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Abstract

In this paper we present sets of linear integral equations which make possible
to compute the finite volume expectation values of the trace of the stress energy
tensor (Θ) and the U(1) current (Jµ) in any eigenstate of the Hamiltonian of the
sine-Gordon model. The solution of these equations in the large volume limit allows
one to get exact analytical formulas for the expectation values in the Bethe-Yang
limit. These analytical formulas are used to test an earlier conjecture for the Bethe-
Yang limit of expectation values in non-diagonally scattering theories. The analytical
tests have been carried out upto three particle states and gave agreement with the
conjectured formula, provided the definition of polarized symmetric diagonal form-
factors is modified appropriately. Nevertheless, we point out that our results provide
only a partial confirmation of the conjecture and further investigations are necessary
to fully determine its validity. The most important missing piece in the confirmation is
the mathematical proof of the finiteness of the symmetric diagonal limit of form-factors
in a non-diagonally scattering theory.
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1 Introduction

Finite volume form-factors of integrable quantum field theories play an important role in
the AdS5/CFT4 correspondence [1, 2] and in condensed matter applications [3], as well. In
AdS/CFT, their knowledge is indispensable for the computation of the string field theory
vertex [1] and of the heavy-heavy-light 3-point functions [2] of the theory. In condensed
matter systems finite volume form-factors can be used to compute quantum correlation-
functions describing quasi 1-dimensional quantum-magnets, Mott insulators and carbon
nanotubes [3].

The systematic study of finite volume form-factors of integrable quantum field theories
was initiated in [4, 5], where the finite volume matrix-elements of local operators are sought
in the form of a systematic large volume series. From the investigation of finite volume
2-point functions it turned out, that upto exponentially small finite volume corrections,
but including all corrections in the inverse of the volume, the non-diagonal finite volume
form-factors are equal to their infinite volume counterparts taken at the positions of the
solutions of the Bethe-Yang equations and normalized by the square roots of the densities
of the sandwiching states.

As a consequence of the Dirac-delta contact terms in the crossing relations of the form-
factor axioms, the diagonal form-factors cannot be obtained from the non-diagonal ones
by taking their straightforward diagonal limit. Thus, diagonal form-factors are related to
the infinite volume form-factors in a bit more indirect way. According to the conjectures
[5], they can be represented as density weighted linear combinations of the so-called ”con-
nected” or ”symmetric” diagonal limits of the infinite volume form-factors of the theory.
In [8], it has been shown, that the conjecture [5] being valid for purely elastic scattering-
theories, can be derived from the leading order formula for the non-diagonal finite volume
form-factors by considering such non-diagonal matrix elements, in which there is one par-
ticle more in the ”bra” sandwiching state and the rapidity of this additional particle is
taken to infinity appropriately.

The conjectures for purely elastic scattering theories [5] went through extensive ana-
lytical and numerical tests [12] providing convincing amount of evidence for their validity.
So far the conjecture for the more subtle non-diagonally scattering theories [10] has not
gone through convincing amount of tests. It has been tested in the sine-Gordon model,
where it was checked analytically in the whole pure soliton sector against exact [19, 20]
and numerical [9] results and numerically against TCSA data for mixed soliton-antisoliton
two particles states [10]. Thus, analytical tests of this conjecture is still missing in the
soliton-antisoliton mixed sector. In this paper we would like to fill this gap and we check
the conjecture of [10] upto 3-particle soliton-antisoliton mixed states.

Beyond the leading polynomial in the inverse of the volume terms, the exponentially
small in volume corrections are also necessary. Their determination is still an open prob-
lem in general. Nevertheless, some progress has been reached in this direction, as well. For
the non-diagonal form-factors in purely elastic scattering-theories there is some knowledge
about the leading order exponentially small in volume corrections termed the Lüscher cor-
rections. The so-called µ-term Lüscher corrections were determined in [6] and the F-term
corrections for vacuum-1-particle form factors has been determined in [7]. Unfortunately,
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the Lüscher corrections to form-factors in non-diagonally scattering theories and higher
order exponentially small in volume corrections in any integrable quantum field theory are
presently out of reach.

Nevertheless, much is known about the exact finite volume behavior of the diagonal
form-factors both in purely elastic and non-diagonally scattering theories.

In [11, 12] a LeClair-Mussardo type [18] series representation was conjectured to de-
scribe exactly the finite volume dependence of diagonal matrix elements of local operators
in purely elastic scattering theories. In non-diagonally scattering theories the description
of finite volume diagonal matrix elements is less complete. So far only the sine-Gordon
model has been studied in this class of theories. There, based on computations done in
the framework of its integrable lattice regularization [22], a LeClair-Mussardo type series
representation was proposed to describe the finite volume dependence of the expectation
values of local operators in pure soliton states [19]. Nevertheless, soliton-antisoliton mixed
states have not been investigated so far. In this paper we partly fill this gap and derive
integral equations to get any finite volume diagonal matrix elements of two important
operators of the theory. These are the trace of the stress energy tensor (Θ) and the U(1)
current (Jµ). Our formulas are valid to any value of the volume and to any eigenstate of
the Hamiltonian of the model.

In the paper the Bethe-Yang limit of the diagonal form-factors will play an impor-
tant role. In our terminology this limit means, that the exponentially small in volume
corrections are neglected from the large volume expansion of the exact result1.

In the repulsive regime, where there are no breathers in the spectrum, we solve our
equations in the Bethe-Yang limit and give exact formulas for the expectation values of
our operators in this limit. The formulas depend on the rapidities of the physical particles
and on the magnonic Bethe-roots of the Bethe-Yang equations.

With the help of these exact formulas we check the conjecture of [10] for the Bethe-
Yang limit of the diagonal matrix elements of local operators in non-diagonally scattering
theories. The conjectured formula in [10] contains the symmetric diagonal limit of the
infinite volume form-factors. The determination of these symmetric diagonal form-factors
becomes more and more complicated as the number of particles increases. This is why
we complete the test upto three particle states. Upto 3-particle states our exact formulas
give perfect agreement with the conjectured formula of [10] for the operators Θ and Jµ,
provided the sandwiching color wave function Ψ is replaced by its complex conjugate in
the original formulas of [10].

However despite the success of our checks, the details of the computations shed light
on some subtle points of the conjecture, which require further work to be confirmed. The
most important of them is to prove that the symmetric diagonal limit of form-factors is
finite for a generic sandwiching state in a non-diagonally scattering theory. Though, this
statement looks intuitively quite trivial, in section 9, where we comment the computation
of the symmetric diagonal limit of form-factors, we argue that this statement is not trivial
at all.

The outline of the paper is as follows.

1Only the terms being polynomials in the inverse of the volume remain.
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In section 2. we summarize the most important facts about the models and about the
operators of our interest. In section 3. the equations governing the exact finite volume
dependence of diagonal matrix elements of the operators Θ and Jµ are derived. The
solution of the equations in the large volume limit is given in section 4.

The basic ingredients of the form-factor bootstrap program for the sine-Gordon model
can be found in section 5. In section 6. we summarize the conjecture of [10] for the Bethe-
Yang limit of the diagonal matrix elements of local operators in non-diagonally scattering
theories. In section 7. we compute the symmetric diagonal form-factors of the operators
under consideration upto 3-particle states. In section 8. we perform the analytical checks
of the conjecture [10] upto 3-particle states. In section 9. we comment on some subtle
points of the conjecture of [10]. The body of the paper is closed by our summary and
conclusions in section 10.

The paper contains two appendices, as well. Appendix A contains the detailed form
of the linear integral equations governing the finite volume dependence of the expectation
values of the operators Θ and Jµ. In appendix B the diagonalization of the soliton transfer-
matrix is performed by means of algebraic Bethe-Ansatz. This appendix contains the
classification of Bethe-roots, as well.

2 The models and operators

In this paper we investigate the sine-Gordon and the massive Thirring models. They are
given by the well known Lagrangians:

LSG =
1

2
∂νΦ∂

νΦ+ α0 (cos (βΦ)− 1) , 0 < β2 < 8π, (2.1)

and
LMT = Ψ̄(iγν∂

ν −m0)Ψ− g

2
Ψ̄γνΨΨ̄γνΨ , (2.2)

where m0 and g denote the bare mass and the coupling constant of the massive Thirring
model, respectively. In (2.2) γµ stand for the γ-matrices, which satisfy the algebraic
relations: {γµ, γν} = 2ηµν with ηµν = diag(1,−1).

The two models are equivalent in their even U(1) charge sector [33, 34], provided the
coupling constants of the two theories are related by the formula:

1 +
g

4π
=

4π

β2
. (2.3)

In the sequel we will prefer the following parameterization of the coupling constant β :

β2

4π
=

2 p

p+ 1
, 0 < p ∈ R. (2.4)

The ranges 0 < p < 1 and 1 < p correspond to the attractive and repulsive regimes of the
theory respectively.
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The fundamental particles in the theory are the soliton (+) and the antisoliton (−) of
mass M. Their exact S-matrix is well known [39] and in terms of the coupling constant p
it can be written in the form as follows:

Scdab(θ) = S0(θ)S
cd
ab(θ), a, b, c, d,∈ {±}, (2.5)

where θ is the relative rapidity of the scattering particles, S0(θ) is the soliton-soliton
scattering amplitude:

S0(θ) = −eiχ(θ), χ(θ) =

∞
∫

0

dω
sin(ω θ)

ω

sinh( (p−1)πω
2 )

cosh(πω2 ) sinh(p π ω2 )
. (2.6)

The nonzero matrix elements of Scdab(θ) in (2.5) can be expressed in terms of elementary
functions as follows:

S++
++(θ) = S−−

−−(θ) = 1,

S+−
+−(θ) = S−+

−+(θ) = B0(θ),

S−+
+−(θ) = S+−

−+(θ) = C0(θ),

(2.7)

where

B0(θ) =
sinh θ

p

sinh i π−θ
p

, (2.8)

C0(θ) =
sinh i π

p

sinh i π−θ
p

. (2.9)

The S-matrix (2.5) obeys the Yang-Baxter equation2:

Sj2j3k2k3
(θ23)Sj1k3k1i3

(θ13)Sk1k2i1i2
(θ12) = Sj1j2k1k2

(θ12)Sk1j3i1k3
(θ13)Sk2k3i2i3

(θ23), (2.10)

with θij = θi − θj, for i, j ∈ {1, 2, 3}, and it satisfies the properties as follows:

• Parity-symmetry: Scdab(θ) = Sdcba(θ), (2.11)

• Time-reversal symmetry: Scdab(θ) = Sabcd (θ), (2.12)

• Crossing-symmetry: Scdab (θ) = Scb̄
ad̄
(i π − θ), (2.13)

• Unitarity: Sefab (θ)Scdef (−θ) = δca δ
d
b , (2.14)

• Real analyticity: Scdab (θ)∗ = Scdab (−θ∗), (2.15)

where for any index a, ā denotes the charge conjugated particle (ā = −a). The charge
conjugate of a soliton is an antisoliton and vice versa, thus the charge conjugation matrix

2The matrix part Scd
ab(θ) of the S-matrix also satisfies the Yang-Baxter equation.
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acting on the two dimensional vector space spanned by the soliton and the antisoliton, is
equal to the first Pauli-matrix:

C = σx =

(

0 1
1 0

)

, or equivalently: Cab = δab̄. (2.16)

In this paper we determine the finite volume expectation values of the operators as
follows; the trace of the stress energy tensor:

Θ = 2α0 (1− β2

8π ) cos(βΦ). (2.17)

and the U(1) current of the theory:

Jµ = β
2π ǫµν∂

νΦ, µ = 0, 1, (2.18)

where ǫµν denotes the antisymmetric matrix with nonzero entries: ǫ10 = −ǫ01 = 1.
Both operators correspond to some conserved quantity of the theory and in the sub-

sequent sections their finite volume expectation values will be expressed in terms of the
counting-function governing the finite volume spectrum of the theory.

The two operators have different parities under charge conjugation; Θ is positive,
while Jµ is negative. This property proves to be an important difference between the two
operators, when the symmetric diagonal limit of their form-factors are computed.

3 Finite volume expectation values of Θ and Jµ

In this section we give the equations, which govern the finite volume dependence of all
diagonal form-factors of the trace of the stress energy tensor (Θ) and of the U(1) current
(Jµ) of the sine-Gordon theory. The equations for pure solitonic expectation values have
been derived in [19, 20]. The derivations were based on an integrable lattice regularization
of the model, on the so-called light-cone lattice regularization [22]. In this section we
extend the results of [19, 20] from the pure soliton sector to all excited states of the model.
To keep the paper within reasonable size, instead of repeating the lattice regularization
based derivations we will derive the equations in a more pragmatic way. From [41] it is
well known, that the expectation values of the trace of the stress energy tensor can be
computed from the finite volume dependence of the energy of the sandwiching state by
the formula as follows:

〈Θ〉L = M
(

E(ℓ)

ℓ
+

d

dℓ
E(ℓ)

)

, (3.1)

where ℓ = ML with M and L being the soliton mass and the finite volume respectively.
This implies that the diagonal form-factors of Θ can be expressed in terms of certain
derivatives of the counting-function of the model [20]. In the case of Θ, the derivatives
entering the equations are the derivative with respect to the spectral parameter and the
derivative with respect to the dimensionless volume of the model. The computations
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achieved in the pure soliton sector [19] imply, that the same derivatives describe the finite
volume dependence of the expectation values of the U(1) current, too.

In order to formulate the equations describing the finite volume diagonal form-factors
of our interest, we have to recall how the finite volume spectrum of the theory is described
in terms of the nonlinear integral equations (NLIE) [24, 25] satisfied by the counting-
function. Since we know that the expectation values of our interest can be expressed in
terms of certain derivatives of the counting function, we can skip the intermediate lattice
versions of the equations, and we can formulate the problem directly in the continuum
limit.

3.1 Nonlinear integral equations for the counting-function

The counting-function Z(θ) is a periodic function on the complex plane with period
iπ(1 + p). To describe general excited states of the model one needs to know how to
determine Z(θ) for any θ lying in the whole strip

[

−iπ2 (1 + p), iπ2 (1 + p)
]

. The counting-
function satisfies different equations in the different domains of the periodicity strip. In
the fundamental domain defined by the strip |Imθ| ≤ min(pπ, π) the continuum limit of
the counting-function satisfies the nonlinear-integral equations as follows [28, 29, 30, 31]:

Z(θ) = ℓ sinh θ+

mH
∑

k=1

χ(θ − hk)−
mC
∑

k=1

χ(θ − ck)−
mS
∑

k=1

(χ(θ − yk + iη)+χ(θ − yk − iη))

−
mW
∑

k=1

χII(θ − wk)+

∞
∫

−∞

dθ′

2πi
G(θ − θ′ − iη)L+(θ

′ + iη)−
∞
∫

−∞

dθ′

2πi
G(θ − θ′ + iη)L−(θ

′ − iη),

(3.2)

where
L±(θ) = ln

(

1 + (−1)δ e±i Z(θ)
)

, (3.3)

such that the parameter δ can take values 0 or 1. Its value affect the quantization equations
of the objects entering the source terms of the integral equation. In (3.2), χ(θ) is the
soliton-soliton scattering phase given by (2.6) and G(θ) denotes its derivative. It can be
given by the Fourier-integral as follows:

G(θ) =
d

dθ
χ(θ) =

∞
∫

−∞

dω e−i ωθ
sinh( (p−1)πω

2 )

2 cosh(πω2 ) sinh(p π ω2 )
. (3.4)

The equations contain the so-called second determination [28] of χ(θ), as well. For any
function f, the definition of second determination is different in the attractive (0 < p < 1)
and repulsive (1 < p) regimes of the model:

fII(θ) =

{

f(θ) + f(θ − i π sign(Imθ)), 1 < p,
f(θ)− f(θ − i π p sign(Imθ)), 0 < p < 1.

(3.5)
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For the function χ(θ) we provide the concrete functional forms as well [32]:

χII(θ) =







i sign(Im θ)
(

log sinh θ
p
− log sinh θ−i π sign Im θ

p

)

, 1 < p,

i sign(Im θ)
(

log
(

− tanh θ
p

)

+ log tanh θ−i π p sign Im θ
p

)

, 0 < p < 1.

(3.6)

In (3.2), η is an arbitrary positive contour-deformation parameter, which should be in the
range [0,min(pπ, π, |Im cj |)]. As we have already mentioned, ℓ denotes the dimensionless
volume made out of the the soliton mass M and of the volume L of the theory by the
formula ℓ = ML. All objects entering the source terms in (3.2) satisfy the equation:

1 + (−1)δeiZ(O) = 0, O ∈ {hk}mH

k=1 ∪ {ck}mC

k=1 ∪ {wk}mW

k=1 ∪ {yk}mS

k=1. (3.7)

It is useful to classify them as follows [28]:

• holes: hk ∈ R, k = 1, ...,mH

• close roots: ck k = 1, ...,mC , with |Imck| ≤ min(π, pπ),

• wide roots: wk k = 1, ...,mW , with min(π, pπ) < |Imwk| ≤ π
2 (1 + p),

• special objects3 : yk ∈ R, k = 1, ...,mS defined by the equations 1+(−1)δeiZ(yk)=0
with Z ′(yk) < 0.

