the TP with respect to the 13C-pocket. Moreover, we

are able to reproduce the highest observed s-process production within observational uncertainties.

As described in Busso et al. (2001), a range of 13C-pocket sizes is required to reproduce the spread

of [hs/ls], and hence [Ce/Y], observed in stars for a given metallicity. Indeed, a stochastic process

like rotation could produce this effect, as described in Section 3.2 (see also Herwig et al. 2003;

Herwig 2005). Indeed, the higher the initial rotational velocity, the lower the final [Ce/Y]. As a

consequence, stellar models not including rotation should reproduce the highest observed [Ce/Y],

and adding the effects of rotation should explain the lower [Ce/Y] values observed (Herwig 2005).

This is successfully reproduced by our models, as shown in Fig. 14. We plot the results from

the whole evolution of the models listed in Table 1, adding also two of the models described in

Table 4, which include an artificial mixing to replicate stellar rotation effects. The theoretical

predictions reproduce the [Ce/Y] vs [Fe/H] slope around solar metallicity, as well as the observed

spread in [Ce/Y] for specific metallicities. Moreover, we present another similar comparison in

Fig. 15, where we show our final surface abundances and include the results from FRUITY and

Monash group (Karakas & Lugaro 2016) datasets. Similarly to what previously discussed about

FRUITY results, Monash models do not include any CBM at the base of the PDCZ, hence a lower

final [Ce/Y] compared to our models. Additionally, our models including rotational mixing present

a final [Ce/Y] on average 0.4 dex lower than our standard setting, suggesting rotational mixing

as a strong candidate to cover the whole observed range of s-process efficiencies. However, it is

important to notice the possibility that the necessary stochasticity to reproduce the observed spread

in [Ce/Y] may be present in CBM processes already. Our understanding of convection, which is the

physical process originating IGW and hence CBM in our models, is not in a satisfying state yet. The

picture gets even more complicated when considering additional physics like magnetic fields, that

have already been proposed to play a key role in the formation of the 13C-pocket (see Trippella et al.

2016), whose interplay with IGW has not been investigated yet. This may introduce a stochastic

component in the CBM process, resulting in the spread of neutron exposures and 13C-pocket sizes,

possibly including the results obtained by RI18.
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4.2. Comparison with presolar grains measurements

When the condition C/O>1 is met and a carbon-star is formed, a sudden rise of the opacity

occurs, making the atmosphere expand and cool (Marigo 2002; Kalirai et al. 2014). In these con-

ditions silicon carbide (SiC) grains can form. The vast majority of SiC grains (”mainstream” SiC,

more than 90% of SiC grains) form in the atmospheres around carbon-rich AGB stars (Ferrarotti

& Gail 2006; Nanni et al. 2013; Lugaro et al. 2018). Each specific grain formed in a single specific

stellar source.

Recently, Lugaro et al. (2018) compared predictions from AGB models computed with the

Monash stellar structure code (Karakas & Lattanzio 2007) with isotopic ratio measurements, fo-

cusing on Zr, Sr, and Ba isotopic ratios, matching measurements from Liu et al. (2014) and Liu et al.

(2015). On the other hand, a number of limitations in the stellar models where also highlighted,

the most important of these being the absence of any CBM at the base of the TP-driven convec-

tive zone, despite the indications from multi-D hydrodynamic simulations (Herwig et al. 2007) and

observations of H-deficient post-AGB stars as described in Section 3.2. In the same Section, we

also explained how the enhancement in 12C, following the mixing at the bottom intershell convec-

tive boundary results in a more efficient neutron flux in the 13C-pocket, hence favoring a higher

production of Barium-peak isotopes and in a stronger activation of the 22Ne neutron source, leav-

ing a clear fingerprint in branching-point sensitive isotopic ratios like 96Zr/94Zr (see Herwig 2005;

Battino et al. 2016)). It is then interesting to compare stellar models where such CBM processes

are included, like in the present work, to the stardust SiC data.

