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Abstract
Worldwide, ex situ genebanks are given the task to store seeds to prevent the danger of extinction of plant genetic resources. 
A regular monitoring of their germination capacity is central to any genebank and any drop in that beyond a certain threshold 
determines their regeneration cycle. Seed longevity varies among different species and is a quantitative trait. New molecular 
marker data covering hitherto empty genomic regions may provide new insights into the inheritance of this trait. Using genetic 
information of SNPs in two wheat panels, a total of 72 marker trait associations were discovered which could be confined 
to 24 quantitative trait loci (QTLs) based on marker proximity to each other. Among them, 13 QTLs are potentially novel. 
We also determined that with the pyramiding of favorable alleles, an increase of 12.8% in seed longevity could be achieved.
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Introduction

Worldwide, ex situ genebanks are given the task to store 
seeds (and to some extent other plant material) to prevent the 
danger of extinction of plant genetic resources (Linington 
and Pritchard 2001). Today, genebanks are storing > 7.4 mil-
lion accessions (FAO 2010) where ~ 45% are cereal species 
(Börner et al. 2014). A regular monitoring of their germi-
nation capacity is central to any genebank and any drop in 
that beyond a certain threshold determines their regenera-
tion intervals. Seed longevity is defined as the maximum 
time period that seeds maintain germination viability (Sano 
et al. 2016).

Seed longevity varies among different species and 
could be influenced by several environmental factors dur-
ing seed formation, harvest and storage (Liu et al. 2019). 

The deterioration in viability could be due to damage of 
the membranes, the DNA and to the action of a variety of 
enzymes and other proteins (Coolbear 1995; McDonald 
1999). Among the agents responsible for seed ageing iden-
tified to date, lipid peroxidation seems most potent (Davies 
2005; Wiebach et al. 2020), in addition to the damage of 
DNA and proteins (Rao et al. 1987; Bailly et al. 2008).

Although, seed longevity is a quantitative trait, certain 
major loci seem to exist. For example, mutations within 
the genes of DOG1 (DELAY OF GERMINATION1), and 
SNL1/2 (SWI-INDEPENDENT3-LIKE) in the model plant 
Arabidopsis are associated with seed longevity (Bentsink 
et al. 2006; Wang et al. 2013). In tobacco, Heat Shock Factor 
A9 over expression has been shown to enhance seed longev-
ity by increasing the amount of heat shock proteins (Prieto-
Dapena et al. 2006; Kotak et al. 2007).

Genetic analysis of seed longevity in crop plants was first 
initiated in rice (Miura et al. 2002), followed by soybean 
(Singh et al. 2008), barley (Nagel et al. 2009) and maize 
(Revilla et al. 2009). In bread wheat (Triticum aestivum), 
genetic research on seed longevity started with the use of 
microsatellite loci in a set of common wheat lines carry-
ing D genome introgression segments of the wild ances-
tor Aegilops tauschii by Landejva et al. (2010) followed by 
Rehman Arif et al. (2012a) where the authors used bi-paren-
tal (RFLP, SSR markers) and association mapping (DArT 
markers) approaches to elucidate genetic loci for longevity 
in wheat. Furthermore, Rehman-Arif et al. (2017) mapped 
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a range of loci in germplasm (183 accessions) selected 
from genebank of Gatersleben using DArT markers. More 
recently, using a population of 246 recombinant inbred lines 
(RILs), Zuo et al. (2018) identified 96 loci for seed vigor-
related traits under artificial aging. To add to it, a further 
23 longevity loci were uncovered in 166 RILs by Zuo et al. 
(2019). The last two studies were conducted using single 
nucleotide polymorphism (SNP) markers. Also in durum 
wheat (Triticum durum), loci linked to longevity were identi-
fied (Rehman Arif and Börner 2019). Nevertheless, genetic 
studies of seed longevity in wheat are still in early stages 
and new molecular marker data covering empty regions of 
previous studies may provide new insights into this trait.

Here, we report a re-analysis of two association mapping 
panels (a winter wheat and spring wheat collection inves-
tigated by Rehman Arif et al. (2012a, 2017), respectively) 
using the phenotypic data already available but newly cre-
ated SNP marker data to look for potential novel loci linked 
to longevity, to search for possible candidate genes and to 
obtain a better understanding of the mechanisms in seed 
deterioration in wheat.

