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Abstract: The rapid integration of genomic technologies in clinical diagnostics has resulted in the
detection of a multitude of missense variants whose clinical significance is often unknown. As a result,
a plethora of computational tools have been developed to facilitate variant interpretation. However,
choosing an appropriate software from such a broad range of tools can be challenging; therefore,
systematic benchmarking with high-quality, independent datasets is critical. Using three independent
benchmarking datasets compiled from the ClinVar database, we evaluated the performance of ten
widely used prediction algorithms with missense variants from 21 clinically relevant genes, including
BRCA1 and BRCA2. A fourth dataset consisting of 1053 missense variants was also used to investigate
the impact of type 1 circularity on their performance. The performance of the prediction algorithms
varied widely across datasets. Based on Matthews Correlation Coefficient and Area Under the
Curve, SNPs&GO and PMut consistently displayed an overall above-average performance across
the datasets. Most of the tools demonstrated greater sensitivity and negative predictive values at
the expense of lower specificity and positive predictive values. We also demonstrated that type
1 circularity significantly impacts the performance of these tools and, if not accounted for, may
confound the selection of the best performing algorithms.

Keywords: benchmark; ClinVar; BRCA1; BRCA2; type 1 circularity; prediction algorithms

1. Introduction

The use of high-throughput technologies such as next-generation sequencing (NGS)
has become routine practice in both cancer research and clinical laboratories in the detec-
tion of germline and somatic mutations alike [1]. Its robust performance and extensive
application range have made NGS the foremost component of personalized cancer treat-
ment [2]. This accelerated adaptation of NGS in clinical settings has led to the identification
of thousands of variants whose effects on protein function, and, ultimately, on patients′

risk of developing cancer, are unknown [3]. The interpretation of variants of uncertain
significance (VUS) represents a major challenge for clinicians who, in the absence of rele-
vant functional and clinical information, are unsure of the potential health implications of
these variants [4]. As a result, VUS may often be excluded from medical reports [5]. While
significant efforts have been made to develop functional assays to classify these variants,
experimental characterization is often tedious and time-consuming. Moreover, given the
dramatic rise in the number of the identified variants, it may not be the most viable option,
especially in the case of somatic mutations [5].
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Over the last two decades, a multitude of computational tools have been developed
to address this emerging issue. These prediction algorithms are widely used as evidence
to prioritize and select novel variants of unknown significance for in vivo and in vitro
functional assays [6]; they are integrated into NGS bioinformatics pipelines [7], and some
of them, such as Polyphen2 [8], SIFT [9], and MutationTaster [10], are integrated into
commercially available interfaces and are routinely used in clinical diagnostics [11].

To distinguish between deleterious and neutral variants, these tools employ a variety
of features, including sequence homology; evolutionary conservation; physicochemical dif-
ferences between wild-type and mutant amino acids; structural information; protein interac-
tomes; or a combination of the abovementioned features [8,9,12–15]. In general, prediction
algorithms can be divided into three major categories: (i) evolutionary conservation-based;
(ii) consensus-based; and (iii) machine learning-based methods [16].

Moreover, to standardize the process of variant classification, several guidelines have
been published. The guidelines issued by the American College of Medical Genetics and
Genomics/Association for Molecular Pathology (ACGM/AMP) recommend the cautious
use of multiple prediction algorithms for variant interpretation, advising that compu-
tational analysis can only be considered as supporting evidence if the algorithms used
are in agreement and provide the same results [17]. Nonetheless, several studies have
demonstrated that one major pitfall of this approach is the discordance between algorithms,
which entails that the computational evidence must not be considered and, consequently,
cannot be utilized as evidence for clinical decision-making [18–20]. Furthermore, Ghosh
and colleagues reported an additional discordance category, “false concordance”, where
prediction algorithms are in agreement with each other but contradict evidence from other
sources [19].

In addition, other guidelines, such as those established by the Association for Clin-
ical Genomic Science (ACGS), suggest that meta-predictors will likely replace the use
of multiple prediction algorithms [21]. Meta-predictors are a class of variant prediction
algorithms that combine the output of several independent prediction methods to discrim-
inate between disease-associated and neutral variants [15]. These tools integrate feature
elements from various predictors into machine learning algorithms, such as REVEL [14],
META-SNP [15], BayesDel [22], PredictSNP [23], GAVIN [24], and ClinPred [25].