4.2.1. Sr

In Fig. 16 we compare our models with measured Sr isotopic ratios. Plotted values are given

in δ-value notation to represent the isotopic ratios, i.e. the permil variation with respect to the

solar ratio (for which δ=0), so that δ=((model ratio/solar ratio)-1)×1000. Each symbol marking a

theoretical predictions corresponds to an interpulse-period, with bigger-size symbols corresponding

to the carbon-rich phase, which is a necessary condition for grains to form. As visible in panels 2

and 4, we tested both a larger TDU efficiency and rotation-induced mixing to consistently cover the

whole observed range, with the latter having the largest impact. This is particularly important for
88Sr/86Sr, where the neutron-magic 88Sr is depleted more and more by higher diffusion of 14N inside

the 13C-pocket, as it would occur in faster rotating models. More precisely, Fig. 16 shows how a

range of initial rotation velocity, able to produce the additional intershell mixing between zero and

the value inserted in m3z2m2-rotmix.stx1p5, would be able to cover the bulk of the observed values.

Rotation also improves the comparison to measured 84Sr/86Sr ratios, pushing the tracks towards

the bulk of data which have typically values lower than 800, due to a lower destruction of 86Sr as

a consequence of the lower neutron-exposure, while 84Sr is unaffected being a p-only isotope. On

the other hand, this is still not enough to reproduce the typical 84Sr/86Sr measured from most of
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the grains, possibly suggesting a too weak depletion of 84Sr.

4.2.2. Ba

In Fig. 17 we compare our models with measured Ba isotopic ratios. As shown in fig. 19, the ar-

tificial inclusion of rotation-induced mixing pushes our stellar tracks down to lower δ(138Ba/136Ba),

as the neutron-magic 138Ba decreases with decreasing neutron-exposure, closer to the experimental

data from Liu et al. (2014) and Liu et al. (2015). In the same figure, m3z3m2-hCBM m3z3m2

are also presented, showing how models with a larger 13C -pocket perform better in reproducing

laboratory measurements. Additionally, we tested the lower limit of our adopted 22Ne(α,n)25Mg

rate, the main neutron source at He-flash temperatures, by dividing it by a factor of two, consis-

tently with a 2σ variation according to the Monte Carlo calculation by Iliadis et al. (2010), whose

recommended rate is very consistent with Jaeger et al. (2001). Interestingly, the stellar track is

pushed down right into the experimental data-point, indicating how our models are actually in

good agreement with laboratory data, within nuclear uncertainties.

Rotationally induced mixing does not impact δ(134Ba/136Ba) and δ(137Ba/136Ba), since they

mainly depend on the neutron capture cross-sections: the models reproduce well the observed

δ(134Ba/136Ba), on the other hand it looks like it is not the case when comparing them with

measured δ(137Ba/136Ba). The 137Ba(n,γ)138Ba reaction rate has been considerably increased (by

a factor of 1.2) from Kadonis 0.3 (that we adopt) to Kadonis 1.0. Therefore, we tested this new

rate in m3z2m2 and m3z3m2. Indeed, fig. 18 shows how pre-solar grains and our models prediction

are in better agreement when using the newer 137Ba(n,γ)138Ba rate.

Since Liu et al. (2015) provides Ba and Sr data coming from the same grain, we perform an

additional comparison using the observed correlation between 138Ba/136Ba versus 88Sr/86Sr. Fig.

20 shows that most of the grains present -200 < δ(88Sr/86Sr) < 0 and -400 < δ(138Ba/136Ba) <

-200. In the lower panel, m3z3m2-hCBM-rotmix.st, m3z3m2-hCBM-rotmix.stx1p5 and m3z2m2-

rotmix.stx2 tracks successfully enter this specific area in the diagram, hence being able to explain

the bulk of grains data. It is important to notice how all these three models are *rotmix* models,

having all a slow constant extra-mixing active into the intershell, suggesting rotation-induced mixing

as an strong candidate to explain the range of observed values in presolar grains. In particular,

m3z3m2-hCBM-rotmix.st nicely reproduce the range of observed 138Ba/136Ba values. At the same

time, a range of stronger stronger extra-mixing, as in m3z3m2-hCBM-rotmix.stx1p5, may effectively

reproduce the observed 88Sr/86Sr range.