Materials and methods

Materials

The first reassessed germplasm set is composed of 96 winter 
wheat advanced lines (WW) which have been extensively 
investigated for agronomic traits, longevity, dormancy and 
pre-harvest sprouting (Neumann et al. 2011; Rehman Arif 
et al. 2012a, b). The second reassessed germplasm set is 
composed of 111 spring wheat accessions (SW) (Table S1) 
selected from the panel of 183 accessions reported by 
Rehman Arif et al. (2017). All 207 accessions of WP and 
SP were analyzed using a 15 K Infinium SNP array, which 
is an optimized and reduced version of the 90 K iSELECT 
SNP-chip described by Wang et al. (2014). Data of 11,139 
and 9804 SNPs from public domain of IPK (http:// dx. doi. 
org/ 10. 5447/ IPK/ 2017/4) were used to find out the linked 
markers with seed longevity in WW and SW, respectively.

Methods

Phenotypic data from Rehman Arif et al. (2012a, 2017)) 
for WW and SW, respectively, were used. Briefly, to assess 
longevity, three replicates of 100 seeds each from both WW 
and SW were subjected to accelerated ageing (AA) and 
controlled deterioration (CDT) tests. For AA, seeds were 
exposed to 43 ± 1 °C for 3 days at 100% relative humidity 
followed by standard International Seed Testing Association 
(ISTA) germination test where three replicates of 100 seeds 
were placed between two layers of wet filter paper, formed 

into rolls and stood on Jacobsen apparatus at 25 ± 1 °C 
during the day and 23 ± 1 °C during the night. For CDT, 
moisture contents of the seed lots were brought to 18% after 
which they were sealed in an aluminum foil bag and exposed 
to 43 ± 1 °C for 3 days. The germination percentages were 
recorded after 7 days. Initial germination (IG; control), 
germination after AA (GAA) and germination after CDT 
(GCD) were determined. Relative values were calculated by 
dividing the GAA (RAA) and GCD (RCD) by IG × 100 for 
both WW and SW. RAA and RCD were used for association 
mapping analysis to determine longevity loci.

Genotypic data of both WW and SW were subjected to pop-
ulation structure analysis prior to association mapping. This 
was done using a subset of 241 and 229 evenly spaced SNPs 
for WW and SW, respectively. STRU CTU RE v.2.3.4 software 
(Pritchard et al. 2000) was utilized applying the admixture 
model, a burn-in of 100,000 iterations and 100,000 MCMC 
duration to test for a K value in the range 1–15. The results 
were subjected to Structure Harvester (Earl 2012) to get the 
clear image of the sub-populations in both germplasm sets.

Association mapping was carried out using the program 
TASSEL 5.2.43 (Bradbury et al. 2007) employing mixed lin-
ear model (MLM) (Yu et al. 2006) which takes into account 
population structure (calculated from STRU CTU RE v.2.3.4) 
and kinship (calculated from TASSEL 5.2.43). Significant 
p-values were calculated by taking reciprocal of number 
of markers for each set. Thus, p-values of 8.97 ×  10−5 and 
1.019 ×  10−4 were considered significant to claim an associa-
tion to be true in WW and SW, respectively. The flanking 
sequences of SNPs associated with longevity were obtained 
from the Wheat 90 K SNP array database (Wang et al. 2014). 
Gene ontology (GO) was assessed using BLAST2GO v.3 
software (https:// www. blast 2go. com/).

Results

Genotypic characterization

The distribution of SNPs in both collections was almost 
similar. A total of 11,139 SNPs were mapped to WW cov-
ering a distance of 3639.8 cM (3.06 SNPs/cM). Likewise, 
there were 9804 SNPs mapped to SW covering a distance 
of 3624.71 cM (2.70 SNPs/cM) (Table S2). Marker density 
was not uniform as B genome carried the highest number of 
SNPs (5479 in WW and 4831 in SW) followed by A genome 
(4313 in WW and 3843 in SW) whereas D genome was 
sparsely covered (1347 in WW and 1130 in SW) (Fig. S1).

Phenotypic variation

The phenotypic variations of IG, GAA, and GCD in both 
WW and SW indicate that IG was quite high in both WW 

http://dx.doi.org/10.5447/IPK/2017/4
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and SW (Figs. S2, S3). Mean values in WW were 93.70 
(SD 5.05), 10.97 (SD 12.08) and 61.05 (SD 25.33) for 
IG, GAA, and GCD, respectively. Likewise, mean val-
ues in SW were 85.78 (SD 11.94), 68.47 (SD 17.76) and 
59.04 (SD 21.61) for IG, GAA and GCD, respectively. 
Mean RAA and RCD in WW, respectively, was 11.55 
(SD 12.76) and 64.57 (SD 25.83) (Fig. 1). In SW, mean 
RAA was 79.87 (SD 16.90) and mean RCD was 69.03 
(SD 21.55) (Fig. 2).