The performance of prediction algorithms is typically evaluated utilizing datasets
composed of variants of known clinical significance. These variants are commonly retrieved
from public online databases such as ClinVar [26], OncoKB [27], and the Human Mutation
Database (HGMD) [28]. Additionally, the publicly available variant database VariBench is
a widely used source of curated and high-quality training and benchmarking datasets [29].
Numerous studies have shown that the performance of the prediction algorithms varies
depending on the testing dataset used; therefore, they may not perform as well as antici-
pated when utilized to classify novel variants [20,30]. Another critical caveat is the inherent
bias introduced by the utilization of the same variants to train and test the algorithm′s
performance, known as type 1 circularity. Type 1 circularity, as described by Grim and
colleagues, occurs when there is a substantial overlap between the datasets used to train
and benchmark these prediction algorithms, resulting in an overestimation and artificial
inflation of their true performance [31]. Although many authors have addressed type 1
circularity [20,32–34], the process has often proven to be challenging, since training datasets
of the computational methods are not always made publicly available. Additionally, the
performance of the computational tools is subject to frequent updates, as developers often
modify the algorithms by incorporating additional features or improving existing ones. As
a result, systematic, independent, and comparative analyses of the performance of these
algorithms, such as the one presented here, are necessary to assist the end-user in selecting
the best methods for their needs.

Considering the preponderance of prediction algorithms over the last two decades and
the increasing evidence supporting the use of meta-predictors over a concordance-based ap-
proach [21], we aimed to evaluate and compare the performance of ten widely used predic-
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tion algorithms, including eight individual algorithms (Polyphen-2-HumDiv [8], Polyphen-
2-HumVar [8], SIFT [9], PMut [12], PROVEAN [13], PhD-SNP [35], SNPs&GO [36], and
PANTHER-PSEP [37]) and two meta-predictors (META-SNP [15] and PredictSNP [23]). To
carry out this assessment, we compiled three high-quality benchmarking datasets from
the ClinVar database [26]. On the main dataset, consisting of 404 missense variants, our
results showed that the performance of the prediction algorithms varied considerably.
Additionally, prompted by our initial results and the high number of VUS reported for the
BRCA1 and BRCA2 genes, we further compared the performance of the selected prediction
algorithms in predicting missense variants derived from these two genes. Lastly, we also ex-
plored the impact of type 1 circularity on the performance of seven machine learning-based
prediction algorithms, namely, HumDiv (Polyphen-2), HumVar (PolyPhen-2), PhD-SNP,
SNPs&GO, META-SNP, PredictSNP, and PMut. For this task, we compiled a benchmarking
dataset that shared different degrees of overlap with the training dataset(s) of the above-
mentioned predictors. As expected, the performance of the prediction algorithms across all
of the calculated metrics increased remarkably.

2. Results
2.1. Benchmarking Datasets and Evaluation on the Expert Panel Dataset

To evaluate and compare the performance of the prediction algorithms PROVEAN,
META-SNP, SIFT, Polyphen-2-HumDiv (PP-2-HumDiv), Polyphen-2-HumVar (PP-2-HumVar),
SNPs&GO, PredictSNP, PhD-SNP, PANTHER-PSEP, and PMut, we generated three inde-
pendent benchmarking datasets: (i) the expert panel dataset (EP) (Supplementary Table S1)
containing 404 missense variants from 21 clinically relevant genes, such as BRCA1, BRCA2,
MSH2, MSH6, MLH1, MYH7, etc. (for a complete list of the genes, refer to Supplementary
Table S2); (ii) the BRCA1 dataset composed of 151 missense variants from the BRCA1 gene
(Supplementary Table S3); and (iii) the BRCA2 dataset composed of 134 missense variants
from the BRCA2 gene (Supplementary Table S4).

Compiling a proper benchmarking dataset is essential to conduct an unbiased and
accurate evaluation of the performance of the prediction algorithms. To this end, in or-
der to ensure that the compiled datasets were comprised of variants of high confidence,
only those ClinVar variants were considered that had been reviewed by an expert panel
and/or reported by multiple submitters, with concordant evidence regarding their clini-
cal significance.