4.2.3. Zr

Fig. 21 shows the predictions of zirconium isotopic ratios for our models compared to Barzyk

et al. (2007) measurements. 90,91,92Zr/94Zr depend on the nucleosynthesis taking place in the 13C-
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pocket, while 96Zr/94Zr also depends on TP conditions, since it is affected by the 64 days half-life

branching point at 95Zr which can only be opened in high neutron density conditions. Models

with higher metallicities produce lower 96Zr/94Zr values for two reasons: 1) the higher the initial

metallicity, the more first peak elements are favored compared to second peak ones; 2) a higher

metallicity affects stellar opacities and structure, resulting in lower TP temperatures and lower
22Ne(α,n)25Mg activation. Anyway, our standard setting apparently do not perform well when

compared to observations, with the exception of the range of 90Zr/94Zr values. In Fig. 22 we

test m3z3m2 and m3z3m2-hCBM models with grains measurements, showing a the model of RI18

as comparison: m3z3m2-hCBM performs better than m3z3m2, as it reproduces lower 96Zr/94Zr

achieving a better agreement with observations, even if still not good enough. The big difference

between m3z3m2 and RI18 is mainly due to a different adopted 95Zr neutron capture cross section,

that is in our case more than a factor of two lower than the rate used by RI18. 13C-pocket sizes

in m3z3m2-hCBM are around 10−4 M� large in mass coordinate, a factor of about 1.5 larger than

the typical pocket size in m3z3m2. This allows a higher 94Zr production and hence lower 96Zr/94Zr

after every TDU. We noticed In addition to the 94Zr(n,γ)95Zr, Cescutti et al. (2018) also indicated
95Zr(n,γ)96Zr as a key reaction rate for 96Zr. We therefore considered nuclear uncertainties with a

potential impact on zirconium isotopes. In Fig. 23 we the impact of the 94Zr(n,γ)95Zr rate on our

predictions. In particular, we apply a factor of 0.8 to the 94Zr(n,γ)95Zr reaction rate to test the

value recommended in Kadonis 0.3, since it is 20% lower than the Lugaro et al. (2014) recommended

rate that we adopted. In this case, the lowest measured values of 91Zr/94Zr and 92Zr/94Zr are now

reproduced. Additionally, when the effects of rotation-induced mixing are included, also the highest

values are explained. In summary, the effect of rotation-induced mixing, combined to neutron

capture reaction rate uncertainties, effectively reproduce the whole range of measured 90Zr/ 94Zr

(already reproduced by our standard set as shown in figure 21), 91Zr/ 94Zr and 92Zr/ 94Zr values.

Fig. 24 shows that our prediction are in better agreement with laboratory measurements when

considering stellar modelling and nuclear physics uncertainties: Lugaro et al. (2014) gives a factor

of 2 uncertainty for 95Zr(n,γ)96Zr, additionally we we apply the same factor to test the lower limit

of our adopted 22Ne(α,n)25Mg, in the same way as discussed in section 4.2.2. The majority of

grains data have -800< δ(96Zr/94Zr) <-600 and m3z3m2-hCBM track successfully reproduce data

in this interval, ranging between -750 and -650 in delta values during the carbon-rich phase. On

the other hand it is not possible for our models to explain those grains with δ(96Zr/94Zr) <-800,

failing to reproduce the whole 96Zr/94Zr observed range.

4.2.4. Mo

Figs. 25 and 26 show predictions of isotopic-ratios compared to Barzyk et al. (2007) mea-

surements. The agreement is not satisfactory good for 92Mo/96Mo, 95Mo/96Mo, 97Mo/96Mo and
100Mo/96Mo. In particular, in both figures 92Mo looks like it is not burned enough. Neutron

captures on Mo isotopes are considerably different between Kadonis 0.3 and Kadonis 1.0, with
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96Mo(n,γ)97Mo also having an uncertainty around 20% at 13C-pocket temperatures. In figs. 27

and 28 we show predictions from m3z2m2 and m3z3m2 calculated with Kadonis 0.3 and m3z2m2

computed with Kadonis 1.0. We also show the predictions from m3z2m2 and m3z3m2-hCBM when

Kadonis 0.3 is adopted, but with the 96Mo(n,γ)97Mo from Kadonis 1.0 set to its lower limit (i.e.

multiplied by a factor 0.8). We also show the results from the M=3M� , Z=0.02 model from RI18

as a comparison. First of all, it is evident how the comparison with pre-solar grains is definitely

improved compared to RI18 due to the larger 13C-pocket. The second aspect is that the observed
97Mo/96Mo range can actually be explained within nuclear-physics uncertainties. Finally, consider-

ing m3z2m2-hCBM, we notice how the bunch of grains with the lowest 92Mo/96Mo observed could

be reproduced with one more TDU event, which is well inside model uncertainties. On the other

hand, even considering both nuclear and model uncertainties, our models are not able to reproduce

the measured spread of 95Mo/96Mo and 100Mo/96Mo.