Their numbers determine the topological charge Q of the state by the so-called counting-
equation:

Q = mH − 2mS −mC − 2H(p− 1)mW , (3.8)

where here H(x) denotes the Heaviside-function. As a consequence of (3.7) the source
objects satisfy the quantization equations as follows:

• holes: Z(hk) = 2π Ihk , Ihk ∈ Z+ 1+δ
2 , k = 1, ..,mH , (3.9)

• close roots: Z(ck) = 2π Ick , Ick ∈ Z+ 1+δ
2 , k = 1, ..,mC , (3.10)

• wide roots: Z(wk) = 2π Iwk
, Iwk

∈ Z+ 1+δ
2 , k = 1, ..,mW , (3.11)

• special objects: Z(yk) = 2π Iyk , Iyk ∈ Z+ 1+δ
2 , k = 1, ..,mS .(3.12)

From this list one can see that the actual value of the parameter δ ∈ {0, 1} determines
whether the source objects are quantized by integer or half integer quantum numbers. It
was shown in [29, 30, 31], that not all choices of δ are possible to describe properly the
states of the sine-Gordon or of the Massive Thirring model. To describe the proper states

3With this interpretation of special objects the contour deformation parameter η should be considered
to be a positive infinitesimal number.
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of these quantum field theories the following selection rules have to be satisfied by the
parameter δ :

• Q+ δ +Msc

2
∈ Z, sine-Gordon, (3.13)

• δ +Msc

2
∈ Z, massive Thirring, (3.14)

where here Msc stands for the number of self-conjugate roots, which are such wide roots,
whose imaginary parts are fixed by the periodicity of Z(θ) to i π2 (1 + p).

In order to be able to impose the quantization equations (3.11) for the wide roots, the
integral representation of Z(θ) must be known in the strip min(p π, π) < Im θ ≤ π

2 (1+p), as
well. In this ”wide-root domain” Z(θ) is given by the equations as follows [28, 29, 30, 31]:

Z(θ) = ℓ sinhII(θ)+DII(θ) +
∑

α=±
α

∞
∫

−∞

dθ′

2πi
GII(θ − θ′ − i α η)Lα(θ

′ + i α η), (3.15)

where DII(θ) is the second determination (3.5) of the source term function of (3.2):

D(θ)=

mH
∑

k=1

χ(θ−hk)−
mC
∑

k=1

χ(θ−ck)−
mS
∑

k=1

(χ(θ−yk+iη)+χ(θ−yk−iη))−
mW
∑

k=1

χII(θ−wk).

(3.16)

The energy and momentum of the model can be expressed in terms of the solution of the
nonlinear integral equations by the following formulas [28, 29, 30, 31]:

E(L)=M
(

mH
∑

k=1

cosh(hk)−
mC
∑

k=1

cosh(ck)−
mS
∑

k=1

(cosh(yk+iη)+cosh(yk−iη))−
mW
∑

k=1

coshII(wk)−

∞
∫

−∞

dθ

2πi
sinh(θ + iη)L+(θ + iη) +

∞
∫

−∞

dθ

2πi
sinh(θ − iη)L−(θ − iη)



 ,

(3.17)

P (L)=M
(

mH
∑

k=1

sinh(hk)−
mC
∑

k=1

sinh(ck)−
mS
∑

k=1

(sinh(yk+iη)+sinh(yk−iη))−
mW
∑

k=1

sinhII(wk)−

∞
∫

−∞

dθ

2πi
cosh(θ + iη)L+(θ + iη) +

∞
∫

−∞

dθ

2πi
cosh(θ − iη)L−(θ − iη)



 .

(3.18)

3.2 Expectation values of Θ

The computations of finite volume expectation values of the trace of the stress energy ten-
sor goes analogously to the former computations done in purely elastic scattering theories
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[12]. Formula (3.1) implies that the finite volume expectation values of the trace of the
stress energy tensor Θ can be expressed in terms of the θ and ℓ derivatives of Z(θ). By
differentiating the equations (3.2)-(3.15) it is easy to show that these derivatives satisfy
linear integral equations with kernels containing the counting-equation itself [19, 20].

We introduce two functions with related sets of discrete variables by the definitions as
follows:

Gd(θ) = Z ′(θ),

X
(h)
d,k =

Gd(hk)
Z ′(hk)

= 1, k = 1, ...,mH ,

X
(c)
d,k =

Gd(ck)
Z ′(ck)

= 1, k = 1, ...,mC ,

X
(y)
d,k =

Gd(yk)
Z ′(yk)

= 1, k = 1, ...,mS ,

X
(w)
d,k =

Gd(wk)
Z ′(wk)

= 1, k = 1, ...,mW .

(3.19)

and

Gℓ(θ) =
d

dℓ
Z(θ|ℓ),

X
(h)
ℓ,k =

Gℓ(hk)
Z ′(hk)

= −h′k(ℓ), k = 1, ...,mH ,

X
(c)
ℓ,k =

Gℓ(ck)
Z ′(ck)

= −c′k(ℓ), k = 1, ...,mC ,

X
(y)
ℓ,k =

Gℓ(yk)
Z ′(yk)

= −y′k(ℓ), k = 1, ...,mS ,

X
(w)
ℓ,k =

Gℓ(wk)
Z ′(wk)

= −w′
k(ℓ), k = 1, ...,mW .

(3.20)

Taking the appropriate derivatives of the NLIE (3.2)-(3.15) it can be shown, that the
variables in (3.19) and in (3.20) satisfy sets of linear integral equations. We relegated
these equations to appendix A, where their explicit form is given by the formulas (A.1)-
(A.11).

With the help of (3.1) it can be shown, that he finite volume expectation value of Θ
in a state described by the NLIE (3.2)-(3.15) can be expressed in terms of the variables
(3.19) and (3.20) by the following formula:

〈Θ〉L = 〈Θ〉∞ +M2 Θrest(ℓ), (3.21)

where 〈Θ〉∞ stands for the infinite volume ”bulk” vacuum expectation value [26, 27]:

〈Θ〉∞ = −M2

4
tan

(

pπ
4

)

, (3.22)
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and Θrest(ℓ) denotes the dimensionless part of the rest of the expectation value. It is given
by the formula:

Θrest(ℓ)=

mH
∑

k=1



coshhk
X

(h)
d,k

ℓ
−sinhhkX

(h)
ℓ,k



−
mC
∑

k=1



cosh ck
X

(c)
d,k

ℓ
−sinh ckX

(c)
ℓ,k



−

−
mS
∑

k=1



(cosh(yk + iη) + cosh(yk − iη))
X

(y)
d,k

ℓ
−(sinh(yk + iη) + sinh(yk − iη))X

(y)
ℓ,k





−
mW
∑

k=1



coshII(wk)
X

(w)
d,k

ℓ
−sinhII(wk)X

(w)
ℓ,k



+

∑

α=±

∞
∫

−∞

dθ

2π

[

cosh(θ + i α η)
Gd(θ + i α η)

ℓ
− sinh(θ + i α η)Gℓ(θ + i α η)

]

Fα(θ + i α η),

(3.23)

where F±(θ) stands for the nonlinear combinations:

F±(θ) =
(−1)δ e±i Z(θ)

1 + (−1)δ e±i Z(θ)
. (3.24)

3.3 Expectation values of Jµ

The finite volume expectation values of the U(1) current can be derived from the light-cone
lattice regularization [22] of the model. In this way the expectation values of Jµ between
pure soliton states have been determined in [19]. Nevertheless, the computations of [19]
can be easily extended to all excited states of the model. Here, we skip the lengthy, but
quite straightforward computations and present only the final result. As the pure soliton
results of [19] suggest, the expectation values of J0 and J1 can be expressed in terms of
the set of variables of (3.19) and of (3.20), respectively:

〈J0〉L =
1

L







mH
∑

j=1

X
(h)
d,j − 2

mS
∑

j=1

X
(y)
d,j −

mC
∑

j=1

X
(c)
d,j − 2H(p − 1)

mW
∑

j=1

X
(w)
d,j −

∑

α=±

∞
∫

−∞

dθ

2π
Gd(θ + i α η)Fα(θ + i α η)







,

(3.25)

〈J1〉L = M







mH
∑

j=1

X
(h)
ℓ,j − 2

mS
∑

j=1

X
(y)
ℓ,j −

mC
∑

j=1

X
(c)
ℓ,j − 2H(p − 1)

mW
∑

j=1

X
(w)
ℓ,j −

∑

α=±

∞
∫

−∞

dθ

2π
Gℓ(θ + i α η)Fα(θ + i α η)







.

(3.26)
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HereH(x) is the Heaviside function. Using the definitions (3.19) and the counting equation
(3.8), it is easy to show that formula (3.25) gives the correct result 〈J0〉L = Q

L
for the finite

volume expectation values of J0 in sandwiching states with topological charge Q.

4 Large volume solution

In this section we provide exact formulas for the Bethe-Yang limit of the expectation values
of the trace of the stress energy tensor and of the U(1) current in the repulsive (1 < p)
regime of the sine-Gordon model4. The reason why we restrict ourselves to the repulsive
regime is that in this regime the correspondence between the Bethe-roots entering the
NLIE (3.2) and magnonic Bethe-roots of the Bethe-Yang equations (B.12) is quite direct.
In the attractive regime the correspondence is much more complicated and more indirect.

The first step to make a correspondence between the source objects or the Bethe-
roots of the NLIE and the roots of (B.12), is to find the relation between the holes of
the NLIE (3.2) and the rapidity of physical particles entering the magnonic part of the
Bethe-Yang equations (B.12). It is well known in the literature [28] that the holes in the
NLIE description describe the rapidities of the physical particles in the large volume limit
({hj} = {θj}). Then one has to know what kind of complexes the roots of the NLIE fall
into, when the infinite volume limit is taken. In the repulsive regime these complexes are
as follows [21]:

• 2-strings: s
(2)
j = sj ± i π2 , with: sj ∈ R, j = 1, ..., n2,

• quartets: qj = {q(±)
j ±iπ2 }, with: q

(+)
j = (q

(−)
j )∗, |Im q

(±)
j | ≤ π

2 , j=1, ..., n4,

• wide-roots: wj , with: π < |Imwj | ≤ (1+p) π
2 , j=1, ...,mw, (4.1)

such that wide-roots either form complex conjugate pairs or they are self-conjugate roots

with fixed imaginary part: Imw
(sc)
j = (1+p)π

2 . From this classification, one can see that only
the close-roots fall into special configurations in the infinite volume limit (mC = 2n2+4n4).
Namely, they form either quartets or 2-strings, where the latter can be thought of as
degenerate quartets. Here we note that in the ℓ → ∞ limit there are no special objects,
so they do not enter the expressions in this limit.

The counting equation (3.8) tells us how these root configurations act on the topological
charge of a state:

• a 2-string decreases the charge by 2,

• a quartet decreases the charge by 4,

• a wide-root decreases the charge by 2.

On the other hand each root of the magnonic part of the Bethe-Yang equations decrease
the topological charge of a state by 2 units and as it was mentioned in appendix B.2 the

4Our formulas are valid for the massive Thirring model, as well. Only the value of the parameter δ

should be set in accordance with (3.14).
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roots of these equations form conjugate pairs with respect to the line Im z = π
2 . These

suggest the following identification between the ℓ → ∞ complexes in (4.1) and the different
types of roots of the magnonic part of the Bethe-Yang equations given in (B.36):

• Real-roots of (B.36) correspond to 2-strings in (4.1), such that the real part of a
real-root is equal to the center of the corresponding 2-string: λj − iπ2 = sj.

• a close-pair λ
(±)
j in (B.36) corresponds to a quartet in (4.1), such that the positions

of the close-pair are given by complex conjugate pair describing the quartet:

{λ(±)
j − iπ2 } = {q(±)

j }.

• wide-roots in (B.36) correspond to wide roots of (4.1), such that:
λwidej − iπ2 = wj − i sign(Imwj)

π
2 .

With this correspondence the ℓ → ∞ limit of the NLIE can be mapped to the equations
(B.12). This proves to be important in finding an exact formula expressed in terms of the
roots of (B.12) for the Bethe-Yang limit of the diagonal form-factors of Θ and Jµ.

To find the leading order large volume solution of the diagonal form-factors of Θ and
Jµ, one should recognize that the integral terms in (3.21), (3.23), (3.25) and (3.26) are
exponentially small in the volume, and so negligible at leading order. Consequently, the
only task is to determine the Bethe-Yang limit of the discrete variables Xd,j and Xℓ,j.
They are solutions of the equations (A.1)-(A.7). For the first sight, it does not seem to
be easy to find the general solutions of these equations in the large volume limit, but the
relations of these X-variables to the θ and ℓ derivatives of the counting-function given in
(3.19) and in (3.20), makes it quite easy to find the required solutions.

First let us consider the variables related to the ℓ derivative of Z(θ) in (3.20). Then
using (3.20), for a complex root5 uj the corresponding X-variable can be written as:

X
(u)
ℓ,j = −u′j(ℓ) = −

mH
∑

k=1

∂uj
∂hk

h′k(ℓ)
ℓ→∞≈

mH
∑

k=1

∂λj
∂hk

X
(h)
ℓ,j , (4.2)

where we used (3.20) and exploited the large volume correspondence between the Bethe-
roots of the NLIE (3.2) and magnonic the Bethe-roots of (B.12). The formula (4.2)
expresses the complex root’s X-variables in terms of those of the holes in the large volume
limit. Then the large ℓ solution goes as follows: One should insert (4.2) into (A.5) taken
at ν = ℓ, such that the integral terms are neglected because they are exponentially small
in volume. This way one gets a closed discrete set of linear equations for the variables

X
(h)
ℓ,j .

The equations through (4.2) contain the derivative matrix
∂λj
∂hk

, which can be computed
by differentiating the logarithm of the equations (B.12). The final result takes the form:

∂λj
∂hk

=

r
∑

s=1

ψ−1
js Vsk, Vsk = (lnB0)

′(λs − hk), k = 1, ...,mH , s = 1, .., r, (4.3)

5For more precise notation see (A.1) in appendix A.
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where we exploited the infinite volume correspondence between the holes and the rapidities
of the physical particles {hj}mH

j=1 ↔ {θj}nj=1 and we introduced ψ, a symmetric r×r matrix
with the definition as follows:

ψjk = z′(λj) δjk + (lnE0)
′(λj − λk), j, k = 1, .., r, (4.4)

with

z(λ) =

mH
∑

k=1

lnB0(λ− hk)−
r
∑

k=1

lnE0(λ− λk), E0(λ) =
B0(λ)

B0(−λ)
. (4.5)

Then equations (A.5) with ν = ℓ for X
(h)
ℓ,j can be written in the repulsive regime as follows:

mH
∑

k=1

ΦjkX
(h)
ℓ,k = sinhhj , j = 1, ...,mH , (4.6)

where Φjk is the Gaudin-matrix of the physical particles in the state described by the
magnonic roots {λj}rj=1 :

Φjk =











ℓ cosh hj +
mH
∑

s=1
s6=j

G̃js, j = k,

−G̃jk, j 6= k,

(4.7)

G̃jk = Gjk +
1
i

r
∑

s,q=1

Vsj ψ
−1
sq Vqk, j, k = 1, ..,mH . (4.8)

Here Vjk is defined in (4.3) and we introduced the short notation: Gjk = G(hj −hk). Now
it is easy to solve (4.6) for X

(h)
ℓ,j :

X
(h)
ℓ,j =

mH
∑

k=1

Φ−1
jk sinhhk, j = 1, ..,mH . (4.9)

Then using (4.2) and (4.3), the X-variables of the complex roots can also be obtained
from (4.9):

X
(u)
ℓ,j =

mH
∑

k=1

r
∑

s=1

ψ−1
js Vsk

mH
∑

k′=1

Φ−1
kk′ sinhhk′ , j = 1, .., r. (4.10)

As for the d-type of X-variables, from (3.19) we know exactly that the value of each of
them is exactly 1. Nevertheless, with the help of the large ℓ solution of (A.5), this value
can be expressed in a more complicated way, as well:

X
(h)
d,j =

mH
∑

k=1

Φ−1
jk ℓ coshhk, j = 1, ..,mH , (4.11)
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X
(u)
d,j =

mH
∑

k=1

r
∑

s=1

ψ−1
js Vsk

mH
∑

k′=1

Φ−1
kk′ ℓ coshhk′ , j = 1, .., r. (4.12)

For the derivation of the second expression the following discrete set of equations should
have been used as well:

r
∑

j=1

mH
∑

k=1

Vjk

r
∑

q=1

ψ−1
jq Vqs =

r
∑

j=1

Vjs, s = 1, ...,mH , (4.13)

which can be derived from the logarithmic derivative of the (B.12). The point in making
the simple to complicated is that in this way the solutions for both subscript ν = ℓ, d can
be written on equal footing:

X
(h)
ν,j =

mH
∑

k=1

Φ−1
jk fν(hk), ν ∈ {d, ℓ}, j = 1, ..,mH , (4.14)

X
(u)
d,j =

mH
∑

k=1

r
∑

s=1

ψ−1
js Vsk

mH
∑

k′=1

Φ−1
kk′ fν(hk′), ν ∈ {d, ℓ}, j = 1, .., r, (4.15)

where fν(θ) is the source term of the linear problem (A.4). It is given in (A.8) and (A.9).
Inserting the large volume solutions (4.14), (4.15) into the expectation value formulas:
(3.23), (3.25) and (3.26), one ends up with the large volume solutions as follows:

Θrest(ℓ)BY =

mH
∑

j,k=1

(

cosh hj Φ
−1
jk coshhk − sinhhj Φ

−1
jk sinhhk

)

, (4.16)

〈J0〉BY = M
mH
∑

k,s=1

Φ−1
sk coshhk



1− 2

r
∑

j,q=1

ψ−1
jq Vqs



 , (4.17)

〈J1〉BY = M
mH
∑

k,s=1

Φ−1
sk sinhhk



1− 2

r
∑

j,q=1

ψ−1
jq Vqs



 . (4.18)

In the computations we have done so far, it was not necessary to impose the quantiza-
tion equations (3.9) for the holes. Thus the formulas above can be considered as analytical
functions of the mH pieces of holes (rapidities). Nevertheless, if one would like to get the
Bethe-Yang limit of the expectation values, formulas (4.16), (4.17) and (4.18) must be
taken at the solutions of Bethe-Yang limit of the quantization equations (3.9), which takes
the well-known form:

eiℓ sinh h̃j Λ(h̃j |~̃h) = 1, j = 1, ..,mH , (4.19)

where h̃j denotes the solutions of the Bethe-Yang equations and Λ(θ|~̃h) denotes that eigen-
value (B.14) of the soliton transfer matrix (B.4), which corresponds to the sandwiching
state.
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5 Form-factors in the sine-Gordon theory

Having the exact formulas (4.16), (4.17) and (4.18), for the Bethe-Yang limit of the ex-
pectation values of our operators, we would like to check analytically the conjecture of
[10] for the Bethe-Yang limit of the diagonal matrix elements of local operators in a non-
diagonally scattering theory. To do so, we need the infinite volume form-factors of the
theory. There are several ways to determine these form-factors. The earliest construction
is written in the seminal work of Smirnov [13]. Later other constructions arose in the
literature, like Lukyanov’s free-field representation [14, 15] and the off-shell Bethe-Ansatz
based method of [16, 17]. In this section we summarize the axiomatic equations satisfied
by the form-factors of local operators in an integrable quantum field theory.

Let O(x, t) a local operator of the theory. Then its matrix elements between asymptotic
multiparticle states is given by [13]:

(in)〈γ1, b1; ...; γm, bm|O(x, t)|β1, a1; ...;βn, an〉(in) = ei t (Eγ−Eβ)−i x (Pγ−Pβ)×
FO
b̄m...b̄1 a1...an

(γm + i π − iǫm, ..., γ1 + i π − i ǫ1, β1, ..., βn) + Dirac-delta terms,
(5.1)

where the form-factors of the local operator O is denoted by FO, ǫjs are positive infinites-
imal numbers and the orderings βn < ... < β2 < β1, γ1 < γ2 < ... < γm are meant
in the in states. The Latin and Greek letters denote the polarizations and rapidities of
the sandwiching multisoliton states, respectively. Thus aj , bj ∈ {±}, and Eγ , Eβ, Pγ , Pβ
denote the energies and the momenta of the corresponding states:

Eγ =

m
∑

j=1

M cosh γj , Eβ =

n
∑

j=1

M cosh βj ,

Pγ =
m
∑

j=1

M sinh γj, Pβ =
n
∑

j=1

M sinhβj .

(5.2)

We choose the normalization for the scalar product of states in infinite volume as follows:

(in)〈γ1, b1; ...; γn, bn|β1, a1; ...;βn, an〉(in) = (2π)n
n
∏

j=1

δbjaj δ(γj − βj). (5.3)

In this convention the form-factors FO of the operator O(x, t) satisfy the the following
axioms [13]:
I. Lorentz-invariance:

FO
a1...an

(θ1 + θ, ..., θn + θ) = es(O)θ FO
a1...an

(θ1, ..., θn), (5.4)

where s(O) is the Lorentz-spin of O.
II. Exchange:

FO
...ajaj+1...

(..., θj , θj+1, ...) = Sbj+1bj
ajaj+1(θj − θj+1)F

O
...bjbj+1...

(..., θj+1, θj , ...), (5.5)
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III. Cyclic permutation:

FO
a1a2...an

(θ1 + 2π i, ..., θn) = e2π iω(O) FO
a2...ana1

(θ2, ..., θn, θ1), (5.6)

where ω(O) denotes the mutual locality index between O and the asymptotic field which
creates the solitons.
IV. Kinematical singularity:

FO
abu1...un

(θ + i π + ǫ, θ, θ1, ..., θn)
ǫ→0≃ i

ǫ

{

Cab F
O
u1...un

(θ1, ..., θn)−

e2π i ω(O)
∑

v1,..,vn=±
T ā
b (θ|θ1, .., θn)v1...vnu1...un

FO
v1...vn

(θ1, ..., θn)

}

,
(5.7)

where T denotes the soliton monodromy matrix defined in (B.1), and Cab is the charge
conjugation matrix (2.16). In this paper we will focus on the repulsive regime of the
sine-Gordon theory, where there are no soliton-antisoliton bound states in the spectrum.
This is why we skipped to present the dynamical singularity axiom, which relates the
form-factors of bound states to those of its constituents.

We just remark that for the operators of our interest the mutual locality index is zero:
ω(Θ) = ω(Jµ) = 0.

6 The Pálmai-Takács conjecture

In this section we summarize the conjecture of Pálmai and Takács [10] for the Bethe-Yang
limit of the diagonal matrix elements of local operators in a non-diagonally scattering
theory. By Bethe-Yang limit we mean those terms of the large volume expansion which
are polynomials in the inverse of the volume. Namely, the exponentially small in volume
corrections are neglected from the exact result.

In finite volume the particle rapidities become quantized. The quantization equations
which account for the polynomial in the inverse of the large volume correctons are called
the Bethe-Yang equations. In a non-diagonally scattering theory at large volume, the
amplitudes describing the ”color part” of the multisoliton eigenstates of the Hamiltonian
are eigenvectors of the soliton transfer matrix (B.4). They form a complete normalized
basis on the space of ”color” degrees of freedom of the wave function. On an n-particle
state it can be formulated as follows:

τ(θ|~θ)b1...bna1...an Ψ
(t)(~θ)b1...bn = Λ(t)(θ|~θ)Ψ(t)(~θ)a1...an t = 1, .., 2n, (6.1)

∑

a1,...,an=±
Ψ(s)(~θ)a1...anΨ

(t)∗(~θ)a1...an = δst,

2n
∑

t=1

Ψ(t)(~θ)a1...anΨ
(t)∗(~θ)b1...bn =

n
∏

j=1

δajbj ,

(6.2)
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where for short we use the notation ~θ = {θ1, ..., θn} and Λ(t)(θ|~θ) stands for the eigenvalue
of the tth eigenstate. This eigenvalue can be obtained by the Algebraic Bethe method [43]
summarized in appendix B. Its expression in terms of the magnonic Bethe-roots is given
by (B.14).

In the language of the soliton transfer matrix (B.4), for an n-particle state the Bethe-
Yang quantization equations take the form:

eiℓ sinh θ̃j Λ(t)(θ̃j |~̃θ) = 1, j = 1, .., n, (6.3)

where we introduced the notation that the set {θj}nj=1, means an arbitrary unquantized

set of rapidities, while the set with tilde {θ̃j}nj=1, denotes the set of rapidities satisfying
the Bethe-Yang equations (6.3). It is more common to rephrase (6.3) in its logarithmic
form. To do so, first one has to define the function:

Q(t)(θ|θ1, .., θn) = ℓ sinh θ + 1
i
Λ(t)(θ|{θ1, .., θn}). (6.4)

Then the logarithmic form of the Bethe-Yang equations take the form:

Q(t)(θ̃j |θ̃1, .., θ̃n) = 2π I
(t)
j , j = 1, ..., n, t = 1, .., 2n, (6.5)

where I
(t)
j ∈ Z are the quantum numbers characterizing the individual rapidities of the

t th eigenstate. The function Q(t) in (6.4) allows one to define the density of states in the
t th eigenstate Ψ(t) by the Jacobi determinant as follows:

ρ(t)(θ1, ..., θn) = det

{

∂Q(t)(θj|θ1, .., θn)
∂θk

}

j,k=1,..,n

t = 1, ..., 2n. (6.6)

With the help of the basis (6.1), (6.2) one can define form-factors being polarized with
respect to the eigenvectors (6.1). In [10] this quantity was defined by the formula as
follows:

FO
(s,t)(θ

′
m, ..., θ

′
1|θ1, ..., θn) =

∑

b1,..,bm=±

∑

a1,..,an=±
Ψ

(s)∗
b1...bm

(θ′1, .., θ
′
m)×

FO
b̄m...b̄1a1...an

(θ′m + i π, ..., θ′1 + i π, θ1, ..., θn)Ψ
(t)
a1...an

(θ1, .., θn), s = 1, ..., 2m, t = 1, .., 2n.

(6.7)

Based on our computations described in the forthcoming sections, we suggest the following
slightly modified definition:

FO
(s,t)(θ

′
m, ..., θ

′
1|θ1, ..., θn) =

∑

b1,..,bm=±

∑

a1,..,an=±
Ψ

(s)
b1...bm

(θ′1, .., θ
′
m)×

FO
b̄m...b̄1a1...an

(θ′m + i π, ..., θ′1 + i π, θ1, ..., θn)Ψ
(t)∗
a1...an

(θ1, .., θn), s = 1, ..., 2m, t = 1, .., 2n.

(6.8)
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The only difference between the two definitions is a Ψ → Ψ∗ exchange. Or equivalently,
as a consequence of the hermiticity property of the soliton transfer matrix (B.18), one can
maintain the original form (6.7) for the definition of polarized form-factors, but in this
case the vector Ψ should not be considered as a right eigenvector of the τ(θ|~θ), but it
should be considered as a left eigenvector of the soliton transfer matrix (B.4). In the rest
of the paper we will keep the form of the original definition (6.7), but we will consider Ψ
as a left eigenvector of τ(θ|~θ).

Now we are in the position to formulate the conjecture of Pálmai and Takács for the
expectation values of local operators in non-diagonally scattering theories. Let

|θ̄1, .., θ̄n〉(s)L , (6.9)

that eigenstate of the Hamiltonian defined in finite volume L of the system, which is de-
scribed by the eigenstate Ψ(s) of the soliton transfer matrix in the large volume limit. Here
{θ̄}nj=1 denote the exact finite volume rapidities, which become {θ̃}nj=1 if the exponentially
small in volume corrections are neglected in the large volume limit. Then the conjecture
of [10] states that the finite volume expectation value of a local operator in an n-particle
state can be written as follows:

(s)〈θ̄1, .., θ̄n|O(0, 0)|θ̄1, .., θ̄n〉(s)L = FO,(s)
n (θ̃1, ..., θ̃n) +O(e−ℓ), s = 1, .., 2n, (6.10)

where according to the conjecture, the function F
O,(s)
n , which should be taken at the

positions of the roots of the Bethe-Yang equations (6.5) can be constructed from the
infinite volume form-factors of the theory by the following formula:

FO,(s)
n (θ1, ..., θn) =

1

ρ
(s)
n (1, ..., n)

∑

A⊂{1,..,n}

∑

q,t

|C(s)
qt ({θk}|A) |2 FO,(q)

2|A|,symm(A) ρ
(t)

|Ā|(Ā),

(6.11)

where the first sum runs for all bipartite partitions of the set of indexes A(n) = {1, 2, ..., n}.
Namely, A ∪ Ā = A(n). The number of elements of A is denoted by |A|, then the number
of elements of Ā is |Ā| = n− |A|. In the sequel we denote the elements of the sets A and
Ā as follows6:

A = {A1, A2, ..., A|A|},
Ā = {Ā1, Ā2, ..., Ā|Ā|}.

(6.12)

The second sum in (6.11) runs for all decompositions of the n-particle color wave function
with respect to the normalized eigenvectors7 of the transfer matrices acting only on the
index sets A and Ā :

Ψ(t)
a1...an

(θ1, ..., θn)=

2|A|
∑

q=1

2|Ā|
∑

s=1

C(t)
qs ({θk}|A)Ψ(q)

aA1
...aA|A|

(θA1 , ..., θA|A|
)Ψ(s)

aĀ1
...aĀ|Ā|

(θĀ1
, ..., θĀ|Ā|

),

(6.13)

6Though it was not specified clearly in [10], we assume the following orderings within these sets: Ai < Aj

and Āi < Āj if i < j.
7Normalized eigenvectors mean that they fullfill the conditions (6.1) and (6.2).
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where as a consequence of (6.2) the branching coefficients C
(t)
qs ({θk}|A) satisfy the normal-

ization condition:
∑

q,s

|C(t)
qs ({θk}|A)|2 = 1. (6.14)

Here we note, that the earlier discussed Ψ → Ψ∗ exchange in the formulation of the
problem, doesnot cause problem in the determination of these branching coefficients, since
it corresponds to a simple complex conjugation. This is irrelevant from the conjecture’s
point of view, since the final formula depends only on the absolute value square of these
branching coefficients.

Now we have two further missing definitions in (6.11). In accordance with [10] we
introduced some more compact notations for the densities:

ρ(s)n (1, 2, .., n) = ρ(s)(θ1, θ2, .., θn),

ρ
(t)

|Ā|(Ā) = ρ(t)(θĀ1
, θĀ2

, .., θĀ|Ā|
),

(6.15)

with ρ(s) functions in the right hand side given by (6.6). The last so far undefined object

in (6.11) is F
O,(q)
2|A|,symm(A). It is defined as the uniform diagonal limit of a (q, q) polarized

form-factor of O, such that the indexes of the rapidities of the sandwiching states run the
set A :

F
O,(q)
2|A|,symm(A) = lim

ǫ→0
FO
(q,q)(θA|A|

+ ǫ, ..., θA1 + ǫ|θA1 , ..., θA|A|
), (6.16)

with FO
(q,q) defined in (6.7). In analogy with the terminology in purely elastic scattering

theories the function F
O,(q)
2n,symm is called the the 2n-particle q-polarized symmetric diagonal

form-factor of the operator O.
For the operators Θ and Jµ the functions F

O,(s)
n (θ1, ..., θn) were computed in the pre-

vious sections. Their form taken at the positions of the holes {hj}mH

j=1 are given by the
formulas (4.16), (4.17) and (4.18). In the rest of the paper we will compare these formulas
with the conjecture (6.10), (6.11) applied to the operators Θ and Jµ. In the forthcoming
sections we will do the comparison upto 3-particle states. The only missing piece to this
comparison is the knowledge of the symmetric diagonal form-factors. Thus our next task
is to compute them upto the required particle numbers.

7 Symmetric diagonal form-factors for Θ and Jµ

Both the trace of the stress energy tensor and the U(1) current are related to some con-
served quantities of the theory. In purely elastic scattering theories the symmetric diagonal
from-factors of such operators can be computed in a simple way [18, 40]. The key point
in the computation is that by exploiting of the corresponding conservation law, it is not
necessary to find the explicit solutions of the axioms (5.4)-(5.7).

In this paper we use the same method to compute the symmetric diagonal form-factors
upto 3-particle states. It turns out that this simple method allows one to compute the
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symmetric diagonal form-factors for any number of particles in the pure soliton sector,
but for soliton-antisoliton mixed states it works only upto 3-particle states. For higher
number of particles the explicit solution of the axioms (5.4)-(5.7) is required.

The form-factor axioms allow one to compute form-factors of higher number of particles
from those of lower number of particles. Thus, we should start with the computation of
the 2-particle symmetric diagonal form-factors of the operators of our interest.

7.1 2-particle symmetric diagonal form-factors

The case of Θ:

The stress energy tensor Tµν is a conserved quantity, which implies that it can be
written as appropriate derivative of some Lorentz scalar field φ :

Tµν = (∂µ∂ν − ηµν∂
τ∂τ )φ, (7.1)

where ηµν is the 2-dimensional Minkowski metric. In this representation the trace of the
stress energy tensor take the form:

Θ = T µµ = (∂21 − ∂20)φ. (7.2)

It can be shown [44], that the Lorentz scalar field φ is not a local quantum field. Con-
sequently, not all of its form-factors satisfy the axioms (5.4)-(5.7). To be more precise
from the representation (7.1), it can be shown, that the 3- or more particle form-factors
of φ satisfy the axioms (5.4)-(5.7), but the 2-particle ones become more singular, than it
is expected from (5.7). (See (7.6).)