Moreover, although none of the prediction algorithms were directly trained on ClinVar
data, the possibility of overlapping variants existing between their training datasets and
our benchmarking datasets could not be completely ruled out. Therefore, we retrieved and
meticulously examined the training datasets of the algorithms and removed all variants
that overlapped with our benchmarking datasets.

Initially, the performance of the prediction algorithms was evaluated on the EP dataset
composed of 199 pathogenic and 205 benign missense variants from 21 clinically relevant
genes. Of the 404 variants, PANTHER-PSEP and PMut did not return prediction scores for
38 (9.4%) and 12 (2.97%) variants, respectively. PANTHER-PSEP was unable to generate
prediction scores for the following genes: MTOR (P42345), MYH7 (P12883), and SLC26A4
(O43511), possibly due to the fact that the input sequence did not match any of the sequences
for which a gene family is available in the PANTHER database. On the other hand, PMut
did not generate prediction scores for the USH2A gene (O75445). A possible explanation
could be the fact that this gene was not present in the online repository of PMut. Therefore,
to ensure a fair comparison of the prediction algorithms and in an effort to avoid potential
bias in the interpretation of the results, only tools with ≤3% missing values were included
in the downstream analysis. Accordingly, PANTHER-PSEP, whose missing values exceeded
9%, was excluded from further analysis in this dataset.

When analyzed using pathogenicity thresholds as recommended in the literature,
we found that none of the prediction algorithms could achieve 100% sensitivity and/or
specificity (Supplementary Table S5). The sensitivity values varied considerably among
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the prediction algorithms, ranging from 60.30% to 92.46% with a median value of 76.38%
(Figure 1A). Two predictors, SIFT and PP-2-HumDiv, displayed sensitivities >90%, whereas
SNPs&GO showed the lowest sensitivity (60.30%). Comparatively, the specificity values,
ranging from 50.24% to 90.73% and with a median value of 68.78%, were markedly lower
than the sensitivity values (Figure 1A). SNPs&GO showed the highest specificity (90.73%),
while PP-2-HumDiv (50.24%) and SIFT (51.22%) showed the lowest.
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Figure 1. Comparison of the performance metrics of the prediction algorithms on the EP dataset.
The EP dataset was composed of 404 expert panel-reviewed missense variants from 21 clinically
relevant genes. Variants were retrieved from the ClinVar datasets. (A) SEN and SPE; (B) PPV and
NPV. SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
PANTHER-PSEP was omitted from further analysis in this dataset.

In the next step, we calculated the PPV and NPV values for each prediction algo-
rithm. In this analysis, we found that the NPV values, ranging from 70.19% to 87.50%
(median of 75.00%), were overall higher than the PPV values, ranging from 63.96% to
86.33% (median of 70.37%). Three predictors—SIFT, PP-2-HumDiv, and PP-2-HumVar—
showed NPV values >80%. Interestingly, we observed that SNPs&GO simultaneously
achieved the highest PPV (86.33%) and the lowest NPV (70.19%) of all of the prediction
algorithms (Figure 1B). SNPs&GO showed excellent performance in accurately classifying
benign variants (186/205); however, it also generated the highest number of false negatives
among the prediction algorithms (Supplementary Table S6). Furthermore, according to our
results, SNPs&GO was the most accurate predictor (ACC = 75.74%), followed by PMut
(ACC = 75.51%) and PP-2-HumVar (ACC = 75.25%). PhD-SNP was the least accurate of the
algorithms, with an accuracy value of 69.31%. Regarding the meta-predictors, META-SNP
(73.02%) showed higher accuracy than PredictSNP (72.52%), ranking 4th.

Furthermore, based on both the MCC and AUC values, SNPs&GO (MCC = 0.54;
AUC = 0.83), PMut (MCC = 0.51; AUC = 0.86), and PP-2-HumVar (MCC = 0.52; AUC = 0.83)
outperformed the other prediction algorithms, displaying an above-average performance,
whereas PhD-SNP by contrast was the poorest performing prediction algorithm (MCC = 0.39;
AUC = 0.77) (Figure 2A,B). Overall, the MCC values ranged from 0.39 to 0.54, with a me-
dian of 0.46, whereas the AUC values varied from acceptable (0.62) to excellent (0.86)
(Supplementary Figure S1).
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The EP dataset was composed of 404 missense variants retrieved from the ClinVar database, of which
199 were pathogenic and 205 were benign. (A) MCC; (B) AUC. MCC, Matthews correlation coefficient;
AUC, area under the curve. PANTHER-PSEP was omitted from further analysis on the EP dataset
due to the large number of missing values.