4.3. Key reaction rates

Table 5 shows the reaction rates we found important when comparing our results to obser-

vations. We identified six key reactions, five of them being neutron captures. Additionally, four

out of five of these (n,γ) reactions have been classified as ’Level 1’ key-rates by Cescutti et al.

(2018), which means they showed a strong correlation to the abundances of specific s-process iso-

topes listed in the second column. We hence agree with Cescutti et al. (2018) and propose them

as candidates for improved measurement by future experiments, since more precise measurement

of these rates will allow significantly more precise nucleosynthesis calculations. We also highlight

the importance of 95Zr(n,γ)96Zr, which is classified as ’Level 2’ key rate by Cescutti et al. (2018),

hence less correlated to final abundances than ’Level 1’ key-rates. Despite this fact, we notice that

this rate is actually the main source of the still significant uncertainty affecting 96Zr. Finally, we

include in the list also the main neutron source during TP events, the 22Ne(α,n)25Mg, affecting

branching-point sensitive isotopes like 87Rb and 96Zr.

4.4. Ejected yields

We have calculated full yields for all our models. These are available in Tables online at the

CADC (The Canadian Astronomical Data Center, http://www.cadc-ccda.hia-iha.nrc-cnrc.

gc.ca) and can be analyzed interactively through the web interface WENDI at wendi.nugridstars.

org. Table 6 shows a comparison between the yields presented in this work for m3z2m2 and the

yields presented by Karakas (2010) and Cristallo et al. (2011) for their models with same initial

mass and metallicity. The final ejected masses of 12C, 14N, and 16O for m3z2m2 are 0.0340, 0.0070,

and 0.0316 M� respectively. For the same isotopes and the same star, RI18 provides 0.0445, 0.0077

and 0.0383, Karakas (2010) 0.0207, 0.0056, and 0.0211, and Cristallo et al. (2011) 0.0186, 0.0066

and 0.0211. For 12C we obtain an abundance that is factor of 1.83 and 1.64 higher than Cristallo

http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca
wendi.nugridstars.org
wendi.nugridstars.org
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et al. (2011) and Karakas (2010). A higher 12C enrichment in our models is due to the CBM acti-

vated at the bottom of the PDCZ. The consistent amount of ejected 12C with RI18 is a consequence

of the same CBM scheme adopted at the bottom of the intershell. The 14N yields are consistent

within 20%. Concerning 16O, m3z2m2 show a larger production, up to 60% compared to Cristallo

et al. (2011) and Karakas (2010), while it is consistent with RI18. As for 12C, this higher production

corresponds to the CBM scheme we applied during the TP, that both Cristallo et al. (2011) and

Karakas (2010) do not include. Concerning the s-process nucleosynthesis, the final ejected masses

from m3z2m2 of 88Sr, 138Ba and 208Pb are 3.34×10−7, 1.96×10−7 and 3.28×10−8 M� respectively.

Cristallo et al. (2011) predicts a much higher production of 88Sr, which is 1.63×10−6 M�,

due to the smaller 13C-pockets obtained in our models. On the other hand, the calculated ejected

amount of 138Ba and 208Pb are consistent with our results being 1.69×10−7 and 4.82×10−8 M�
respectively, which is explained by the higher neutron-exposure of our models originating from the

higher 12C enrichment in the intershell.

RI18 predicts on average a factor of two lower production, with 1.98×10−7, 7.58×10−8, 2.24×10−8

M� of 88Sr, 138Ba and 208Pb respectively. This is due to the 13C-pockets being between two and

three times larger in our models compared to RI18, but with the same peak abundance of 13C

in them which give similar [hs/ls] values, again because of the same CBM scheme adopted at the

bottom of the intershell.