Using the space-time structure of the form-factors (5.1), the form-factors of Θ being
close to the diagonal limit can be written as follows:

FΘ(θ̂n, ..., θ̂1, θ1, .., θn) = −M2





n
∑

j,k=1

ǫjǫk cosh(θj − θk) +O(ǫ3)



Fφ(θ̂n, ..., θ̂1, θ1, .., θn),

(7.3)

where Fφ denotes the form-factors of the scalar operator φ in (7.2) and we introduced the
notation θ̂j = θj + i π + ǫj for all values of the index j. In (7.3) the symbol O(ǫ3) means
at least cubic in ǫ terms when the uniform ǫ1 = ... = ǫn = ǫ → 0 limit is taken. For the
sake of simplicity we did not write out the subscripts of the form-factors.

The basic idea of computing the 2-particle form-factors near their diagonal limit is that
the near diagonal matrix elements of the Hamiltonian H =

∫

dxT00 can be computed in
two different ways. First, it can be computed directly by acting with H on the eigenstates:

〈θ + ǫ, a|H|θ, b〉 = 2πM cosh θ δab δ(ǫ), a, b ∈ {±}. (7.4)

Second, it can be computed by using the representation
∫

dxT00 for the Hamiltonian,
and the matrix element is computed by integrating the space-time dependence of the
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corresponding form-factor:

〈θ+ǫ, a|H|θ, b〉=
∫

dx〈θ+ǫ, a|T00(x, 0)|θ, b〉=−2π(ǫ2+O(ǫ3))M cosh θ δ(ǫ)Fφāb(θ+i π+ǫ, θ),

(7.5)

where we used (5.1) and (7.3). Comparing the results (7.4) and (7.5) of the two different
computations allows one to compute the near diagonal limit of the scalarized form-factor:

Fφab(θ+i π+ǫ, θ) = − 1

ǫ2
δāb +O(1

ǫ
), a, b ∈ {±}. (7.6)

Combining (7.6) with (7.3), the symmetric diagonal 2-particle form-factor of Θ can also
be determined:

FΘ
ab(θ+i π, θ) = M2δāb, a, b ∈ {±}. (7.7)

The matrix structure δāb in (7.6) and (7.7) accounts for the charge conjugation invariance
of the operator Θ.

The Jµ case:

The computation of the near diagonal limit of the 2-particle form-factors of the U(1)
current goes analogously to that of the operator Θ. The conservation law for the current
implies the following representation:

J0 = −i ∂1ψ, J1 = −i ∂0ψ, (7.8)

with ψ being a (non-local) Lorentz scalar operator. The form-factors of ψ satisfy the same
form-factor axioms as the form-factors of φ do. This together with (5.1) gives the following
representation for the near diagonal form-factors:

F J0(θ̂n, ..., θ̂1, θ1, .., θn) = −M





n
∑

j=1

cosh θj ǫj +O(ǫ2)



Fψ(θ̂n, ..., θ̂1, θ1, .., θn),

F J1(θ̂n, ..., θ̂1, θ1, .., θn) = M





n
∑

j=1

sinh θj ǫj +O(ǫ2)



Fψ(θ̂n, ..., θ̂1, θ1, .., θn).

(7.9)

The topological charge Q=
∫

dxJ0 acts on one-particle states as follows:

Q|θ, a〉=
∑

b=±
qab|θ, b〉, a = ±, with q++=1, q−−=−1, q+−=q−+=0. (7.10)

Using this action and the scalar product formula (5.3) the near diagonal limit of the matrix
elements of the charge can be computed directly:

〈θ + ǫ, a|Q|θ, b〉 = 2π qba δ(ǫ). (7.11)
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On the other hand this matrix element can also be computed by integrating the space-time
dependence of the form-factor of J0 :

〈θ + ǫ, a|Q|θ, b〉=
∫

dx 〈θ + ǫ, a|J0|θ, b〉 =
2π

M cosh θ
δ(ǫ)F J0āb (θ + iπ + ǫ, θ). (7.12)

Comparing the results of the two different computations one obtains the symmetric diag-
onal limit of the 2-particle form-factors of J0 :

F J0ab (θ + i π, θ) = M cosh θ qbā, (7.13)

with qab given in (7.10). Formula (7.13) and (7.9) allows one to compute the near diagonal

limit of the 2-particle scalarized form-factor Fψab :

Fψab(θ + i π + ǫ, θ) =
1

ǫ
qb̄a +O(ǫ), (7.14)

which together with (7.9) gives the 2-particle symmetric diagonal form-factor of J1 as well:

F J1ab (θ + i π, θ) = M sinh θ qb̄a. (7.15)

We note that the pure comparison of (7.13) and (7.9) would imply that in (7.14) there
are O(1) terms in ǫ as well. However, the Lorentz invariance (5.4), the cyclic axiom (5.6)

and the charge conjugation negativity of Jµ, implies that the form-factor Fψab(θ+ i π+ ǫ, θ)
is independent of θ and is an odd function of ǫ. This oddity forbids the appearance of
constant in ǫ terms in the right hand side of (7.14).

7.2 4-particle symmetric diagonal form-factors

The next step in solving the form-factor axioms (5.4)-(5.7) in the near diagonal limit is
the determination of the 4-particle form-factors. To obtain them we need to determine
the singular-parts of the near diagonal 4-particle form-factors of the scalar fields φ and ψ
of (7.1) and (7.8).

To analyse the near diagonal limit of 4-particle form-factors, the following two useful
formulas can be derived from the appropriate combination of the axioms (5.5)-(5.7):

Fa2a1b1b2(θ̂2, θ̂1, θ1, θ2)=
i

ǫ1

{

Ca1b1Fa2b2(θ̂2, θ2)−T ā1
b1

(θ1|θ2, θ̃′2)v1v2b2a2
Fv2v1(θ̂2, θ2)

}

+O(1)ǫ1 ,

(7.16)

Fa2a1b1b2(θ̂2, θ̂1, θ1, θ2)=− i

ǫ2

{

Cb2a2Fa1b1(θ̂1, θ1)−T b̄2
a2

(θ̂2|θ̂1, θ1)v1v2a1b1
Fv1v2(θ̂2, θ2)

}

+O(1)ǫ2 ,

(7.17)

where we introduced the short notation θ̃′j = θj−iπ+ǫj for any value of the index j. The
symbol O(1)ǫ1 denotes terms which are of order one in ǫ1.
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The application of formulas (7.16) and (7.17) to the 4-particle form factors of the scalar
field φ, one obtains the result as follows:

Fφαβγδ(θ̂2, θ̂1, θ1, θ2) =
1

ǫ1ǫ2
aφαβγδ(θ1, θ2) +O(1

ǫ
), α, β, γ, δ = ±, (7.18)

where the nonzero elements of the tensor aφ(θ1, θ2) are as follows:

aφ−−++(θ1, θ2) = aφ++−−(θ1, θ2) = −G(θ1 − θ2), (7.19)

a
φ
+−+−(θ1, θ2) = a

φ
−+−+(θ1, θ2) = −ϕ(θ1 − θ2), (7.20)

aφ+−−+(θ1, θ2) = aφ−++−(θ1, θ2) = −Ω(θ1 − θ2). (7.21)

The functions ϕ and Ω are given by the formulas:

ϕ(θ) = −i
(

C0(θ)B
′
0(−θ) +B0(θ)C

′
0(−θ)

)

,

Ω(θ) = −i
(

C0(θ)C
′
0(−θ) +B0(θ)B

′
0(−θ)

)

+G(θ),
(7.22)

where G, B0 and C0 are defined in (3.4), (2.8) and (2.9) respectively. As a consequence
of the unitarity of the S-matrix (2.14), all the functions of (7.22) are even in θ. Inserting
(7.18) with (7.19), (7.20) and (7.21) into (7.3) and taking the uniform ǫ1 = ǫ2 = ǫ → 0
limit, one obtains the symmetric diagonal 4-particle form-factors of Θ :

FΘ,symm
−−++ (θ1, θ2) = FΘ,symm

++−− (θ1, θ2) = 2M2 (1 + cosh(θ1 − θ2)) G(θ1 − θ2), (7.23)

FΘ,symm
+−+− (θ1, θ2) = FΘ,symm

−+−+ (θ1, θ2) = 2M2
(

1 + cosh(θ1 − θ2)
)

Ω(θ1 − θ2), (7.24)

FΘ,symm
+−−+ (θ1, θ2) = FΘ,symm

−++− (θ1, θ2) = 2M2
(

1 + cosh(θ1 − θ2)
)

ϕ(θ1 − θ2). (7.25)

All functions entering these formulas are even, thus these form-factors are really symmetric
with respect to the exchange of the two rapidities θ1 ↔ θ2.

The very same procedure can be repeated for the U(1) current and for the scalar
operator ψ associated to it by (7.8). We just write down the final results below. In the
near diagonal limit the 4-particle form factors of the scalar ψ take the form:

Fψ−−++(θ̂2, θ̂1, θ1, θ2) = −Fψ++−−(θ̂2, θ̂1, θ1, θ2) = −2πσ(θ12)

(

1

ǫ1
+

1

ǫ2

)

+O(1)ǫ, (7.26)

Fψ−++−(θ̂2, θ̂1, θ1, θ2)=−Fψ+−−+(θ̂2, θ̂1, θ1, θ2)=
G0(θ12)

ǫ1 ǫ2
+
G1(θ12)

ǫ1
+
G2(θ12)

ǫ2
+O(1)ǫ,

(7.27)

Fψ−+−+(θ̂2, θ̂1, θ1, θ2)=−Fψ+−+−(θ̂2, θ̂1, θ1, θ2)=
H0(θ12)

ǫ1 ǫ2
+
H1(θ12)

ǫ1
+
H2(θ12)

ǫ2
+O(1)ǫ,

(7.28)

where θ12 = θ1 − θ2 and

G0(θ) = −i
(

B0(θ)C0(−θ)− C0(θ)B0(−θ)
)

, (7.29)
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H0(θ) = −i
(

1 + C0(θ)C0(−θ)−B0(θ)B0(−θ)
)

, (7.30)

Gj(θ) = gj(θ) +G(θ) ĝj(θ), Hj(θ) = hj(θ) +G(θ) ĥj(θ), j = 1, 2, (7.31)

with

g1(θ) = −i
(

B0(θ)C
′
0(−θ)− C0(θ)B

′
0(−θ)

)

, g2(θ) = −g1(θ),
ĝ1(θ) = B0(θ)C0(−θ)− C0(θ)B0(−θ), ĝ2(θ) = −ĝ1(θ),

(7.32)

h1(θ) = −i
(

C0(θ)C
′
0(−θ)−B0(θ)B

′
0(−θ)

)

, h2(θ) = −h1(θ),
ĥ1(θ) = C0(θ)C0(−θ)−B0(θ)B0(−θ), ĥ2(θ) = −ĥ1(θ).

(7.33)

Then using (7.9) the symmetric diagonal 4-particle form-factors of Jµ can be computed.
It turns out that only the ones which correspond to the expectation values in pure soliton
or pure antisoliton states have finite uniform ǫ1 = ǫ2 = ǫ→ 0 limit:

F J0,symm−−++ (θ1, θ2) = −F J0,symm++−− (θ1, θ2) = 2M (cosh θ1 + cosh θ2) G(θ12),

F J1,symm−−++ (θ1, θ2) = −F J1,symm++−− (θ1, θ2) = 2M (sinh θ1 + sinh θ2) G(θ12).
(7.34)

The other form-factors will diverge as 1
ǫ
when the symmetric diagonal limit is taken.

Nevertheless it can be shown, that these divergences cancel, when according to (6.7) the
symmetric diagonal8 limit is taken between Bethe eigenvectors of the soliton transfer
matrix. Simple application of the charge conjugation negativity of Jµ shows that these
non-pure solitonic 4-particle symmetric diagonal form-factors are actually zero.

7.3 6-particle symmetric diagonal form-factors

If one would like to compute the symmetric diagonal limit of the 6-particle form-factors
of the operators of our interest, after some computations it becomes obvious, that with
fixed subscripts in general this diagonal limit does not exist. Namely, the ǫ → 0 limit
becomes divergent. Nevertheless, in the Pálmai-Takács conjecture summarized in section
6, the symmetric diagonal limit of form-factors polarized with respect to eigenvectors of
the soliton transfer matrix (6.7) should be determined. To do this computation, first we
rewrite the necessary form-factor axioms in the language of the eigenvectors of the soliton
transfer matrix (B.4). For our computations we need the appropriate versions of two
axioms, the exchange (5.5) and the kinematical singularity (5.7) ones.

The kinematical pole axiom for a near diagonal settings of the rapidities can be written
as follows:

Fan...a1b1...bn(θ̂n, ..., θ̂1, θ1, ..., θn)=
i

ǫ1

{

δā1b1

n
∏

k=2

δβkak δ
αk

bk
−τ(θ1|~θ)lα2...αn

b1b2...bn
τ−1(θǫ1|~θǫ)ā1ā2...ānlβ̄2...β̄n

}

×

Fβn...β2α2...αn(θ̂n, ..., θ̂2, θ2, ..., θn) +O(1)ǫ1 ,

(7.35)

8Here the word diagonal means diagonality in the Bethe eigenstates, as well.
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where we introduced the notations θǫj = θj + ǫj and ~θǫ = {θǫ1, ..., θǫn}. Now, analogously
to the definition (6.7), one can sandwich this axiom with two color wave functions Ψ and
Ψ(ǫ), such that they become complex conjugate to each other in the ǫ→ 0 diagonal limit:

FΨ(θ̂n, ..., θ̂1, θ1, ..., θn)=
∑

i1,...,in=±

∑

j1,...,jn=±
Ψ

(ǫ)∗
j1...jn

Fj̄n...j̄1i1...in(θ̂n, ..., θ̂1, θ1, ..., θn)Ψ
i1...in .

(7.36)

Then this form-factor satisfies the kinematical pole equation as follows:

FΨ(θ̂n, ., θ̂1, θ1, ., θn)=
i

ǫ1

{

Ψ
(ǫ)∗
kβ̄2...β̄n

Ψkα2...αn−Ψi1...inτ(θ1|~θ)lα2...αn

i1i2...in
τ−1(θǫ1|~θǫ)j1j2...jnlβ̄2...β̄n

Ψ
(ǫ)∗
j1..jn

}

×

Fβn...β2α2...αn(θ̂n, ..., θ̂2, θ2, ..., θn) +O(1)ǫ1 .

(7.37)

It follows, that this equation can be diagonalized, if Ψ is chosen to be a left eigenvector
of τ(θ1|~θ) and Ψ(ǫ)∗ is chosen to be a right eigenvector of τ(θǫ1|~θǫ) :

Ψi1...inτ(θ1|~θ)lα2...αn

i1i2...in
= Λ(θ1|~θ)Ψlα2...αn ,

τ(θǫ1|~θǫ)j1j2...jnlβ̄2...β̄n
Ψ

(ǫ)∗
j1..jn

= Λ(θǫ1|~θǫ)Ψ
(ǫ)∗
lβ̄2...β̄n

.
(7.38)

With such sandwiching states the kinematical singularity axiom in the near diagonal limit
takes the form:

FΨ(θ̂n, ., θ̂1, θ1, ., θn)=
i

ǫ1

(

1− Λ(θ1|~θ)
Λ(θǫ1|~θǫ)

)

Ψ
(ǫ)∗
kβ̄2...β̄n

Ψkα2...αn Fβn...β2α2...αn(θ̂n, ..., θ̂2, θ2, ..., θn)

+O(1)ǫ1
(7.39)

A few important comments are in order. First, we pay the attention that Ψ(ǫ)∗ is not the
complex conjugate vector of Ψ, because it is an eigenvector of a transfer matrix whose
inhomogeneities are shifted with ǫs with respect to those of τ. They form a conjugate pair
only in the ǫj → 0 limit. On the other hand in [10] the symmetric diagonal form-factors are
defined by a sandwich (6.7), where Ψ must be a right eigenvector of τ (B.4). Nevertheless,
the near diagonal limit formulation of the kinematical singularity axiom (7.39) suggest,
that the diagonal limit, should be taken such that in (6.7) the vector Ψ must be the left

eigenvector of the transfer matrix (B.4). Actually this was the reason why we redefined
the original definition of polarized form-factors (6.7) by the formula (6.8). Nevertheless,
in the sequel we keep the defining formula (6.7), but based on the implications of formulas
(7.38) and (7.39), we require Ψ to be a left eigenvector of τ(θ1|~θ) and Ψ(ǫ)∗ to be right

eigenvector of τ(θǫ1|~θǫ).
Now an important remark is in order. It is worth to analyse, what the form-factor

equation (7.39) tells about the symmetric diagonal limit, when ǫj tends to zero uniformly.