Interestingly, the two meta-predictors META-SNP and PredictSNP displayed an over-
all intermediate performance, ranking fifth and sixth with MCCs of 0.46 and 0.45, respec-
tively. Based on AUCs, META-SNP outperformed PredictSNP, ranking fifth (AUC = 0.81),
as compared to PredictSNP, which showed the lowest AUC value among the tools (AUC = 0.62).
Moreover, it is pertinent to note that from the two most widely used prediction algorithms
in clinical diagnostics, PP-2-HumVar showed an overall better performance than SIFT in this
dataset, ranking second in terms of MCCs and third in terms of AUCs (Figure 2A,B). SIFT,
on the other hand, ranked fourth in terms of MCCs and second in terms of AUCs. Overall,
these predictors displayed high sensitivities (SIFT = 92.46%; PP-2-HumVar = 86.93%) but
were offset by poorer specificities (SIFT = 51.22%; PP-2-HumVar = 63.90%) (Figure 1A).

2.2. Evaluation on the BRCA1 Dataset

Upon examining the predictions made by the computational tools for each gene in the
EP dataset, we observed notable differences in their ability to correctly classify missense
variants in the BRCA1 and BRCA2 genes. Prompted by the fact that mutations occurring
in the BRCA1 and BRCA2 genes account for 5–10% of hereditary breast cancer cases [38]
and as much as 80% of the variants identified in these genes remain VUS [39], we further
evaluated the performance of the prediction algorithms using two benchmarking datasets
composed of BRCA1 and BRCA2 variants.

First, the ten prediction algorithms were evaluated on the BRCA1 dataset consisting
of 151 variants, 59 of which were pathogenic and 92 benign (Supplementary Table S3). No
missing values were reported; therefore, all ten prediction algorithms, including PANTHER-
PSEP, were evaluated in this dataset.

We found that for the majority of the prediction algorithms, the sensitivity (ranging
from 0.00% to 96.61%; median of 85.59%) and the NPV values (52.03% to 94.74%; median of
90.51%) were relatively higher than the specificity (39.13% to 92.39%; median of 64.13%)
and the PPV (ranging from 0.00% to 87.27%; median of 57.95%) values (Figure 3A,B). Four
predictors—SIFT, PhD-SNP, PredictSNP, and Meta-SNP—showed sensitivities >90%, while
PP-2-HumVar and PROVEAN showed sensitivities <55% (Table 1). Compared to other
methods, SNPS&GO and PANTHER-PSEP displayed the highest specificities (92.39%, and
91.30%, respectively), while PP-2-HumDiv and SIFT displayed the lowest (47.83% and
39.13%, respectively).
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the BRCA1 and BRCA2 genes, respectively, which were obtained from the ClinVar database. The
retrieved variants were assigned either to an expert panel review or to multiple submitters with
no conflict of interpretation review status in ClinVar. (A) Sensitivity; (B) Specificity; (C) PPV; (D)
NPV; (E) MCC; (F) AUC. The prediction algorithms were arranged from top-performing to poor-
performing based on their performance on the BRCA1 dataset. PAN-PSEP, PANTHER-PSEP; PPV,
positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient;
AUC, Area under curve.

Table 1. Performance evaluation metrics on the (A) BRCA1 and (B) BRCA2 Datasets.