– 16 –

5. Discussion and conclusions

In this work we presented a significant update of low-mass AGB star models and nucleosyn-

thesis calculations presented in RI18. In that work, the s-process production was low compared to

observations. We tackled this by re-calculating the low-mass AGB models with the same stellar

code, general input physics parameters with the only difference being describing the convective

boundaries during TDU events according to the scheme described by Battino et al. (2016), which

was based on the IGW-mixing scenario described by Denissenkov & Tout (2003). The direct con-

sequence of this is a 13C-pocket up to three times larger in mass-coordinate than in RI18, with the

final s-process production increasing by almost a factor of three and now in much better agreement

with observations. One additional difference compared to RI18 is the inclusion of the additional

metallicity Z=0.03, since its contribution to dust production and hence presolar grains can be very

significant (Lugaro et al. 2018). Moreover, we compute two additional models (labelled ’-hCBM’)

with metallicities Z=0.02 and 0.03 with an increased CBM under the convective envelope during

TDUs. This increased CBM-efficiency is well inside the uncertainties characterizing the IGW-

mixing parameterization of Denissenkov & Tout (2003), and produces a 13C-pocket about 50%

larger compared to when the standard setting is adopted.

We validated our results by comparing them with a large set of observables, including carbon-

stars and barium-stars surface abundances inferred from spectroscopy and isotopic-ratios from

presolar grains. We noticed how ’-hCBM’ models, forming a larger 13C-pocket, generally performs

better when compared to observations. This indicates how uncertainties affecting CBM impacts

our s-process results, motivating us to do a future dedicated study before completing re-computing

the whole metallicity grid of RI18. Within all uncertainties (stellar modeling, nuclear physics and

observations) our models agree with most of observational data. The most difficult observables to be

reproduced are the full ranges of some isotopic-ratios, precisely 84Sr/86Sr, 137Ba/136Ba, 96Zr/94Zr,
95,100Mo/96Mo.

We explored the role of rotation-induced mixing adopting a simple parametric approach, con-

firming it as a strong candidate to explain the range of observed values in presolar grains. It is

anyway important to notice our assumption about stellar rotation being an efficient extra-mixing

source in AGB stars, even though this is actually still a matter of debate (see Straniero et al. 2015;

Deheuvels et al. 2015; Herwig 2005).

We identified a number of reaction-rates that impact our results, some of which already been

classified as key-reaction rate for AGB nucleosynthesis by Cescutti et al. (2018). We therefore want

to suggest them as priority candidates for future measurements.

Finally, we provide the final ejected yields from our models that can be used as inputs for

galactic-chemical evolution simulations. Full tables are available online as described in the text.
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Table 2: The CBM parameters adopted during TDU events are given (see text for details) for the

models shown in Table 1. The 3 M� , Z=0.02 model from RI18 is shown as a comparison to model

m3z2m2. We added two additional model with Z=0.02 and Z=0.03 to test the impact of more

efficient TDUs.
Name f1 D2[cm2s−1] f2

m2z1m2 0.014 1011 0.27

m3z1m2 0.014 1011 0.27

m2z2m2 0.014 1011 0.27

m3z2m2 0.014 1011 0.27

RI18 0.126 - -

m2z3m2 0.014 1011 0.27

m3z3m2 0.014 1011 0.27

m3z2m2-hCBM 0.014 4.3×1011 0.27

m3z3m2-hCBM 0.014 4.3×1011 0.27

Table 3: Total number of TPs and number of TPs occurring during the AGB oxygen-rich phase for

the same models shown in Table 2. The 3 M�, Z=0.02 model from RI18 is shown as a comparison

to models m3z2m2 and m3z2m2-hCBM.
Name Total TPs O-rich TPs

m2z1m2 25 18

m3z1m2 16 8

m2z2m2 30 27

m3z2m2 24 15

m3z2m2-hCBM 23 15

RI18 21 13

m2z3m2 30 29

m3z3m2 31 20

m3z3m2-hCBM 30 19
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Table 5: List of the reaction rates with the highest impact on the observables we considered in this

work. Also the most affected affected isotope by each reaction is shown. For neutron capture rates,

we add the classification and the main nuclide affected given by Cescutti et al. (2018).