Population structure and association mapping

Population structure analysis revealed 3 subgroups in WW 
(Fig. S4) and 4 subgroups in SW (Fig. S5). Association 
analysis of WW uncovered a total of 16 associations on 
chromosomes 1A, 2A (10 associations), 2D, 6A (3 associa-
tions) and 7A with a p value < 8.97 ×  10−5 for RAA whereas 
no association could pass this p value for RCD. Likewise, a 
total of 56 associations (10 with RAA and 46 with RCD) at 

Fig. 1  Frequency distribution of relative germination after AA (RAA, a) and CD (RCD, b) in WW. Black arrows indicate mean

Fig. 2  Frequency distribution of relative germination after AA (RAA, a) and CD (RCD, b) in SW. Black arrows indicate mean
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Fig. 3  Longevity QTLs in WW (underlined SNPs) and SW. Markers in bold are reported using DArT marker system exploiting the same pheno-
typic data in either Rehman Arif et al. (2012a) (a) or Rehman Arif et al. (2017) (b). QTLs with asterisks are potentially novel
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p value < 1.019 ×  10−4 were uncovered in SW. These were 
observed on chromosomes 1A, 1B (10 associations), 2A (2 
associations), 2B (6 associations), 2D, 3A (2 associations), 
3B, 4A (2 associations), 4B (16 associations), 5B (9 associa-
tions), 7A (3 associations), 7B (2 associations) and 7D with 
one association common to both RAA and RCD located on 
chromosome 5B (Fig. 3).

Discussion

Genetic markers are very useful to identify regions and 
genes involved in seed longevity as they can provide infor-
mation to germplasm curators and plant breeders when is 
it time to regenerate the seeds of a given accession of any 
species. Moreover, some candidate genes have been identi-
fied to influence the trait (Debeaujon et al. 2000; Clerkx 
et al. 2004; Sattler et al. 2004; Xu et al. 2004; Bentsink et al. 

2006; Prieto-Dapena et al. 2006; Devaiah et al. 2007; Ogé 
et al. 2008; Rajjou et al. 2008; Almoguera et al. 2009).

In wheat, some studies have been reported linking lon-
gevity with SNPs (Zuo et al. 2018, 2019) investigating bi-
parental mapping populations. In this study, we used SNPs 
in two association mapping wheat collections. The marker 
trait associations detected using the SNP data of WW and 
SW were low as compared to those reported by Rehman Arif 
et al. (2012a, 2017) because both of the reported studies 
used a default criterion of p value of 0.05 or 0.01. However, 
in this study, we have used p-values of 8.97 ×  10−5 (for WW) 
and 1.019 ×  10−4 (for SW) calculated by taking the recipro-
cal of number of tests (markers) performed per panel to help 
us to find true associations.

The associations discovered could be confined to 24 QTLs 
based on the marker proximities to each other (Fig. 3). Among 
them, 4 QTLs were observed in WW, 18 QTLs in SW and 
2 QTLs were common to both WW and SW (Fig. 3). The 
loci were distributed on chromosomes 1A (2 QTLs), 1B, 

Fig. 3  (continued)
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(2018) and this study are stem rust resistance protein Rpg1 
and NBS-LRR resistance-like protein. Likewise, Zuo et al. 
(2019) reported three candidate genes for longevity in wheat 
from 23 QTLs in 166 RILs. Common candidate gene to Zuo 
et al. (2019) and this study is FAR1-related sequence 6-like 
protein which is expressed in hypocotyls, rosette and cauline 
leaves, inflorescences stems, flowers and is linked to positive 
regulation of circadian rhythm and transcription (Lin and 
Wang 2004). Moreover, it is also reported to be involved in 
ABA signal transduction and abiotic stress response path-
ways (Ma and Li 2018).

In SW, we divided the accessions in two groups carry-
ing 35 accessions each. The first group (a) carried between 
3 and 11 favorable alleles and the second group (b) car-
ried between 14 and 17 favorable alleles for the 20 QTLs 
reported in SW. Mean RAA and RCD in group (a) were 
69.25 ± 18.90 and 56.85 ± 26.37, respectively. Likewise, 
mean RAA and RCD in group (b) were 84.25 ± 15.94 and 
77.86 ± 12.83, respectively. Thus, with the pyramiding of 
favorable alleles, an increase of 5.47% and 12.79% could be 
witnessed, respectively, in RAA and RCD (Table 1). This 
confirms that seed longevity is a polygenic trait with each 
locus imparting some improvement in an additive manner 
(Zuo et al. 2019) with the accessions carrying more favora-
ble alleles showed higher longevity.