Software ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) MCC AUC

(A) BRCA1
PMut 85.43 88.14 83.7 77.61 91.67 0.705 0.932
PROVEAN 42.38 0.00 69.57 0.00 52.03 −0.382 0.507
SIFT 61.59 96.61 39.13 50.44 94.74 0.402 0.910
SNPs&GO 88.08 81.36 92.39 87.27 88.54 0.748 0.925
PhD-SNP 68.87 93.22 53.26 56.12 92.45 0.475 0.893
PredictSNP 72.85 93.22 59.78 59.78 93.22 0.530 0.773
META-SNP 74.17 91.53 63.04 61.36 92.06 0.540 0.873
PAN-PSEP 88.08 83.05 91.3 85.96 89.36 0.748 0.895
HumDiv 57.62 72.88 47.83 47.25 73.33 0.206 0.660
HumVar 60.26 52.54 65.22 49.21 68.18 0.176 0.650
(B) BRCA2
PMut 93.28 75.86 98.10 91.67 93.64 0.794 0.898
PROVEAN 63.43 13.79 77.14 14.29 76.42 −0.092 0.544
SIFT 61.94 93.10 53.33 35.53 96.55 0.386 0.859
SNPs&GO 88.81 55.17 98.10 88.89 88.79 0.643 0.801
PhD-SNP 78.36 65.52 81.90 50.00 89.58 0.433 0.795
PredictSNP 76.12 82.76 74.29 47.06 93.98 0.484 0.678
META-SNP 79.85 65.52 83.81 52.78 89.80 0.458 0.805
PAN-PSEP 73.88 86.21 70.48 44.64 94.87 0.473 0.850
HumDiv 69.40 89.66 63.81 40.63 95.71 0.441 0.874
HumVar 79.10 82.76 78.10 51.06 94.25 0.525 0.902

ACC: accuracy, SEN: sensitivity, SPE: specificity, PPV: positive predictive value, NPV: negative predictive value,
MCC: Matthews correlation coefficient, AUC: area under the PAN-PSEP, PANTHER-PSEP.

Furthermore, we observed that five prediction algorithms (SIFT, PredictSNP, PhD-SNP,
META-SNP, and PMut) achieved NPV values >90%, but none of the algorithms could
achieve PPV values >90%. Interestingly, PROVEAN ranked last in both metrics, with a PPV
of 0.00% and a NPV of 52.03% (Table 1).

To determine the best performing algorithms in this dataset, we calculated their MCC
and AUC values. Our results showed that the MCCs and AUCs varied considerably
among the prediction algorithms (Supplementary Figure S2). MCCs ranged from poor
(−0.38) to relatively high (0.75), with a median of 0.50, whereas the AUCs ranged from no
discrimination (0.51) to excellent (0.93) and a median of 0.88 (Figure 3E,F).

Considering these values, the top three performing prediction algorithms for the
BRCA1 dataset were PANTHER-PSEP (MCC = 0.75; AUC = 0.89), SNPs&GO (MCC = 0.75;
AUC = 0.92), and PMut (MCC = 0.71; AUC = 0.93). By contrast, the poorest performing
algorithms were HumDiv (MCC = 0.21; AUC = 0.66), HumVar (MCC = 0.18; AUC = 0.65),
and PROVEAN (MCC = −0.38; AUC = 0.51).

Interestingly, we noted that PROVEAN performed poorly across all of the evalu-
ated metrics (sensitivity = 0.00%, specificity = 69.57%, PPV = 0.00%, NPV = 52.03%,
accuracy = 42.38%, MCC = −0.38, and AUC = 0.51). This suboptimal performance was
attributed to PROVEAN′s inability to correctly classify any of the truly pathogenic BRCA1
variants in this dataset (0/59) (Supplementary Table S6).
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2.3. Evaluation on the BRCA2 Dataset

The performance of the ten prediction algorithms was also evaluated on the BRCA2
benchmarking dataset containing 29 pathogenic and 105 benign variants (Supplementary
Table S4). In this dataset, no missing values were reported by the prediction algorithms;
therefore, all ten prediction algorithms were included in the downstream analysis.

Similarly to the BRCA1 dataset, the sensitivity (ranging from 13.79% to 93.10%, median
of 79.13%) and the NPV values (ranging from 76.42% to 96.55%, median of 93.81%) were
notably higher than the specificity (ranging from 55.33% to 98.10%, median of 77.62%) and
the PPV values (ranging from 14.29% to 91.67%, median of 48.53%). SIFT showed both the
highest sensitivity (93.10%) and the lowest specificity (53.33%) among all of the evaluated
computational tools, whereas SNPs&GO showed the highest specificity along with PMut
(98.10%) and the second lowest sensitivity (55.17%) (Table 1). Six prediction algorithms—
SIFT, PP-2-HumDiv, PANTHER-PSEP, PP-2-HumVar, PredictSNP, and PMut—displayed
NPV values exceeding 90%.