Reaction rate Affected observable Cescutti et al. 2018 classification
137Ba(n,γ)138Ba 137Ba/136Ba Level 1 for 137Ba
95Mo(n,γ)96Mo 95Mo/96Mo Level 1 for 95Mo
96Mo(n,γ)97Mo 94,95,97,98,100Mo/96Mo Level 1 for 96Mo
94Zr(n,γ)95Zr 90,91,92,96Zr/94Zr Level 1 for 96Zr
95Zr(n,γ)96Zr 96Zr/94Zr Level 2 for 96Zr
22Ne(α,n)25Mg 96Zr/94Zr -
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Table 6: Comparison between the yields in solar masses for m3z2m2 and the yields from Karakas

(2010) (Ka10), Cristallo et al. (2011) (Cr11) and RI18 for their model with same initial mass and

metallicity.

Isotope m3z2m2 m3z2m2-hCBM RI18 Cr11 Ka10

C 12 3.4035341E-02 3.43558877e-02 4.448E-02 1.86110E-02 2.0739544E-02

C 13 2.2231664E-04 2.18517069e-04 2.252E-04 2.20200E-04 1.9436399E-04

N 14 7.0151267E-03 6.90119758e-03 7.685E-03 6.64840E-03 5.6565693E-03

N 15 4.4046608e-06 4.25324193e-06 4.207E-06 4.29400E-06 5.0818235E-06

O 16 3.1633632E-02 3.22309748e-02 3.828E-02 1.94360E-02 2.1144016E-02

O 17 6.2956708e-05 6.20965699e-05 5.194E-05 7.91850E-05 5.5763638E-05

O 18 3.4374702e-05 3.34363411e-05 3.364E-05 3.12110E-05 3.6596495E-05

F 19 4.9649986e-06 4.92340864e-06 7.655E-06 3.68770E-06 4.3487280E-06

NE 20 4.2225594E-03 4.13259733e-03 4.356E-03 3.63520E-03 3.7571993E-03

NE 21 1.2744558e-05 1.24662448e-05 1.270E-05 9.90460E-06 1.0039988E-05

NE 22 2.7187524E-03 2.82343479e-03 3.937E-03 2.32210E-03 2.1113991E-03

NA 23 1.4976682E-04 1.49833381e-04 1.772E-04 1.87730E-04 1.2845088E-04

MG 24 1.3712457E-03 1.34172081e-03 1.421E-03 1.84710E-03 1.1949923E-03

MG 25 2.9955618E-04 2.92761999e-04 2.915E-04 2.43210E-04 1.6784266E-04

MG 26 4.5746367E-04 4.54130815e-04 4.726E-04 2.88120E-04 1.9374024E-04

AL 27 1.5420979E-04 1.50610193e-04 1.585E-04 2.08100E-04 1.3861095E-04

SI 28 1.7175335E-03 1.67961680e-03 1.770E-03 2.36270E-03 1.5164100E-03

SI 29 9.2162458e-05 9.01472831e-05 9.501E-05 1.24570E-04 7.9920115E-05

SI 30 6.7840128e-05 6.65214218e-05 6.975E-05 8.60130E-05 5.5390818E-05

P 31 1.7451779e-05 1.71499494e-05 1.771E-05 2.28230E-05 1.9017965E-05

S 33 7.9125730e-06 7.74800508e-06 8.331E-06 1.04160E-05 7.6937777E-06

S 34 4.5194069e-05 4.42301243e-05 4.601E-05 5.91400E-05 4.3391171E-04

FE 54 1.8268714E-04 1.78490960e-04 1.874E-04 2.49280E-04 1.6390771E-04

FE 56 3.0096567E-03 2.94198314e-03 3.100E-03 4.08090E-03 2.7071363E-03

FE 57 8.1660429e-05 8.00810684e-05 8.781E-05 1.02140E-04 7.2351380E-05

FE 58 2.9018441e-05 2.90010573e-05 3.211E-05 1.76610E-05 1.1919641E-05

CO 59 1.3762730e-05 1.36096972e-05 1.441E-05 1.33220E-05 8.5931824E-06

NI 58 1.2853806E-04 1.25593342e-04 1.317E-04 1.71330E-04 1.1363259E-04

NI 60 5.5129775e-05 5.40953096e-05 5.698E-05 6.93570E-05 4.5602490E-05

NI 61 3.9916327e-06 3.97199615e-06 4.122E-06 3.46150E-06 8.8770785E-06

NI 62 1.0936648e-05 1.08258788e-05 1.056E-05 1.04870E-05 5.0042019E-08

NI 64 4.0636092e-06 4.02730786e-06 3.165E-06 3.32430E-06 -

SR 88 3.3440015e-07 3.80870156e-07 1.978E-07 1.63060E-06 -

Y 89 9.2306586e-08 1.06181661e-07 5.072E-08 3.17410E-07 -

ZR 90 9.6840845e-08 1.11106954e-07 5.726E-08 3.24600E-07 -

BA136 2.1123224e-08 2.61090422e-08 9.317E-09 2.79920E-08 -

BA138 1.9605483e-07 2.43881700e-07 7.581E-08 1.68590E-07 -

LA139 2.2851196e-08 2.82865328e-08 9.138E-09 2.00170E-08 -

PB208 3.2787968e-08 3.75103148e-08 2.243E-08 4.82470E-08 -
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Fig. 1.— HR diagram of tracks from all models listed in Table 1 from the pre main-sequence to

the tip of the AGB phase.
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Fig. 2.— Upper panel: Comparison between HR diagrams of our m3z2m2 model and the cor-