The term i
ǫ1

(

1− Λ(θ1|~θ)
Λ(θǫ1|~θǫ)

)

on the right hand side have a finite limiting value. The sum
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Ψ∗
kβ̄2...β̄n

Ψkα2...αn Fβn...β2α2...αn(θ̂n, ..., θ̂2, θ2, ..., θn) contains the sum of near diagonal form-

factors with all possible indexes. In the previous section we saw, that not all of them have
finite ǫ → 0 limit. This implies that the existence of the symmetric diagonal limit of a
form-factor is not obvious, and if eventually it exists, it must be a consequence of non-
trivial cancellations between divergent terms. We will discuss this point in more detail in
section 9.

We continue with writing the exchange axiom (5.5) applied to the near diagonal limit
in terms of the eigenvectors of the transfer matrix. These eigenvectors can be given as
actions of the off diagonal elements of the monodromy matrix (B.1) on the trivial vacuum
(B.10). Using the representations (B.26) and (B.27) for the Bethe-eigenvectors:

Ψa1...an ≡ Ψa1...an({λj}|~θ) ∼ a1...an(〈0|
r
∏

j=1

C(λj |~θ)),

Ψ
(ǫ)∗
b1...bn

≡ Ψ({λǫj}|~θǫ)∗b1...bn ∼ (

r
∏

j=1

B(λǫj|~θǫ)|0〉)b1..bn ,
(7.40)

the exchange axiom in the near diagonal limit can be written as follows:

Ψ({λǫj}|~θǫ)∗b1...bnFb̄n...b̄1a1...an(..., θ̂s+1, θ̂s, ..., θs, θs+1, ...)Ψ
a1...an({λj}|~θ)=S0(θǫs+1 − θǫs)×

S0(θs − θs+1)Ψ({λǫj}|~θǫex)∗b1...bnFb̄n...b̄1a1...an(..., θ̂s, θ̂s+1, ..., θs+1, θs, ...)Ψ
a1...an({λj}|~θex),

(7.41)

where the set {λj}rj=1 is the solution of the Bethe-equations (B.12) and the set {λǫj}rj=1

also solves (B.12) but with θj → θǫj = θj + ǫj replacement9. The most important details of

the formula are the vectors ~θ and ~θex. In these vectors the order of the rapidity matters!
The difference between them is the order of the exchanged rapidities θs and θs+1. Namely,

~θ = {θ1, ..., θs, θs+1, .., θn}, ~θǫ={θ1+ǫ1, .., θs+ǫs, θs+1+ǫs+1, .., θn+ǫn},
~θex = {θ1, ..., θs+1, θs, .., θn}, ~θǫex={θ1+ǫ1, ., θs+1+ǫs+1, θs+ǫs, .., θn+ǫn}.

(7.42)

This means that the Bethe-vectors on the left and right hand sides of the equation (7.41)
are different, since they are eigenvectors of different transfer matrices! We would like
to explain this in a bit more detail. The rapidities θj are inhomogeneities of the transfer
matrix. The transfer matrix is not invariant under the permutation of the inhomogeneities
among the n lattice sites. Nevertheless, the Bethe-equations (B.12) and the eigenvalue
expression are also invariant under the permutation of the rapidities. Thus the transfer
matrices τ(θ|~θ) and τ(θ| ~θex) are only isospectral, but have different eigenvectors connected
by a unitary transformation. This recognition has also some implication on the Pálmai-
Takács conjecture (section 6), since there in the wave-function decomposition (6.13) the
orders of rapidities in the arguments of the wave functions matter!

9We just note that (7.41) remains valid if the sets {λj}
r
j=1 and {λǫ

j}
r
j=1 are not solutions of the Bethe-

equations, but are arbitrary sets. Here we require them to be solutions of (B.12) for later convenience.
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7.3.1 Solitonic 6-particle symmetric diagonal form-factors

If one starts to analyse the 3-particle Bethe-equations (B.12), it becomes immediately
obvious that the relevant solutions are the zero and 1-root solutions, since they account
for all states in the Q=3 and Q=1 sectors. The missing Q=-3 and Q=-1 sectors can be
obtained from the previous ones by the charge conjugation symmetry. The Q=3 sector
is the pure soliton sector with no Bethe-root in (B.12). In this case the complicated
sum in the right hand side of the kinematical pole equation (7.39) applied to the scalar
operators φ and ψ will contain only a single term, which includes only the pure solitonic
near diagonal form-factors (7.19) and (7.26). Since in this limit the diagonal pure solitonic
matrix elements does not mix with other states, the computation of their symmetric and
connected limits can be computed in exactly the same way as in a purely elastic scattering
theory [40].Their explicit form for the operators Θ and Jµ can be found in references [20]
and [19], respectiveley. In these papers analytical formulas describing the Bethe-Yang limit
of pure solitonic expectation values of the operators Jµ and Θ can also be found. This
made it possible to verify the conjecture of [10] in this sector for any number of solitons.
The pure solitonic sector is very similar to the case of a purely elastic scattering theory. As
a consequence the actual form of conjecture of [10] goes through remarkable simplifications
in this sector and becomes identical with the formula conjectured for diagonally scattering
theories [11, 12]. Our purpose is to check the general form of the conjecture of [10].
Thus we will test it in a sector, where there is mixing between the states with different
polarizations. This simplest such nontrivial sector is the Q = 1 sector of the 3-particle
space. In the language of the Bethe-equations (B.12) it is described by a single Bethe-root.

7.3.2 6-particle symmetric diagonal form-factors in the Q = 1 sector

The first step to compute the symmetric diagonal form-factors of the operators of our
interest in the Q = 1 sector, is to write down the actual form of the wave functions which
should sandwich our form-factors according to (6.7). Here we denote their matrix elements
as follows:

Ψi1i2i3 =
Ci1i2i3

NΨ
,

Ψ
(ǫ)∗
i1i2i3

=
Bǫ
i1i2i3

NΨ
,

(7.43)

where the nonzero coefficients in the Q = 1 sector can be read off from the formulas
(B.26), (B.27) coming from the Algebraic Bethe-Ansatz diagonalization of the soliton-
transfer matrix:

C+−− = C1, C−+− = B1 C2, C−−+ = B1B2C3,

Bǫ
+−− = Cǫ1B

ǫ
2B

ǫ
3, Bǫ

−+− = Cǫ2B
ǫ
3, Bǫ

−−+ = Cǫ3,
(7.44)

where for later convenience we introduced the short notations as follows:

Bj =B0(λ1 − θj), Cj = C0(λ1 − θj), Bǫ
j = B0(λ

ǫ
1 − θǫj), Cǫj = C0(λ

ǫ
1 − θǫj),

with θǫj = θj + ǫj , for j = 1, 2, 3,

(7.45)
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such that the single Bethe-roots λ1 and λǫ1 are solutions of the Bethe-equations (B.29):

B1B2B3 = 1, Bǫ
1B

ǫ
2B

ǫ
3 = 1. (7.46)

The normalization factor NΨ is chosen to be the Gaudin-norm (B.31) of the vector10 Ψ.
We note that this normalization factor is invariant under any permutations of the three
rapidities {θj}3j=1.

The case of Θ:

Now we are in the position to compute the 6-particle symmetric diagonal form-factors
of Θ in the Q = 1 subsector. This subsector is characterized by a single Bethe-root solving
the equation (7.46).

Looking at the formula (7.3) it turns out that to get the required limit of our 6-particle
form-factor one needs to know the 1

ǫ2
order part of the Ψ-sandwiched matrix element of

the scalar operator φ defined in (7.1). To compute this part, one needs to use only the
equations (7.39) and (7.41). These equations together with the concrete forms (7.18)-
(7.21) of the near diagonal 4-particle form factors imply the following small ǫ series for
the required form-factor of φ :

W φ(θ1, ǫ1; θ2, ǫ2; θ3, ǫ3) =
1

N2
Ψ

Bǫ
j1j2j3

Fφ
j̄3 j̄2j̄1i1i2i3

(θ̂3, θ̂2, θ̂1, θ1, θ2, θ3)C
i1i2i3 , (7.47)

W φ(θ1, ǫ1; θ2, ǫ2; θ3, ǫ3)=
A12(θ1, θ2, θ3)

ǫ1ǫ2
+
A13(θ1, θ2, θ3)

ǫ1ǫ3
+
A23(θ1, θ2, θ3)

ǫ2ǫ3
+O(1

ǫ
).

(7.48)

Then equation (7.41) tells us how W φ of (7.47) changes when exchanging the pairs
(θj , ǫj) ↔ (θk, ǫk) in the argument. This gives the following relations among the Aij
functions in (7.48):

A13(θ1, θ2, θ3) = A12(θ3, θ1, θ2), A23(θ1, θ2, θ3) = A13(θ3, θ1, θ2), (7.49)

and in addition Aij is invariant under the exchange of its ith and jth arguments.
The functions A12 and A13 can be directly computed from the 1

ǫ1
pole given by equa-

tion (7.39). Then A23 can be determined from them by using (7.49). Straightforward
application of (7.39) leads to the following expressions for A12 and A13 :

A12(θ1, θ2, θ3)= i ∂3 ln Λ(θ1|~θ)T φ(θ1, θ2, θ3),
A13(θ1, θ2, θ3)= i ∂2 ln Λ(θ1|~θ)T φ(θ1, θ2, θ3),

(7.50)

10Namely, the ǫ → 0 limit of the scalar product Ci1i2i3Bǫ
i1i2i3

.
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where T φ is the singularity eliminated tensorial sum part of (7.39):

T φ(θ1, θ2, θ3)= lim
ǫ→0

1

N2
Ψ

Bǫ
kβ̄2β̄3

Ckα2α3aφβ3β2α2α3
(θ2, θ3) =

− 1

N2
Ψ

[

C2
1

B1
G(θ23) +

(

C2
2

B2
+
C2
3

B3

)

Ω(θ23) + (1 +B1)C2 C3 ϕ(θ23)

]

,

(7.51)

with the constituent functions given in (7.22) and (7.45). Having the explicit expression
for A12 and A13, with the help of the exchange relation (7.49) A23 can also be obtained
from them. Finally using (7.3) and (7.47), the symmetric diagonal limit of the form-factors
of Θ in a 3-particle state described by the Bethe-root λ1 can be given by the formula as
follows:

F
Θ,(Ψ)
6,symm(θ1, θ2, θ3) = −M2

N2
Ψ

[A12(θ1, θ2, θ3) +A13(θ1, θ2, θ3) +A23(θ1, θ2, θ3)]×

[3 + 2 cosh(θ12) + 2 cosh(θ13) + 2 cosh(θ23)] .

(7.52)

We note that the λ1 dependence is implicit in this expression. It is hidden in the expression
of TΦ in (7.51) and in the derivative of the eigenvalue in (7.50). A useful formula for the
latter is given in (B.32).

The case of Jµ:

The computation of the 6-particle symmetric diagonal form-factors of the U(1) current
is a bit more subtle than that of the trace of the stress energy tensor. The method described
in the previous paragraphs is the same, but one should be much more careful in the small
ǫj expansion. In this case the linear in ǫj terms of the Bethe-vector Bǫ

i1i2i3
(7.44) will also

give relevant contributions to the symmetric form-factors. The first step is to compute the
6-particle form-factor of the scalar field ψ in the near diagonal limit. Thus the quantity
we compute is defined by:

Wψ(λǫ1, λ1|1ǫ, 2ǫ, 3ǫ) =
1

N2
Ψ

Bǫ
j1j2j3

Fψ
j̄3j̄2j̄1i1i2i3

(θ̂3, θ̂2, θ̂1, θ1, θ2, θ3)C
i1i2i3 , (7.53)

where for short we introduced the symbolic notation for a pair: θj, ǫj → jǫ, and we also
indicated in the list of arguments the Bethe-root dependence of this form-factor. Using the
kinematical pole equation for the 1

ǫ1
singularity, the terms proportional to 1

ǫ1
in the small

ǫ expansion of Wψ can be computed. To facilitate this task first we do the computations
in some smaller building blocks of Wψ. Let Y denote the eigenvalue part of (7.39):

Y (λǫ1, λ1|1ǫ, 2ǫ, 3ǫ) = 1− Λ(θ1|~θ)
Λ(θǫ1|~θǫ)

=

3
∑

j=1

ǫj ∂j ln Λ(θ1|~θ) +O(ǫ2), (7.54)
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and let denote Tψ the tensorial sum part of (7.39):

Tψ(λǫ1, λ|1ǫ, 2ǫ, 3ǫ) = Bǫ
kβ̄2β̄3

C kα2α3Fψβ3β2α2α3
(θ̂3, θ̂2, θ2, θ3). (7.55)

Taking the near diagonal limit of the 4-particle form-factors of ψ given in (7.26)-(7.33),
one obtains the following small ǫ expansion for Tψ :

Tψ(λǫ1, λ1|1ǫ, 2ǫ, 3ǫ) =
T23(~θ)

ǫ2ǫ3
+
T2(~θ)

ǫ2
+
T3(~θ)

ǫ3
+O(1), (7.56)

where the functions T23(~θ), T2(~θ), T3(~θ) take the form:

T23(~θ) = H0(θ23)

(

C2
3

B3
− C2

2

B2

)

+ G0(θ23)C2 C3 (B1 − 1), (7.57)

T2(~θ)=G0(θ23)
[

B
(3)
3 (~θ)C(2)(~θ)−B(2)

3 (~θ)C(3)(~θ)
]

+G1(θ23)
[

B
(3)
0 (~θ)C(2)(~θ)−B(2)

0 (~θ)C(3)(~θ)
]

+

H0(θ23)
[

B
(3)
3 (~θ)C(3)(~θ)−B(2)

3 (~θ)C(2)(~θ)
]

+H1(θ23)
[

B
(3)
0 (~θ)C(3)(~θ)−B(2)

0 (~θ)C(2)(~θ)
]

+

G(θ23)B
(1)
0 (~θ)C(1)(~θ),

(7.58)

T3(~θ)=G0(θ23)
[

B
(3)
2 (~θ)C(2)(~θ)−B(2)

2 (~θ)C(3)(~θ)
]

+G2(θ23)
[

B
(3)
0 (~θ)C(2)(~θ)−B(2)

0 (~θ)C(3)(~θ)
]

+

H0(θ23)
[

B
(3)
2 (~θ)C(3)(~θ)−B(2)

2 (~θ)C(2)(~θ)
]

+H2(θ23)
[

B
(3)
0 (~θ)C(3)(~θ)−B(2)

0 (~θ)C(2)(~θ)
]

+

G(θ23)B
(1)
0 (~θ)C(1)(~θ),

(7.59)

where the functions B
(j)
k and C(k) are coming from the small ǫ expansion of the components

of the Bethe-eigenvectors (7.44) in the following way:

Bǫ
+−− = B

(1)
0 (~θ) +

3
∑

j=1

B
(1)
j (θ)ǫj +O(ǫ2), C+−− = C(1)(~θ),

Bǫ
−+− = B

(2)
0 (~θ) +

3
∑

j=1

B
(2)
j (θ)ǫj +O(ǫ2), C−+− = C(2)(~θ), (7.60)

Bǫ
−−+ = B

(3)
0 (~θ) +

3
∑

j=1

B
(3)
j (θ)ǫj +O(ǫ2), C−−+ = C(3)(~θ).

Their actual form can be computed from (7.44) and (7.45). Here we give only the ones
entering (7.58) and (7.59):

B
(1)
0 (θ) = C1B2B3, C(1)(~θ) = C1,

B
(2)
0 (θ) = C2B3, C(2)(~θ) = B1 C2, (7.61)

B
(3)
0 (θ) = C3, C(3)(~θ) = B1B2 C3,

30



B
(1)
2 (~θ) = ∂λ1B

(1)
0 (~θ) · ∂λ1

∂θ2
− C1B

′
2B3,

B
(1)
3 (~θ) = ∂λ1B

(1)
0 (~θ) · ∂λ1

∂θ3
− C1B2B

′
3,

(7.62)

B
(2)
2 (~θ) = ∂λ1B

(2)
0 (~θ) · ∂λ1

∂θ2
− C ′

2B3,

B
(2)
3 (~θ) = ∂λ1B

(2)
0 (~θ) · ∂λ1

∂θ3
− C2B

′
3,

(7.63)

B
(3)
2 (~θ) = ∂λ1B

(3)
0 (~θ) · ∂λ1

∂θ2
,

B
(3)
3 (~θ) = ∂λ1B

(3)
0 (~θ) · ∂λ1

∂θ3
− C ′

3,

(7.64)

where introduced the notations:

B′
j = B′

0(λ1 − θj), C ′
j = C ′

0(λ1 − θj), j = 1, 2, 3. (7.65)

In the above formulas we did not write down explicitely the λ1 dependence of the functions.
Nevertheless, it is important because of the ∂λ1 partial derivatives. Here the λ1 dependence
is simply meant by the λ1 dependence of the objects Bj and Cj given by (7.45).