Furthermore, we found that PMut had the highest MCC value (0.79), notably out-
performing the other predictors, followed only by SNPs&GO, which displayed a MCC
of 0.64 (Figure 3E). Overall, the MCC values ranged from −0.09 to 0.79, with a median
value of 0.47. Finally, we evaluated the performance of these prediction algorithms by
calculating their AUC values (Supplementary Figure S3), which ranged from 0.54 to 0.90,
with a median value of 0.82. Compared to the other algorithms, HumVar and PMut had
the highest AUCs (0.90), whereas PROVEAN had the lowest AUC value of 0.54 (Figure 3F).

Surprisingly, we noted that PROVEAN performed poorly in predicting pathogenic
variants of BRCA2, similarly to those previously reported in the BRCA1 dataset. Only
4 of the 29 pathogenic variants in this dataset were correctly predicted as pathogenic by
PROVEAN (Supplementary Table S6).

2.4. Assessing the Effect of Type 1 Circularity on the Performance of the Prediction Algorithms

A persistent challenge encountered in studies of this nature is type 1 circularity, which
occurs when the benchmarking datasets include variants that the prediction algorithms
were trained on. If not properly addressed, type 1 circularity can artificially enhance the
performance of the prediction algorithms and hinder the selection of the top-performing
ones. Although none of the algorithms included in this study were trained on ClinVar
data, we found substantial overlap between our initial datasets and the training datasets of
the following prediction algorithms: PMut, META-SNP, PredictSNP, PhD-SNP, SNPs&GO,
PP-2-HumDiv, and PP-2-HumVar. Therefore, in order to investigate the potential impact
of type 1 circularity on the performance of the abovementioned algorithms, we compared
their performance on a dataset that included variants used to train these algorithms (CircD)
and on a dataset that did not contain overlapping variants (EP) (Supplementary Table S7).
It is pertinent to note that the prediction algorithms SIFT, PROVEAN, and PANTHER-
PSEP were excluded from this analysis for the following reasons: SIFT was trained on
lacI, lysosyme, and HIV protease amino acid substitutions, and so it does not contain
overlapping variants with our benchmark datasets, while PROVEAN and PANTHER-PSEP
lack training datasets.

As shown in Figure 4, the prediction algorithms performed better on the CircD dataset
across all of the evaluated metrics. Although PMut, SNPs&GO, and PP-HumVar were
confirmed to be the top-performing prediction algorithms based on their MCC and AUC
values, their ranking order changed between the datasets. As shown in Figure 3E, PMut
showed one of the highest increases in performance, advancing from third in the EP dataset
to first in the CircD dataset, superseding SNPs&GO and HumVar. In addition, the ranking
of the best performing prediction algorithms based on the AUCs changed substantially, with
SNPs&GO and META-SNP ranking second and third, respectively, as compared to their
respective third and fourth positions in EP (Supplementary Figure S4). Contrary to this,
PP-2-HumVar fell from second to fourth in the CircD dataset despite showing an increase
in its AUC value (Figure 4F). Overall, the median MCC and AUC values increased from
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0.46 and 0.81, respectively, to 0.55 and 0.87 (Supplementary Figure S4). No major changes
were observed in the order of the predictors in the other metrics (Table 2). Therefore,
benchmarking datasets for the evaluation of the prediction algorithms must be carefully
prepared in order to eliminate confusion when selecting the most accurate algorithms.
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Table 2. Performance evaluation of the prediction algorithms in the CircD dataset.

Software ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) MCC AUC M/V

PMut 82.84 84.54 81.26 80.65 85.05 0.657 0.905 16
SNPs&GO 80.63 66.53 93.61 90.57 75.22 0.629 0.892 0
PhD-SNP 76.35 81.78 71.35 72.46 80.95 0.533 0.848 0

PredictSNP 77.40 82.97 72.26 73.38 82.16 0.554 0.641 0
META-SNP 77.49 80.40 74.82 74.63 80.55 0.552 0.871 0

HumDiv 73.69 93.04 55.86 66.01 89.71 0.522 0.853 0
HumVar 78.17 88.67 68.50 72.17 86.77 0.580 0.870 0

ACC: accuracy, SEN: sensitivity, SPE: specificity, PPV: positive predictive value, NPV: negative predictive value,
MCC: Matthews correlation coefficient, AUC: Area under the receiver operating characteristic curve (ROC), M/V:
missing values.