responding one (same initial mass and metallicity) from RI18. Lower panel: Zoom on the AGB

phase.
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Fig. 3.— CBM profiles from the m3z2m2 model and RI18 are shown. The dark-shaded area

represents the convective envelope, with the Schwarzschild convective boundary being the left

border. RI18 mixing dominates over our prescription in the mid- and light-shaded areas, with an

efficiency higher than 100 times in the mid-shaded one.
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Fig. 4.— Comparison between the diffusion coefficient profile calculated using the GLS prescription

for the IGW mixing from Denissenkov & Tout (2003) (the red curves) and the one derived for

the CBM with the parameterization used in this work (the blue curves). The dotdashed, solid

and dashed blue curves with their adjacent red curves show comparisons for the cases of f2=0.25,

f2=0.26 and f2=0.27. To make them more visible, the dashed and dot-dashed lines are shifted along

the vertical axis by log(D) = 2 up and down relative to the solid line. The bump on the log(DGLS)

profile near the convective boundary is due to a rapid decrease of the thermal diffusivity K with

depth accompanied by a fast increase of the buoyancy, and by the fact that DGLS is proportional

to NK (Equation (15) in Denissenkov & Tout (2003)). The f2=0.27 case has been selected as

standard since it provides the best-fit of the IGW profile in the layers where the 13C-pocket forms

(7<Log(Dmix)<8).



– 31 –

Fig. 5.— TDUs efficiency (λ) temporal evolution. A comparison between m3z2m2 and RI18 is

shown in the upper panel, while a zoom into the early AGB-phase is shown in the lower panel.
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Fig. 6.— Upper panel: Kippenhahn diagram of m3z2m2. The whole AGB phase is presented

zoomed in the He-intershell. Lower panel: same as in the upper panels, but for RI18.
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Fig. 7.— TDU efficiency λ temporal evolution as a function of total mass for all the models listed

in Table 1.
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Fig. 8.— Upper panel: 13C-pocket at the beginning of the carbon-rich phase from m2z1m2. Lower

panel: 13C-pocket at the beginning of the carbon-rich phase from RI18 at the same mass coordinate

as in the upper panel. The comparison shows a much larger pocket compared to RI18.
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Fig. 9.— Final intershell abundances of m2z1m2, which are representatives for all the other models,

are compared to surface abundance of four representatives H-deficient post-AGB stars.
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Fig. 11.— Upper panel: Heavy elements production factors of 2 M� models listed in table 1. Lower

panel: Same as in the upper panel, but for 3 M� models.



– 37 –

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

[Ce/Y]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

[C
e/

F
e]

m3z2m2

RI18

FRUITY

Cseh et al. 2016

Pereira et al. 2011

Fig. 12.— Comparison of [Ce/Fe] vs [Ce/Y] index between m3z2m2 and RI18. Also observational

data of barium-stars from Cseh et al. (2018) and Pereira et al. (2011) are shown
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Fig. 13.— Upper panel: Comparison of Rb abundance vs the total s-process production inferred

from spectroscopy analysis of carbon stars by Abia et al. (2002) and Zamora et al. (2009) with

the abundance predicted by our models in Table 1. Lower panel: Same as in the upper panel, but

comparing m3z2m2 with same mass and metallicity models from RI18 and the FRUITY database.