Now we have all ingredients to compute the 6-particle symmetric diagonal form-factors
of Jµ in the Q = 1 sector of the 3-particle subspace. Looking at the formula (7.9) one can
see that the symmetric diagonal limit is finite only if Fψ or equivalently Tψ has only 1

ǫj

order divergences. However, the order 1
ǫ2

term in the expansion (7.56) of Tψ implies, that
the symmetric diagonal limit is divergent in this case, provided the coefficient function T23
is nonzero. Looking at its explicit form (7.57) it does not seem to be zero. Nevertheless,
with some work, exploiting the Yang-Baxter equations (2.10) and the Bethe-equations
(7.46) for λ1 one can show that:

T23(~θ) = 0. (7.66)

This nontrivial for the first sight result ensures, that the symmetric diagonal limit of the
6-particle form-factors of Jµ in the Q = 1 sector will be well defined. Nevertheless this
computation sheds light on the fact that the higher and higher 1

ǫ
divergences of the non-

diagonal form-factors could make the symmetric diagonal limit divergent11, too. On the
other hand this computation might also imply that the special properties of integrability
might ensure the cancellation of these (would be?) divergences.

Due to the cancellation of the 1
ǫ2

divergent term in Tψ, Wψ (7.53) admits the following
small ǫ expansion:

Wψ(λǫ1, λ1|1ǫ, 2ǫ, 3ǫ) =
W1(~θ)

ǫ1
+
W2(~θ)

ǫ2
+
W3(~θ)

ǫ3
+W (1)(~θ)

ǫ1
ǫ2ǫ3

+W (2)(~θ)
ǫ2
ǫ1ǫ3

+

W (3)(~θ)
ǫ3
ǫ1ǫ2

+O(1),

(7.67)

11Since their sum enter the right hand of the kinematical pole axiom (7.39). See section 9 for a more
detailed discussion.
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such that the coefficient functions W1, W
(2) and W (3) can be computed from the kine-

matical pole equation (7.39) by using the formulas (7.56) and (7.54):

W1(~θ) =
i

N2
Ψ

[

T2(~θ) ∂2 ln Λ(θ1|~θ) + T3(~θ) ∂3 ln Λ(θ1|~θ)
]

,

W (2)(~θ) =
i

N2
Ψ

T3(~θ) ∂2 ln Λ(θ1|~θ),

W (3)(~θ) =
i

N2
Ψ

T2(~θ) ∂3 ln Λ(θ1|~θ).

(7.68)

The exchange equation (7.41) allows one to compute from (7.68) the other still unknown
W -functions of the expansion (7.67), since (7.41) implies that they are related by argument
exchanges:

W2(θ1, θ2, θ3) =W1(θ2, θ1, θ3),

W3(θ1, θ2, θ3) =W1(θ3, θ2, θ1),

W (1)(θ1, θ2, θ3) =W (2)(θ2, θ1, θ3).

(7.69)

Nevertheless, (7.41) gives further relations among these functions, which can be used to test
the obtained result. These are as follows. The functions Wj(θ1, θ2, θ3) and W

(j)(θ1, θ2, θ3)
are symmetric with respect to the exchange of the rapidities θs and θq with s, q 6= j.
According to (7.41), W (2) and W (3) are also not independent:

W (2)(θ1, θ2, θ3) =W (3)(θ3, θ1, θ2). (7.70)

It can be checked that our formulas in (7.68) satisfy this requirement.
With the help of (7.9) the symmetric diagonal 6-particle form-factors of the current

can be expressed in terms of the previously computed W -functions as follows:

F
Jµ,(Ψ)
6,symm(θ1, θ2, θ3) = (−1)µ+1M





3
∑

j=1

v
(µ)
j





3
∑

j=1

[

Wj(~θ) +W (j)(~θ)
]

, (7.71)

with the vector

v
(µ)
j =

{

cosh(θj), for µ = 0,
sinh(θj), for µ = 1.

(7.72)

The formula (7.71) can also be rephrased in an equivalent way, which reflects manifestly the
invariance of the symmetric form-factor with respect to the permutations of the rapidities:

F
Jµ,(Ψ)
6,symm(θ1, θ2, θ3) = (−1)µ+1M

2





3
∑

j=1

v
(µ)
j



×

∑

σ∈S3

[

W1(θσ(1), θσ(2), θσ(3)) +W (2)(θσ(1), θσ(2), θσ(3))
]

,

(7.73)

where the second sum runs for the six possible permutations of the indexes {1, 2, 3}.
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8 Checking the Pálmai-Takács conjecture

In the previous sections we computed the symmetric diagonal form-factors of the operators
Θ and Jµ upto 6-particles. This makes it possible to check the conjecture of Pálmai and
Takács for the diagonal matrix elements of local operators [10] (summarized in section
6.) against the exact results given in (4.16)-(4.18) upto 3-particle expectation values. In
the pure soliton sector12 the validity of this conjecture have been already verified for the
operators Θ and Jµ in references [20] and [19], respectively. This is why in our work we
will only focus on states in which soliton and antisoliton states are mixed.

As implied by (6.1), in the conjecture the eigenvectors of the multisoliton transfer
matrix (B.4), play an important role. To test the conjecture upto 3-particle states, one
needs the complete Bethe-basis on the space of 1- and 2-particle states and one also needs
the Bethe-eigenvector corresponding to the sandwiching 3-particle state. Thus, as a first
step we write down these Bethe-eigenvectors.

For the one particle states the eigenvectors are simple:

ϕ
(a)
i1

= δi1,a, a, i1 = ±. (8.1)

In the space of 1-particle states the basis is two dimensional corresponding to the soliton
and the antisoliton. The index a distinguishes the two basis vectors of this space and
i1 is the index of the vector. Here we pay the attention to two trivial, but for later
considerations important properties of this basis. First of all the vector components are
independent of the particle’s rapidities. Second of all these vectors are real. The 2-particle
basis is also very simple [10]:

Ψ
(1)
i1i2

= δi1−δi2−, Ψ
(2)
i1i2

= 1√
2
(δi1+δi2− + δi1−δi2+) ,

Ψ
(3)
i1i2

= 1√
2
(δi1+δi2− − δi1−δi2+) , Ψ

(4)
i1i2

= δi1+δi2+.
(8.2)

Here again the superscript indexes the basis vectors and the subscripts i1, i2 = ± denotes
the vector indexes in the 2-particle vector space. Here we also emphasize that this 2-
particle basis is real and rapidity independent. With this remark we would like to pay the
attention, that the first numerical checks of the Pálmai-Takács conjecture in [10], which
were performed upto 2-particle states, were not sensible to the difference between the two
definitions (6.7) and (6.8).

It is worth to discuss a bit more on the meaning of the basis vectors of (8.2). The vectors
Ψ(4) and Ψ(1) correspond to the two antisoliton and two soliton states, respectively. The
vector Ψ(2) and Ψ(3) describe the symmetric and antisymmetric soliton-antisoliton states,
respectively. At the level of the magnonic Bethe-equations (B.12), Ψ(4) and Ψ(1) are states
without Bethe-roots, while Ψ(2) and Ψ(3) are described by a single Bethe-root. Using the
terminology of appendix B.2 Ψ(2) is described by a real Bethe-root: λ(2) = θ1+θ2

2 + iπ2
and Ψ(3) is given by a self-conjugate root: λ(3) = θ1+θ2

2 + i (1+p)π2 , provided we are in the
repulsive 1 < p regime of the theory.

12For arbitrary number of solitons and not only upto 3.
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In the space of 3-particle states, we need the Bethe-eigenvectors only in the Q = 1
sector. It has also a simple form:

Ψi1i2i3 = Ψ+−−δi1+δi2−δi3− +Ψ−+−δi1−δi2+δi3− +Ψ+−−δi1−δi2−δi3+, (8.3)

where

Ψi1i2i3 =
Ci1i2i3

NΨ
, (8.4)

such that Ci1i2i3 is given by (7.44) with (7.46) andNΨ is given by (B.31). Actually this vec-
tor stands for 3 eigenvectors, since it depends on a Bethe-root λ1, and the Bethe-equation
(7.46) have 3 independent solutions in this sector: a real one and two self-conjugate ones.
One can recognize that the vector Ψ in (8.3) differs by a complex conjugation with respect
to the one enters the conjecture of [10]. The reason is that at the study of the diagonal
limit of the kinematical pole axiom (7.39), we recognized that one should sandwich the
form-factor with the left eigenvector of the transfer-matrix instead of its right eigenvector
proposed earlier in [10]. Due to the hermiticity properties of the soliton transfer matrix
(B.18), this is just a complex conjugation at the level of the eigenvectors. Here the 3-
particle wave vector Ψ is complex and rapidity dependent, thus all these affairs matter. In
the states upto 2-particles, which was studied in [10] to check the conjecture, this complex
conjugation problem didnot arise.

Now, we know how the Bethe-eigenvectors we need are described by the roots of the
magnonic Bethe-equations (B.12). This makes possible to write down the densities of the
states (6.6) corresponding to the eigenstates under consideration. They can be simply
read off from the formulas (4.3)-(4.8), which give the Bethe-Yang limit of the Gaudin-
matrix. We will specialize these formulas for the zero and one root cases of the 1-, 2- and
3-particle eigenstates. First, we rewrite the matrix Φ (4.7) for the zero and one-root states
by emphasizing the Bethe-root and particle number dependence better:

Φ
(n)
j,k (λ) =

(

ℓ cosh θj +

n
∑

s=1

G̃js(λ)

)

δjk − G̃jk(λ),

G̃jk(λ) = G(θj − θk) +
1

i

Vj(λ)Vk(λ)

ψ(n)(λ)
, ψ(n)(λ) =

n
∑

j=1

Vj(λ),

Vj(λ) = (lnB0)
′(λ− θj).

(8.5)

For the zero root case the ∼ Vj(λ) Vk(λ)

ψ(n)(λ)
term must be skipped13.

Then the densities of the states given by the Bethe-vectors (8.1), (8.2) and (8.3) can
be given by determinants of this matrix. Now, we list the necessary densities below. The
densities (6.6) for the 1-particle states (8.1) are the same as those of a free particle:

ρ
(±)
1 (1) ≡ ρ1(1) = ℓ cosh θ1 = ℓ c1, (8.6)

13We denote this case by writing symbolically ∅ instead of λ into the argument.
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where for short we introduce the notations cj = cosh θj and sj = sinh θj. The densities
(6.6) for the 4-dimensional basis of 2-particle states (8.1) are given by the determinants
as follows: :

ρ
(1)
2 (1, 2) = det

2×2
Φ(2)(∅) = ℓ2c1 c2 + ℓ(c1 + c2)G(θ12),

ρ
(2)
2 (1, 2) = det

2×2
Φ(2)(λ(2)) = ℓ2c1 c2 + ℓ(c1 + c2)G̃12(λ

(2)),

ρ
(3)
2 (1, 2) = det

2×2
Φ(2)(λ(3)) = ℓ2c1 c2 + ℓ(c1 + c2)G̃12(λ

(3)),

ρ
(4)
2 (1, 2) = det

2×2
Φ(2)(∅) = ℓ2c1 c2 + ℓ(c1 + c2)G(θ12),

(8.7)

with

λ(2) = θ1+θ2
2 + iπ2 , λ(3) = θ1+θ2

2 + iπ(1+p)2 . (8.8)

Finally the density corresponding to the Q = 1 sector of the 3-particle states is given
by:

ρ
(Ψ)
3 (1, 2, 3) = det

3×3
Φ(3)(λ1), (8.9)

where λ1 denotes the solution of the magnonic Bethe-equations (7.46). Now we are in the
position to check the conjecture of [10] analytically in the 2-particle sector.

8.1 Checking the conjecture for 2-particle states

We make the test only in the Q = 0 sector of the 2-particle space, since in the purely
solitonic Q = ±2 sectors the conjecture has been verified for the operators Jµ and Θ
and for any number of solitons in papers [19] and [20]. In the sequel we compute the
expectation values in the states described by the color wave functions Ψ(2) and Ψ(3) given
in (8.2). The first step in the computation is to determine the branching coefficients of
these wave-functions with respect to the 1-particle color wave-functions of (8.1). Due to
the simple form of these vectors the branching coefficients of the decomposition (6.13) of
Ψ(2) and Ψ(3) can be read off immediately:

C
(s)
+− = 1√

2
, C

(s)
+− = rs√

2
,

C
(s)
−− = 0, C

(s)
++ = 0,

}

for s = 2, 3 with r2 = 1, r3 = −1. (8.10)

Now applying the conjectured formula (6.11) to the Q = 0 states of the 2-particle space,
one obtains:

F
O,(s)
2 (θ1, θ2) = 〈O〉0 +

1

ρ
(s)
2 (1, 2)

{

F
O,(s)
4,symm(1, 2) +

1

2
F

O,(+)
2,symm(1) ρ

(−)
1 (2)+

1

2
F

O,(−)
2,symm(1) ρ

(+)
1 (2) +

1

2
F

O,(+)
2,symm(2) ρ

(−)
1 (1) +

1

2
F

O,(−)
2,symm(2) ρ

(+)
1 (1)

}

, s = 2, 3,

(8.11)
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where 〈O〉0 denotes the vacuum expectation value, the densities are given by (8.6) and (8.7)
and the symmetric diagonal form-factors in the states Ψ(2) and Ψ(3) can be determined
from the formula (6.7) using the results (7.22)-(7.34).

It is easier to start testing the conjecture with the operator Jµ. Since Jµ is a charge
conjugation negative operator all the symmetric form-factors entering (8.11) become zero.
The vacuum expectation value is also zero because of the same reason 〈Jµ〉0 = 0. Thus,

the conjecture of [10] suggests that F
Jµ,(s)
2 (θ1, θ2) = 0, for s = 2, 3. Due to the charge

conjugation negativity of the current it is true exactly, as well. Thus for Jµ the conjecture
gives the expected trivial result.

For the trace of the stress energy tensor, due to the charge conjugation positivity14 of
the operator, (8.11) simplifies:

F
Θ,(s)
2 (θ1, θ2)=〈Θ〉0+

1

ρ
(s)
2 (1,2)

{

F
Θ(s)
4,symm(1,2)+F

Θ (+)
2,symm(1) ρ1(2)+F

Θ (+)
2,symm(2) ρ1(1)

}

, s=2,3,

(8.12)

where the symmetric diagonal 2-particle form-factor is a constant as it can be read off
from (7.7):

F
Θ,(±)
2,symm(1) = M2, (8.13)

the necessary densities are listed in (8.6) and (8.7) and the symmetric diagonal 4-particle
form-factors can be constructed from (7.24), (7.25) by the prescription (6.7) and exploiting
the charge conjugation positivity:

F
Θ,(s)
4,symm(1, 2)=F

Θ,symm
+−+− (θ1, θ2) + rs F

Θ,symm
+−−+ (θ1, θ2), (8.14)

with rs given in (8.10). Using the identity

G̃12(λ
(s)) = Ω(θ12) + rs ϕ(θ12), s = 2, 3, (8.15)

and the formulas (7.24), (7.25) the concrete form of these form-factors can be written in
the form as follows:

F
Θ,(s)
4,symm(1, 2)=2M2(1 + c1 c2 − s1 s2) G̃12(λ

(s)), s = 2, 3. (8.16)

Putting everything together one ends up with the final formula for the expectation value
as follows:

F
Θ,(s)
2 (θ1, θ2)=〈Θ〉0+

1

ρ
(s)
2 (1, 2)

{

2M2(1+c1 c2−s1 s2) G̃12(λ
(s))+M2ℓ(c1+c2)

}

, s = 2, 3,

(8.17)

which is exactly the same as the formula (4.16) coming from the exact result and specified
to the single Bethe-root configurations λ(2) and λ(3).

The next step is to check the conjecture of [10] in the Q = 1 sector of the space of
3-particle states. Here the computations are much more involved, this is why we will write
down only the main steps and list the ingredients of the necessary computations.