Conclusion

Our analysis discovered 13 potentially novel loci for seed 
longevity using SNP whole genome mapping in two differ-
ent association mapping populations in wheat. These novel 
loci were unnoticed in previous reports. Furthermore, this 
highlights the importance of dense genetic maps covering 
the otherwise uncovered genome parts to detect novel loci 
for seed longevity. Moreover, since more and more popu-
lations are being characterized with SNPs, the results of 
this investigation will help genebank curators and plant 
breeders to decide about regenerating their germplasm.
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Table 1  Mean RAA, RCD and increase or decrease in RAA and RCD 
from population in group (a) and group (b) in SW with respect to 
favorable QTLs

Mean % increase

Group (a) (with ≤ 11 favorable alleles)
 RAA 69.24 ± 18.90 − 13.3
 RCD 56.84 ± 26.37 − 17.65

Complete population
 RAA 79.87 ± 16.90
 RCD 69.03 ± 21.55

Group (a) (with 14–17 favorable alleles)
 RAA 84.24 ± 15.94 + 5.47
 RCD 77.86 ± 12.83 + 12.79

2A (4 QTLs), 2B (2 QTLs), 2D, 3A, 3B, 4A (2 QTLs), 4B 
(2 QTLs), 5B (3 QTLs), 6A, 7A (2 QTLs), 7B and 7D. Of 
these, nine QTLs on chromosomes 1A (Q.Lng.ipk.1A(WW)) 
and Q.Lng.ipk.1A(SW), 1B (Q.Lng.ipk.1B(SW)), 2A (Q.
Lng.ipk.2A.1(SW)), 2D (Q.Lng.ipk.2D(WW/SW)), 3B (Q.
Lng.ipk.3B.SW), 4A (Q.Lng.ipk.4A.2(SW)), 4B (Q.Lng.
ipk.4B.1.SW)) and 5B (Q.Lng.ipk.5B.2(WW)) have been 
reported before (Rehman Arif et al. 2012a, 2017). Moreover, 
three QTLs including two previously mentioned QTLs on 
chromosomes 2B, 3B and 4A (Q.Lng.ipk.2B.2(SW)¸ Q.Lng.
ipk.3B(SW) and Q.Lng.SW.4A.2(SW)) have been reported by 
Zuo et al. (2019). To add to it, Q.Lng.ipk.2A.2(SW) is at the 
same position where Zuo et al. (2018) have located a mean 
germination rate QTL. Between 51 and 60 cM, Zuo et al. 
(2018) have found four QTLs linked to longevity related traits 
that coincide with our QTL (Q.Lng.ipk.3B(SW)) on 3B. The 
other 13 QTLs on chromosomes 2A (Q.Lng.ipk.2A.1(WW) 
and Q.Lng.ipk.2A.2(WW)), 2B (Q.Lng.ipk.2B.1(SW)), 
3A (Q.Lng.ipk.3A(SW), 4A (Q.Lng.ipk.4A.1(SW), 4B (Q.
Lng.ipk.4B.2(WW), 5B (Q.Lng.ipk.5B.1(SW) and Q.Lng.
ipk.5B.3(SW)), 6A (Q.Lng.ipk.6A.(WW)), 7A (Q.Lng.
ipk.7A(WW/SW) and Q.Lng.ipk.7A(SW), 7B (Q.Lng.
ipk.7B(SW) and 7D (Q.Lng.ipk.7D(SW)) are potentially novel. 
The new QTLs in this study highlight the importance of proper 
genome coverage to identify almost of the related loci influ-
encing the trait of interest.

BLAST analysis of the 55 marker sequences in associa-
tion with longevity belonging to 16 QTLs revealed a total 
number of 37 genes probably involved in seed longevity 
(Table S3). Using the deletion bin confinement of DArt 
markers, Rehman Arif et al. (2012a, 2017) have reported 
a number of probable candidate genes for longevity. In this 
report, we confined the probable candidate genes to 37 
which can be potentially targeted for advanced molecular 
research towards seed longevity in wheat. Zuo et al. (2018) 
reported five candidate genes from the analysis of 96 QTLs 
in RILs. The common candidate genes between Zuo et al. 
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