We also show predictions from m3z2m2-hCBM, whose comparison with m3z2m2 shows the impact

of the increased 13C-pocket size due to higher CBM efficiency during TDUs.
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Fig. 14.— Comparison of [Ce/Y] vs [Fe/H] results from the whole evolution of models listed in

Table 1 adding also m3z3m2.rotmix.st and m3z2m2.rotmix.stx2, which include an artificial mixing

to replicate stellar rotation effects. The values inferred from spectroscopy analysis of barium-stars

by Cseh et al. (2018) and Pereira et al. (2011) are also shown as comparison.
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Fig. 15.— Comparison of [Ce/Y] vs [Fe/H] results from the final surface abundances of models

presented in Fig. 14 here we also include results from the FRUITY database and Monash models

as a comparison.
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Fig. 16.— Comparison of stellar models presented in this work with measured Sr isotopic ratios from

presolar SiC grains. Each symbol marking a theoretical prediction corresponds to an interpulse-

period, bigger-size symbols corresponding to the carbon-rich phase. Is visible how rotation-induced

mixing may help self-consistently cover the whole observed range, in particular in 88Sr/86Sr. Error

bars accounts for a two σ uncertainty.
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Fig. 17.— Comparison of stellar models presented in this work with measured Ba isotopic ratios

from presolar SiC grains.
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Fig. 18.— Comparison of m3z2m2 and m3z3m2 δ(137Ba/136Ba) vs δ(135Ba/136Ba) with measure-

ments from SiC grains: we show results obtained when adopting the 137Ba(n,γ)138Ba given by

Kadonis 0.3 (that we used as standard) to what is recommended in Kadonis 1.0 (i.e. a factor of

1.2 higher than Kadonis 0.3

.
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Fig. 19.— Comparison of δ(138Ba/136Ba) vs δ(135Ba/136Ba) from m2z2m2, m2z3m2, m3z2m2

and m3z3m3. We also included two models including artificial rotation-induced mixing,

m3z2m2.rotmix.st and m3z2m2.rotmix.std2.
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Fig. 20.— Correlated measurements of Sr and Ba of Liu et al. (2015), compared to our standard

set in the upper panel and to models including artificial rotation-induced mixing in the lower one.
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Fig. 21.— Comparison of stellar models presented in this work with Barzyk et al. (2007) measure-

ments of Zr isotopic ratios.
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Fig. 22.— Same as in Fig. 21, but the results are shown for models m3z3m2 and m3z3m2-

hCBM. The larger s-process production in m3z3m2-hCBM is a consequence of a 13C-pocket 50%

larger in mass-coordinate compared to m3z3m2, leading to a stronger production of 94Zr and hence

decreasing the 94Zr/ 96Zr isotopic ratio.
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Fig. 23.— Same as in figure 21, but here we show the impact of the neutron capture rate on 94Zr

on our theoretical predictions. In particular, we apply a factor of 0.8 to the 94Zr(n,γ)95Zr reaction

rate to test the value recommended in Kadonis 0.3, since it is 20% lower than the Lugaro et al.

(2014) recommended rate that we adopted. We also show the effect of rotation-induced mixing

which, combined to neutron capture reaction rate uncertainties, effectively reproduce the whole

range of measured 90Zr/ 94Zr (already reproduced by our standard set as shown in figure 21), 91Zr/
94Zr and 92Zr/ 94Zr values.
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Fig. 24.— Same as in figure 21, but the results are shown for the models calculated varying

key-reaction rates that impact the observed isotopic ratios (see text for details).
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Fig. 25.— Comparison of stellar models presented in this work with Barzyk et al. (2007) measure-

ments of Mo isotopic ratios.
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Fig. 26.— Continuing figure 25.
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Fig. 27.— Predictions from m3z2m2 model calculated with Kadonis 0.3, Kadonis 1.0 and Kadonis

0.3 with the 96Mo(n,γ)97Mo set to its lower limit (i.e. multiplied by a factor 0.75).
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Fig. 28.— Continuing figure 27.
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