14Namely, in this case form-factors are invariant with respect to conjugating their indexes.
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8.2 Checking the conjecture for 3-particle states

The first step in the computation is the decomposition (6.13) of the 3-particle wave function
(8.3) in terms of 1- (8.1) and 2-particle (8.2) wave functions. For a subset A = {A1} ⊂
{1, .., 3} with a single element, the branching coefficients can be computed by the scalar
product as follows:

Cst(A) =
∑

i1,i2,i3=±
ϕ
(s) ∗
iA1

ψ
(t)∗
iĀ1

iĀ2
Ψi1i2i3 , s ∈ {+,−}, t ∈ {1, 2, 3, 4}. (8.18)

Writing the analogous formula for the case, when A ⊂ {1, .., 3} has two elements, one
obtains the relation:

Cst(A) = Cts(Ā), s ∈ {+,−}, t ∈ {1, 2, 3, 4}, A ⊂ {1, .., 3}. (8.19)

Thus from (8.18) and from the ”color” wave functions (8.1), (8.2) and (8.3), all the nec-
essary branching coefficients can be determined:

C1+({1, 2}) = C+1({3}) = Ψ−−+, C2−({1, 2}) = C−2({3}) =
Ψ+−− +Ψ−+−√

2
,

C3−({1, 2}) = C−3({3}) =
Ψ+−− −Ψ−+−√

2
, C1+({1, 3}) = C+1({2}) = Ψ−+−,

C2−({1, 3}) = C−2({2}) =
Ψ−−+ +Ψ+−−√

2
, C3−({1, 3}) = C−3({2}) =

Ψ+−− −Ψ−−+√
2

,

C1+({2, 3}) = C+1({1}) = Ψ+−−, C2−({2, 3}) = C−2({1}) =
Ψ−−+ +Ψ−+−√

2
,

C3−({2, 3}) = C−3({1}) =
Ψ−+− −Ψ−−+√

2
,

(8.20)

where Ψi1i2i3 is given in (8.4). In the main formula (6.11) for the diagonal matrix elements,
the absolute value squared of these coefficients arise. They can be expressed in terms of
the elements of a Hermitian matrix M :

M =







V1
V1+V2+V3

C1C2B3
NΨ

C1C3
NΨ

C1C2
NΨ

V2
V1+V2+V3

B1C2C3
NΨ

C1C3B2
NΨ

C2C3
NΨ

V3
V1+V2+V3






, (8.21)

in the following way15:

|C1+({1, 2})|2= |C+1({3})|2=M33, |C2−({1, 2})|2= |C−2({3})|2=L(+)
12 ,

|C3−({1, 2})|2= |C−3({3})|2=L(−)
12 , |C1+({1, 3})|2= |C+1({2})|2=M22,

|C2−({1, 3})|2= |C−2({2})|2=L(+)
13 , |C3−({1, 3})|2= |C−3({2})|2=L(−)

13 ,

|C1+({2, 3})|2= |C+1({1})|2=M11, |C2−({2, 3})|2= |C−2({1})|2=L(+)
23 ,

|C3−({2, 3})|2= |C−3({1})|2=L(−)
23 ,

(8.22)

15We just recall: Bj = B0(λ1 − θj), Cj = C0(λ1 − θj), Vj = (lnB0)
′(λ1 − θj).
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where we introduced the short notation: L
(±)
ij =

Mii+Mjj±Mij±Mji

2 .
Now we have all the necessary ingredients to compare the conjectured formula (6.11) to

the exact ones (4.16)-(4.18) for the operators Θ and Jµ. Now, the computations become
quite involved, thus they were performed by the software Mathematica. We just write
down in words the strategy of the comparison. The 1

ρ
(Ψ)
3

term naturally arises in the exact

formulas (4.16)-(4.18), if the inverse Gaudin-matrix is expressed by the co-factor matrix
K:

Φ−1
jk =

Kkj

detΦ
=

Kkj

ρ
(Ψ)
3 (1, 2, 3)

. (8.23)

Then only the numerator of the conjectured formula (6.11) remains to be checked. In-
serting all previously computed form factors and branching coefficients, it turns out the
numerator is a second order polynomial in ℓ, such that the coefficients are composed of el-
ementary functions multiplied by G(θij) transcendental terms16. It is easy to see that this
”transcendental” structure is the same for both the conjecture (6.11) and the exact results:
(4.16)-(4.18). The coefficients of these transcendental terms are complicated combinations
of elementary functions containing the single Bethe-root λ1 in the argument. These coef-
ficients do not seem to match for the first sight, but exploiting the Bethe-equations finally
it turns out that they agree. Thus upto 3-particle states in the sine-Gordon model, the
Pálmai-Takács conjecture [10] gives the correct result for Bethe-Yang limit of the diagonal
matrix elements of the U(1) current and the trace of the stress energy tensor, provided
one modifies the definition of polarized form-factors from the original form (6.7) to (6.8).
This simple modification corresponds to a Ψ → Ψ∗ exchange in the original definition of
[10].

9 Comments on some subtle points of the conjecture of [10]

In the previous section for the operators Θ and Jµ, we checked the conjecture of [10] for
the Bethe-Yang limit of expectation values of local operators upto 3-particle states. The
agreement found between the conjectured and the exact results seems to be a convincing
evidence for the correctness of this conjecture. Nevertheless, in this section we would like
to pay the attention to some delicate points of the conjecture, which require further work
to be confirmed. These two subtle points are the existence of the symmetric diagonal limit
of form-factors and the order of rapidities in the Bethe-wave functions.

9.1 Existence of symmetric diagonal limit of form-factors in a non-
diagonally scattering theory

In this section we argue, that the existence of symmetric diagonal limit of form-factors in
a non-diagonally scattering theory is not obvious at all. Apparently, we cannot prove the
existence of this limit in general, thus it cannot be excluded, that this limit is divergent
in most of the cases.

16The same structure arose in the 2-particle case. See (8.17).
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We start our argument by writing down the kinematical singularity axiom (5.7) in the
limit, when only the rapidities of the sandwiching states are close to each other. Similarly
to (7.39) we formulate the axiom on the basis of the Bethe-eigenvectors. Let Ψ and Φ(ǫ)

be the color wave functions corresponding to the two states sandwiching the operator.
Thus, Ψ is a left eigenvector of the soliton transfer-matrix (B.4) with rapidity parameters:
~θ = {θ1, .., θn} and Φ(ǫ)∗ is a right eigenvector of the soliton transfer-matrix with rapidity
parameters17: ~θǫ = {θǫ1, .., θǫn}. Then they satisfy the eigenvalue equations:

Ψi1...inτ(θ1|~θ)lα2...αn

i1i2...in
= ΛΨ(θ1|~θ)Ψlα2...αn ,

τ(θǫ1|~θǫ)j1j2...jnlβ̄2...β̄n
Φ
(ǫ)∗
j1..jn

= ΛΦ(θ
ǫ
1|~θǫ)Φ(ǫ)∗

lβ̄2...β̄n
.

(9.1)

With these sandwiching states the kinematical singularity axiom takes the form:

FΦΨ(θ̂n, ., θ̂1, θ1, ., θn)=
i

ǫ1

(

1− ΛΨ(θ1|~θ)
ΛΦ(θǫ1|~θǫ)

)

Φ
(ǫ)∗
kβ̄2...β̄n

Ψkα2...αnFβn...β2α2...αn(θ̂n, .., θ̂2, θ2, .., θn)

+O(1)ǫ1
(9.2)

where in accordance with the definition (6.7), FΦΨ denotes the form-factor polarized with
the Bethe-vectors Φ and Ψ :

FΦΨ(θ̂n, ..., θ̂1, θ1, ..., θn) =
∑

b1,..,bn=±

∑

a1,..,an=±
Φ
(ǫ)∗
b1...bm

(θǫ1, .., θ
ǫ
n)×

Fb̄n...b̄1a1...an(θ
ǫ
n + i π, ..., θǫ1 + i π, θ1, ..., θn)Ψa1...an(θ1, .., θn).

(9.3)

Again, we used the short notation: θ̂j = θj + ǫj + iπ. Formula (9.2) has serious implica-
tions on the existence of the symmetric diagonal limit of form-factors in a non-diagonally
scattering theory.

If the theory is of purely elastic scattering, than there is no index structure in (9.2).
Thus Φ = Ψ = 1 and ΛΦ(θ

ǫ
1|~θǫ) → ΛΨ(θ1|~θ) can be written. In this case the prefactor

i
ǫ1

(

1− ΛΨ(θ1|~θ)
ΛΨ(θǫ1|~θǫ)

)

becomes O(1) in ǫ, which imples that the symmetric diagonal limit always

exist (finite). Moreover the exchange axiom (5.5) ensures, that the limiting form-factor is
a symmetric function of the rapidities.

If the theory is of non-diagonally scattering the prefactor i
ǫ1

(

1− ΛΨ(θ1|~θ)
ΛΦ(θǫ1|~θǫ)

)

in (9.2) is

not always O(1) in ǫ! Moreover it is always divergent if the vectors Ψ and Φ(ǫ)
∣

∣

ǫ=0
are not

equal. This means, that the near diagonal in rapidity limit of the form-factors is divergent
if the matrix element is nondiagonal in the color space. On the other hand, the prefactor

i
ǫ1

(

1− ΛΨ(θ1|~θ)
ΛΦ(θǫ1|~θǫ)

)

in (9.2) has a finite value in ǫ → 0 limit, if18 both sandwiching states

correspond to the same eigenstate of the soliton transfer-matrix. Nevertheless, this fact

17We just recall the notation used in the preceding sections: θǫj = θj + ǫj , j = 1, .., n.
18In the ǫ → 0 limit.
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alone doesnot guarantee, that the symmetric diagonal limit of the form-factors would be
finite. This is so, because apart form the prefactor we analyzed, there is another term in
(9.2), a sum of the near diagonal in rapidity limit of form-factors with all polarizations,
weighted by the color wave-functions. We argued in the previous lines, that the near
diagonal in rapidity limit of form-factors is divergent in general, which means that this
sum is composed of divergent terms in the ǫ → 0 limit. Actually, the degree of divergence
in ǫ increases with the number of sandwiching particles. To get finite result for these matrix
elements very nontrivial cancellations must occur! Actually such nontrivial cancellations
happened, when we computed the symmetric diagonal limit of the 3-particle form-factors
of the current in section 7.

Nevertheless, our conclusion is that the symmetric diagonal limit of form-factors in a
non-diagonally scattering theory is not obviously finite. Thus, to trust the conjecture of
[10] beyond 3-particle states, it would be necessary to prove that the symmetric diagonal
limit of form-factors exists for generic states, as well.

9.2 The order of rapidities

The next delicate point in the conjecture of [10] is the matter of the order of rapidities.
Here we will not state, that there might be problems with the conjecture, but rather we
would like to shed light on the fact, that the so far achieved analytical tests of this paper
are still not enough to confirm certain parts of the conjecture. This unconfirmed part is
how to do correctly the color-wave function decomposition (6.13). The issue here is that
in general these wave functions do depend on the particle’s rapidities. What’s more they
do depend on their orderings, as well. In this paper we did computations upto 3-particle
matrix elements. Thus 3-particle wave functions must have been decomposed with respect
to 1- and 2-particle color wave functions. But, as it is emphasized in section 8, incidentally
the 1- and 2-particle color wave functions are independent of the rapidities. Consequently,
our computations cannot confirm, whether the ordering of rapidities in the arguments of
the wave-functions in the right hand side of the decomposion formula (6.13) is correct if
more than three particle states are considered.

A possible reassuring solution to this problem could be, if one could prove that the
conjectured formula of [10] is invariant under any permutations of the rapidities of the
sandwiching state.

10 Summary and conclusion

In this paper we consider two important local operators of the sine-Gordon theory; the
trace of the stress energy tensor and the U(1) current.

We showed, that the finite volume expectation values of these operators in any eigen-
state of the Hamiltonian of the model, can be expressed in terms of solutions of sets of
linear integral equations (A.1)-(A.11). The large volume solution of these equations al-
lowed us to get analytical formulas in the repulsive regime for the Bethe-Yang limit of
these diagonal matrix elements. These formulas are expressed in terms of the Bethe-roots
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characterizing the corresponding eigenstate of the soliton transfer matrix (B.4). This an-
alytical formula allowed us to check a former conjecture [10] for the Bethe-Yang limit of
expectation values of local operators in a non-diagonally scattering theory. We computed
all expectation values upto 3-particle states both from our analytical formulas and from
the conjectured formula of [10], and we found perfect agreement between the results of the
two different computations. To be more precise to get agreement we had to make a tiny
modification in the conjectured formula of [10]. Namely, we had to change slightly the
definition of the symmetric diagonal form-factors, which are basic building blocks of the
formula. In the conjecture of [10] they are defined as appropriately (6.7) polarized sand-
wiches of the form-factors with right eigenvectors of the soliton transfer matrix. However,
from our computations it turns out that they should be defined as polarized sandwiches of
the form-factors with left eigenvectors of the soliton transfer matrix. Since upto 2-particle
states the left and right eigenvectors are the same, this issue arises first at the level of
3-particle states, which were not tested in the original paper [10].

Despite the success of the 3-particle checks, there are still some subtle points of the
conjecture, which could not be confirmed by our analytical computations. First of all,
the finiteness of the symmetric diagonal limit of form-factors for a generic state in a non-
diagonally scattering theory is still unproven. Second, the hereby performed analytical
tests were still not sensible to some details of the conjectured formula. Namely, upto 3-
particle states our computations could not check the correctness of the rapidity dependence
of the eigenvectors entering the right hand side of the decomposition rule (6.13), since all
1- and 2-particle wave-functions are incidentally independent of the rapidities.

Thus our final conclusions are as follows. Our analytical checks gave very strong
support for the validity of the conjectured formula of [10] for the Bethe-Yang limit of
expectation values in non-diagonally scattering theories. Our computations suggest, that
the conjecture is well established upto 3-particle states, but to firmly trust it beyond 3-
particle states, two further statements should be proven. First, it should be proven that
the symmetric diagonal limit of form-factors is finite in a non-diagonally scattering theory,
as well. Second, to get some more confidence about whether the rapidity dependence of
wave functions is correctly embedded into the conjectured formula, one should also prove
that the conjectured formula is invariant with respect to the permutations of the rapidities
of the sandwiching state.

Nevetheless, the fact that the conjecture of [10] was found to be correct at least upto
3-particle states, opens the door to safely apply it to compute finite temperature corre-
lators [45], and various one-point functions [46, 47, 48, 49], by their form-factor series
representations upto 3-particle contributions.
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A Integral equations for the derivatives of the counting-
function

In this appendix we write down the linear integral equations satisfied by the θ− and ℓ−
derivatives of the counting-function. The equations we list below can be obtained by
differentiating the NLIE (3.2)-(3.15). The equations related to the derivative of Z(θ|ℓ)
with respect to θ (3.19) and ℓ (3.20) can be written in an incorporated way, because the
equations for the two different derivatives differ only in a single source term. To have a
more compact representation of the equations it is useful to pack all complex roots into a
single set:

{uj}mK

j=1 = {cj}mC

j=1 ∪ {wk}mW

k=1, mK = mC +mW , (A.1)

such that

uj = cj, j = 1, ...,mC ,

umC+j = wj, j = 1, ...,mW .
(A.2)

In accordance with (A.2), from (3.19) and (3.20) we define the corresponding X variables
as well:

X
(u)
ν,j = X

(c)
j , ν ∈ {d, ℓ}, j = 1, ...,mC ,

X
(u)
ν,mC+j = X

(w)
j , ν ∈ {d, ℓ}, j = 1, ...,mW .

(A.3)

Using this notation the linear integral equations take the form:

Gν(θ)=fν(θ)+
mH
∑

j=1

G(θ, hj)X
(h)
ν,j −

mS
∑

j=1

(G(θ, yj − iη) +G(θ, yj + iη))X
(y)
ν,j−

mK
∑

j=1

G(θ, uj)X
(u)
ν,j +

∑

α=±

∞
∫

−∞

dθ′

2π
G(θ, θ′ − i α η)Gν(θ′ + i α η)Fα(θ′ + i α η),

(A.4)

mH
∑

k=1

[

Z ′(hj)δjk −G(hj , hk)
]

X
(h)
ν,k =fν(hj)−

mS
∑

k=1

(G(hj , yk + iη) +G(hj , yk − iη))X
(y)
ν,k−

mK
∑

k=1

G(hj , uk)X
(u)
ν,k+

∑

α=±

∞
∫

−∞

dθ′

2π
G(hj , θ

′−i α η)Gν(θ′+i α η)Fα(θ′+i α η), j=1, ..,mH ,

(A.5)

mK
∑

k=1

[

Z ′(uj)δjk +G(uj , uk)
]

X
(u)
ν,k =fν(uj)−

mS
∑

k=1

(G(uj , yk + iη) +G(uj , yk − iη))X
(y)
ν,k+

mH
∑

k=1

G(uj , hk)X
(h)
ν,k+

∑

α=±

∞
∫

−∞

dθ′

2π
G(uj , θ

′−i α η)Gν(θ′+i α η)Fα(θ′+i α η), j=1, ..,mK ,

(A.6)
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mS
∑

k=1

[

Z ′(yj)δjk +G(yj, yk + iη) +G(yj , yk − iη)
]

X
(y)
ν,k =fν(yj)+

mH
∑

k=1

G(yj , hk)X
(h)
ν,k−

mK
∑

k=1

G(yj , uk)X
(u)
ν,k +

∑

α=±

∞
∫

−∞

dθ′

2π
G(yj, θ

′−i α η)Gν(θ′+i α η)Fα(θ′+i α η), j=1, ..,mS ,

(A.7)

where η is a positive contour deformation parameter19 such that η < min(p, p π, |Im uj |),
F±(θ) is defined in (3.24), the index ν can be either d or ℓ telling us which derivative of
Z(θ) is considered. The source term fν(θ) for the two choices of the index ν is given by
the formulas:

fd(θ) =

{

ℓ cosh(θ), |Imθ| ≤ min(π, pπ),
ℓ coshII(θ) min(π, pπ) < |Imθ| ≤ π

2 (1 + p),
(A.8)

fℓ(θ) =

{

sinh(θ), |Imθ| ≤ min(π, pπ),
sinhII(θ) min(π, pπ) < |Imθ| ≤ π

2 (1 + p),
(A.9)

where the second determination of a function is defined by (3.5). The function G(θ, θ′) in
the equations (A.4)-(A.7) agrees with G(θ − θ′) of (3.4) in the fundamental domain and
it is equal to the appropriate second determination of G(θ) if either of its arguments goes
out of the fundamental domain |Im(θ−θ′)| ≤ min(π, pπ). In the sequel we give the precise
prescription, how to compute G(θ, θ′) for any pair of values of its arguments. In this way
we can get rid of the possible errors which can be easily committed when multiple second
determination of a function should be done. The function G(θ, θ′) will be defined as the
solution of a linear integral equation. Let:

K(θ) =
1

p+ 1

sin 2π
p+1

sinh θ−iπ
p+1 sinh θ+iπ

p+1

. (A.10)

This function is the derivative of the scattering-phase of the elementary magnon excitations
of the 6-vertex model with anisotropy parameter γ = π

p+1 . Then G(θ, θ′) for arbitrary

values of θ and θ′ can be determined by solving the linear integral equation as follows:

G(θ, θ′) +

∞
∫

−∞

dθ′′

2π
K(θ − θ′′)G(θ′′, θ′) = K(θ − θ′). (A.11)

This equation can be solved by means of Fourier transformation along any horizontal
lines of the complex plane. When both arguments are in the fundamental domain:
max{|Im(θ)|, |Imθ′)|} ≤ min(π, pπ), then the solution of (A.11) gives the well known
kernel of the NLIE of the sine-Gordon theory. Namely, G(θ, θ′) = G(θ − θ′) with G(θ)
given in (3.4). The linear integral equation (A.11) tells us how to continuate analytically
G(θ, θ′) out of this fundamental regime. For example, if one continues one of the variables

19If mS 6= 0 it is preferable to consider η to be a positive infinitesimal parameter.
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of G(θ, θ′) out of the fundamental domain, then one gets the second determination of
G(θ− θ′) defined by (3.5) etc. Thus the function G(θ, θ′) incorporates all possible second
determinations which appear in the NLIE (3.2)-(3.15) of the model. This means that one
does not need to take care of the subtle rules of second determination, but the solution
of (A.11) will automatically give the functional form of G in any regime of the complex
plane.