3. Discussion

In this study, we have systematically evaluated the predictive performance of ten com-
monly used prediction algorithms on four independent datasets compiled from the public
database ClinVar [26], the Expert Panel (EP), and circularity (CircD) datasets composed of
missense variants from 21 clinically relevant genes assigned to three-star status and the
BRCA1 and BRCA2 datasets composed of a combination of BRCA1 and BRCA2 variants
assigned to two- and three-star status in ClinVar.

According to our results, three machine learning-based prediction algorithms, HumVar,
SNPs&GO, and PMut, displayed an overall above-average performance in the EP dataset
as compared to the other algorithms. In contrast, PMut, SNPs&GO, and PANTHER-PSEP
outperformed the other prediction algorithms in the BRCA1 dataset, whereas PMut was
the best performing algorithm in the BRCA2 dataset.

As opposed to previous reports [20], the meta-predictors META-SNP and PredictSNP
demonstrated an overall moderate performance across all datasets and did not show
superior performance to the individual predictors.

Consistent with previous studies [11,30,32,34,40], we found that most of the evaluated
prediction algorithms display higher sensitivities than specificities, suggesting that under
current thresholds these algorithms tend to overcall variants as deleterious. This trend was
particularly evident in SIFT, one of the most routinely used tools in clinical settings. As
consistently shown across three benchmarking datasets, SIFT displayed excellent sensitiv-
ities (EP: 92.46%, BRCA1: 96.61%, BRCA2: 93.10%), outperforming all of the prediction
algorithms, albeit with unacceptably low specificities (EP: 51.22%, BRCA1: 39.13%, BRCA2:
53.33%). In a clinical scenario, such low specificity values may result in more invasive
treatments being recommended to patients carrying these false-positive variants [41]. The
opposite was observed for SNPs&GO, which demonstrated the highest specificities in all
datasets (EP: 90.73%, BRCA1: 92.31%, BRCA2: 98.10%) but at the cost of lower sensitivities
(EP: 60.30%, BRCA1: 81.36%, BRCA2: 55.17%).

Furthermore, we found that across all datasets the NPVs were higher than the PPVs,
notably in the BRCA1 and BRCA2 datasets, where 5 of 10 and 6 of 10 predictors, respectively,
displayed NPV values >90%. This can be explained by the low prevalence of pathogenic
variants in the BRCA1 and BRCA2 datasets, which were 39% and 22%, respectively. How-
ever, given the small number of pathogenic variants identified in the BRCA genes, the NPV
values encountered in clinical settings are close to those reported in our study.

Additionally, our results show that the performance of some of the evaluated predic-
tion algorithms varies from gene to gene. In our study, this observation was particularly
evident in the function prediction algorithm PROVEAN, which falsely predicted the ma-
jority of the deleterious variants in the BRCA1 and BRCA2 genes as “neutral”. In contrast,
PROVEAN could accurately predict deleterious variants for other tumor suppressors, such
as MSH2, (22 of 23 deleterious mutations correctly predicted) as shown in the EP dataset,
where PROVEAN displayed a sensitivity of 74.37%.

A possible explanation for the poor performance of PROVEAN in the BRCA genes
could be that the homologs of the BRCA1 and BRCA2 genes are not highly conserved and
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have a low degree of similarity even among closely related species [42]. As an example,
the human and mouse homologs of BRCA1 share only 56% of identity between each other,
as compared to the 92% shared between the mouse MSH2 and its human homolog [42].
The low sequence similarity shared between the BRCA homologs may confound the core
steps of the PROVEAN algorithm. This algorithm initially performs a BLAST [43,44]
search to collect homologous sequences to the query; the retrieved sequences are then
clustered according to a cut-off value of 75% sequence similarity within each cluster,
and only 30 clusters with the highest similarity to the query are utilized to calculate the
alignment scores to the query and mutation sequence as well as the PROVEAN scores [13].
Additionally, alignment accuracy can be drastically reduced in poorly conserved areas
of the protein as well [41]. As a result, the low similarity that exists among the BRCA
homologs could negatively affect the quality of the generated clusters and, consequently,
the alignment and PROVEAN scores. Another possible explanation could be that the
variant amino acid residue, instead of the reference amino acid, is found to be similar to
the aligned amino acid in the homologous sequence, resulting in high delta scores [13].