B Algebraic Bethe Ansatz for the soliton transfer matrix

The monodromy and transfer matrices made out of the S-matrix (2.5) of the sine-Gordon
model are of central importance in this paper. They enter the form-factor axiom (5.7) and
play an important role in the conjecture of [10] for the diagonal matrix elements of local
operators of the theory.

In this appendix we summarize the most important properties of the monodromy
matrix and recall the Algebraic Bethe Ansatz [43] diagonalization of the transfer matrix.

The basic object is the n-particle monodromy matrix built from the S-matrix of the
model (2.5):

T b
a (θ|θ1, ..., θn)b1b2...bna1a2...an

= Sk1 b1a a1
(θ − θ1)Sk2 b2k1 a2

(θ − θ2)...Sb bnkn−1 an
(θ − θn). (B.1)

For the algebraic Bethe Ansatz techniques, it is generally written as a 2 by 2 matrix in
the auxiliary space:

T (θ|~θ) =
(

T −
− (θ|~θ) T +

− (θ|~θ)
T −
+ (θ|~θ) T +

+ (θ|~θ)

)

=

(

A(θ|~θ) B(θ|~θ)
C(θ|~θ) D(θ|~θ)

)

, (B.2)

such that the entries act on the 2n dimensional vector space spanned by n soliton dublets
Vn =

(

C
2
)⊗n

. Here for short we introduced the notation ~θ = {θ1, θ2, ..., θn}.
As a consequence of the Yang-Baxter equation (2.10), the entries of the monodromy

matrix satisfy the Yang-Baxter algebra relations:

Sk1 k2a1 a2
(θ − θ′)T b1

k1
(θ|~θ)T b2

k2
(θ′|~θ) = T k1

a2
(θ′|~θ)T k2

a1
(θ|~θ)Sb2 b1k1 k2

(θ − θ′). (B.3)

The transfer matrix is defined as the trace of the monodromy matrix over the auxiliary
space:

τ(θ|~θ) =
∑

a=±
T a
a (θ|~θ). (B.4)

As a consequence of (B.3) the transfer matrices form a commuting family of operators on
Vn:

τ(θ|~θ) τ(θ′|~θ) = τ(θ′|~θ) τ(θ|~θ). (B.5)

This means that the eigenvectors of the transfer matrices are independent of the spectral
parameter θ, but the they do depend on the inhomogeneity vector ~θ, such that the order
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of rapidities within this vector matters, as well! The transfer matrix commutes with the
solitonic charge Q and the charge parity C operators, which act on a vector V ∈ Vn as
follows:

(QV )i1 i2....in = QVi1 i2...in Q =

n
∑

k=1

ik, (B.6)

(CV )i1 i2...in = Vī1 ī2...̄in, with īk = −ik, k = 1, ..., n. (B.7)

The B(θ|~θ) and C(θ|~θ) elements of the monodromy matrix act as charge raising and
lowering operators:

[Q, B(θ|~θ)] = 2B(θ|~θ), (B.8)

[Q, C(θ|~θ)] = −2C(θ|~θ). (B.9)

The diagonalization of the transfer matrix can be done using the usual procedure of the
Algebraic Bethe Ansatz [43]. There exist a trivial eigenvector of τ(λ|~θ), the pure antisoliton
state:

|0〉a1 a2...an =

n
∏

j=1

δ−aj . (B.10)

Then the eigenvectors of the transfer matrix are given by acting a sequence of B-operators
on this trivial eigenstate:

Ψ({λj}|~θ) =
1

NΨ
B(λ1|~θ)B(λ2|~θ)...B(λr|~θ)|0〉, (B.11)

such that the λj spectral parameters of the B-operators satisfy the Bethe-equations as
follows:

n
∏

k=1

B0(λj − θk) =
r
∏

k 6=j

B0(λk − λj)

B0(λj − λk)
, j = 1, .., r. (B.12)

The term NΨ in (B.11) is to fix the norm of the state to the required value. In our
computations the normalization condition for NΨ is that the norm of Ψ should be 1. The
eigenvalue of the transfer matrix on the state Ψ({λj}|~θ);

τ(λ|~θ)Ψ({λj}|~θ) = Λ(λ, {λj}|~θ)Ψ({λj}|~θ), (B.13)

is given by the formula:

Λ(λ, {λj}|~θ) =
n
∏

j=1

S0(λ− θk)Λ0(λ, {λj}|~θ), (B.14)
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where S0(θ) is given in (2.6) and Λ0(λ, {λj}|~θ) is the eigenvalue of the transfer matrix
made out of Scdab(θ) and it is given by:

Λ0(λ, {λj}|~θ) =
r
∏

j=1

1

B0(λj − λ)
+

n
∏

k=1

B0(λ− θk)

r
∏

j=1

1

B0(λ− λj)
. (B.15)

In the computations of the paper we need an analogous to (B.11) expression for the
complex conjugate vector of Ψ({λj}|~θ), too. For this reason we need the properties of
the monodromy and transfer matrices under hermitian conjugation. From the properties
(2.11)-(2.15) of the S-matrix and from the definition (B.1) one can prove the following
hermitian conjugation rule for the monodromy matrix:

T b
a (λ|~θ)† = T b̄

ā (λ
∗ + i π|~θ), (B.16)

which implies for the components the following rules:

A†(λ|~θ) = D(λ∗ + i π|~θ), D†(λ|~θ) = A(λ∗ + i π|~θ),
B†(λ|~θ) = C(λ∗ + i π|~θ), C†(λ|~θ) = B(λ∗ + i π|~θ).

(B.17)

It follows for the transfer matrix that:

τ †(λ|~θ) = τ(λ∗ + i π|~θ). (B.18)

Thus, the transfer matrix is a hermitian operator along the line: λ = ρ + iπ2 , with ρ ∈
R. The hermitian conjugation relations (B.17) imply that the complex conjugate vector
Ψ∗({λj}|~θ) can be represented as follows:

Ψ∗({λj}|~θ) = 〈0|C(λ∗1 + i π|~θ)C(λ∗2 + i π|~θ)...C(λ∗r + i π|~θ) 1

NΨ
. (B.19)

It can be seen that if a set {λj}rj=1 is a solution of the Bethe-equations (B.12), then the
set {λ∗j + i π}rj=1 is also a solution of (B.12). Thus for solutions which are invariant under
this transformation the complex conjugate vector can be written in a simpler form:

Ψ∗({λj}|~θ) = 〈0|C(λ1|~θ)C(λ2|~θ)...C(λr|~θ)
1

NΨ
. (B.20)

Now it is easy to determine the normalization constant NΨ, because it is nothing but the
Gaudin-norm [36, 37, 38] of the Bethe-state B(λ1|~θ)B(λ2|~θ)...B(λr|~θ)|0〉 :

N 2
Ψ = 〈0|C(λ1|~θ)C(λ2|~θ)...C(λn|~θ)B(λ1|~θ)B(λ2|~θ)...B(λr|~θ)|0〉. (B.21)

If one would like to apply the Algebraic Bethe Ansatz technique directly to τ(λ|~θ), one
should carry unnecessarily a lot of S0(θ) factors. This can be avoided, if one diagonalizes
the transfer matrix constructed out of the S0 removed part of the S-matrix. To be more
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concrete analogously to (B.1) one should define the ”reduced” monodromy matrix by the
formula:

T ba(θ|θ1, ..., θn)b1b2...bna1a2...an
= Sk1 b1a a1

(θ − θ1)S
k2 b2
k1 a2

(θ − θ2)...S
b bn
kn−1 an

(θ − θn), (B.22)

where Scdab(θ) is the matrix part of the S-matrix (2.5) given by (2.7)-(2.9). Analogously to
(B.2) it can be written as a 2 by 2 matrix in the auxiliary space:

T (λ|~θ) =
(

T−
− (λ|~θ) T+

− (λ|~θ)
T−
+ (λ|~θ) T+

+ (λ|~θ)

)

=

(

A(λ|~θ) B(λ|~θ)
C(λ|~θ) D(λ|~θ)

)

. (B.23)

Its matrix elements satisfy the same Yang-Baxter algebra (B.3) as those of T (λ|~θ). The
”reduced” transfer matrix t(λ|~θ) is defined by taking the trace in the auxiliary space:

t(λ|~θ) =
∑

a=±
T aa (λ|~θ). (B.24)

It differs from τ(λ|~θ) in only a trivial scalar factor:

τ(λ|~θ) =
n
∏

k=1

S0(λ− θk) t(λ|~θ). (B.25)

Thus their common eigenvector Ψ(λ, {λj}|~θ) (B.11) and its complex conjugate (B.20) can
be expressed in terms of the elements of the ”reduced” monodromy matrix completely
analogously to the formulas (B.11) and (B.20):

Ψ({λj}|~θ) =
1

NΨ
B(λ1|~θ)B(λ2|~θ)...B(λr|~θ)|0〉, (B.26)

Ψ∗({λj}|~θ) = 〈0|C(λ1|~θ) C(λ2|~θ)...C(λn|~θ)
1

NΨ
. (B.27)

Certainly the normalization factor is also changed compared to (B.11) and (B.20):

N2
Ψ = 〈0|C(λ1|~θ) C(λ2|~θ)...C(λn|~θ)B(λ1|~θ)B(λ2|~θ)...B(λr|~θ)|0〉, (B.28)

which can be written as a Slavnov-determinant [42]. The eigenvalue of t(λ|~θ) on Ψ({λj}|~θ)
is exactly Λ0(λ, {λj}|~θ) given in (B.15).

We continue this appendix by specializing the main formulas of this appendix to the
3-particle case.

B.1 Formulas for the 3-particle case

Due to the charge conjugation symmetry, in the 3-particle case the number of Bethe-
roots in (B.12) can be either zero or one. The zero root case corresponds to the trivial
pure solitonic eigenvector (B.10). Here we do not deal with this trivial case, but we are
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interested in the state described by a single Bethe-root. In this case the Bethe-equations
take the simple form:

3
∏

j=1

B0(λ1 − θk) = 1. (B.29)

The eigenvalue of the soliton transfer matrix (B.14), when its spectral parameter takes
the value of one of the rapidities, is given20 by:

Λ(θj|~θ) =
3
∏

k=1

S0(θj − θk)
1

B0(λ1 − θj)
, j = 1, 2, 3. (B.30)

In this one-root case the normalization factor NΨ in (B.28) takes the form:

N2
Ψ = 〈0|C(λ1|~θ)B(λ1|~θ)|0〉 = p sinh

(

i π
p

)

3
∑

j=1

(lnB0)
′(λ1 − θj). (B.31)

In the computation of the symmetric form-factors some derivatives with respect to the
particle’s rapidities will be important. Differentiating (B.30) with respect to θq one obtains:

∂q log Λ(θs|~θ) = −iG(θs − θq)− (lnB0)
′(λ1 − θs)

∂λ1
∂θq

, s 6= q, (B.32)

with G(θ) given in (3.4). The derivative ∂λ1
∂θq

can be obtained by differentiating the Bethe-

equation (B.29):

∂λ1
∂θq

=
(lnB0)

′(λ1 − θq)
3
∑

k=1

(lnB0)′(λ1 − θk)

, q = 1, 2, 3.
(B.33)

If we have one single root then due to the λ → λ∗ + i π symmetry of the Bethe-equation
the single root of the equation can be either ”real” or ”self-conjugate”. A solution λ1 is
called real, if it is a fixed point of the symmetry λ → λ∗ + i π, i.e. λ1 = λ∗1 + i π. Here
we use the term ”real”, because in a more convenient parameterization this type of roots
would be actually a real numbers. Namely, if it is parameterized as λ1 = ρ1 + iπ2 then the
fix point equation restricts ρ1 to be real.

Due to the i p π symmetry of the functions entering the the Bethe-equations (B.12),
they have another symmetry, as well. Namely if λj is a solution of the equations then
λj+i π p is also a solution. This means that the solutions can be resticted to a fundamental
domain given by the strip of width i p π. By definition a ”self-conjugate” root satisfies the
combination of symmetries: λ→ λ∗ + i π and λ→ λ± i p π, namely

λ1 = λ∗1 + i π ± i pπ. (B.34)

If it is parameterized again as λ1 = ρ1+i
π
2 , then ρ1 has a fixed imaginary part: Imρ1 =

p π
2 .

The numerical solution of the equation (B.29) shows that in the repulsive regime
(1 < p) from the 3 different solutions, two ones are self-conjugated and one is real.

20Since here we have only one Bethe-root, for short we skipped it from the list of arguments of the
eigenvalue.
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B.2 Classification of the magnonic Bethe-roots

As the simple discussion at the end of the previous subsection shows, there are two sym-
metries of the magonic Bethe-equations (B.12):

• {λj}rj=1 = {λ∗j + i π}rj=1,

• {λj}rj=1 = {λj + i p π}rj=1.
(B.35)

They imply the following classification of the roots.

• Real-roots: Im (λj − i π2 ) = 0, j = 1, .., nr,

• Close-roots: |Im (λj − i π2 )| ≤ min(π2 ,
(2p−1) π

2 ), j = 1, .., nc, (B.36)

• Wide-roots: min(π2 ,
(2p−1) π

2 ) < |Im (λj − i π2 )| ≤
p π
2 , j = 1, .., nw.

A special type of wide-root is the self-conjugate root, whose imaginary part is exactly
i (1+p) π2 . From the symmerties (B.35) of the asymptotic Bethe-equations it also follows
that all roots, which are neither real nor self-conjugate appear in pairs being symmetric
to the line Imz = π

2 . In this way we can speak about close-and wide-pairs similarly to the
Bethe-roots entering the NLIE (3.2), which describes the exact finite volume spectrum of
the sine-Gordon model.
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[4] B. Pozsgay and G. Takács, “Form-factors in finite volume I: Form-factor bootstrap
and truncated conformal space,” Nucl.Phys. B788 (2008) 167–208, [arXiv:0706.1445
[hep-th]].
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[19] Á. Hegedűs, “Lattice approach to the finite volume form-factors of the Massive
Thirring (sine-Gordon) model,” JHEP 08 (2017) 059, [arXiv:1705.0039 [hep-th]].

[20] Á. Hegedűs, “Exact finite volume expectation values of Ψ̄Ψ in the Massive Thirring
model from light-cone lattice correlators ,” JHEP (2018) , [arXiv:1710.09583 [hep-
th]].

[21] O. Babelon, H. J. de Vega, C.M. Viallet, “Analysis of the bethe-Ansatz equations of
the XXZ model,” Nuclear Physics B 220 [FS8] (1983) 13-34.

[22] C. Destri and H.J. de Vega, “Light-cone lattice approach to fermionic theories in 2D,”
Nucl. Phys. B290 (1987) 363-391.

[23] H.J. de Vega, “Yang-BaxterAlgebras, Integrable Theories and Quantum Groups,”
Int.J. Mod. Phys. A4 (1989) 2371-2463.
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