A similar outcome from a different set of predictors was also reported by Marttoleto
and colleagues [45], who found that some of the evaluated prediction algorithms showed
a better performance for variants occurring in tumor suppressor genes, whereas others
performed better for variants occurring in oncogenes. Our findings are also substantiated by
a recent study conducted by Cubuk and colleagues, who compared 44 computational tools,
including PROVEAN, on a unique dataset of missense variants from five tumor suppressor
genes (BRCA1, BRCA2, MSH2, PTEN, and TP53) which had been clinically validated
through high-throughput functional assays [40]. Based on the reported predictions, we
verified that PROVEAN could correctly predict 4 out of 370 deleterious BRCA1 variants
and 12 out of the 64 deleterious BRCA2 variants. By contrast, it correctly identified 352 of
the 372 deleterious variants reported in MSH2.

Furthermore, our data undermine the current concordance-based approach for variant
interpretation recommended by the ACMG/AMP guidelines (for details, see introduc-
tion) [17]. As we demonstrate here, the utilization of PROVEAN for variant interpretation
in the BRCA genes could potentially disrupt the congruence of other prediction algo-
rithms on the pathogenicity of a given variant, ultimately rendering the computational
evidence inconclusive. Moreover, as previously reported, this discordance driven by the
poor performance of some predictors can result in a higher VUS burden as well [19].

Another objective of this study was to investigate the potential impact of type 1
circularity on the performance of seven machine learning-based prediction algorithms,
namely, PredictSNP, META-SNP, SNPs&GO, PMut, PP-2-HumDiv, PP-2-HumVar, and
PhD-SNP. Based on our results, we found a notable increase in the performance of all of the
prediction algorithms, leading to a shift in the order of the predictors as compared to the
circularity-free dataset (EP). In agreement with previous studies [31], we demonstrated that,
if not accounted for, type 1 circularity can lead to an unrealistic view of the performance of
these seven predictors and can possibly confound tool selection.

Although ClinVar data have been used in several studies to benchmark the perfor-
mances of various computational tools [19,20,30,40], our study differs in several aspects.
First, our datasets were restricted, either solely to missense variants examined by an expert
panel (assigned to a three-star review status) or to a combination of expert panel-reviewed
variants and variants with available assertion criteria without conflict in interpretation (as-
signed to two-star review status). One-star variants were excluded due to the lower level of
evidence associated with them as compared to the two- and three-star variants. For variants
with a one-star rating, assertion criteria are provided by a single submitter or by multiple
submitters but with conflicting interpretations [26]. Second, we investigated the possible
impact of type 1 circularity on the performance of the following predictors: SNPs&GO,
PredictSNP, META-SNP, PMut, and PhD-SNP, which—to the best of our knowledge—has
not been previously reported. Third, our study included the updated version of PMut,
which underwent a major update in 2017. In addition, we included PANTHER-PSEP,
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a relatively recent prediction algorithm developed in 2016 and not widely included in
previous benchmarking studies.

According to our findings, prior to selecting a prediction algorithm, a thorough
investigation of the literature and a critical examination of the reported evaluation metrics
of the various predictors should be undertaken. Consulting a bioinformatician could also
be beneficial, as prediction algorithms also go through major updates, as in the case of
PMut [12]. Furthermore, given the increasing number of missense variants identified from
patient samples and submitted to public databases such as ClinVar, we recommend that
the developers of such algorithms incorporate such variants into the training data, thus
diversifying the origin of the training datasets.

4. Materials and Methods
4.1. Variant Acquisition and Dataset Generation

To evaluate the performance of the prediction algorithms, we compiled four indepen-
dent datasets—their relationship is demonstrated in Figure 5—using missense variants
with known clinical significance from the publicly available database ClinVar. A total
of 1126 (534 pathogenic and 592 benign) variants from 21 genes were retrieved from the
ClinVar database (last accessed: December 2021 to March 2022) based on the following
criteria: (I) clinical significance: pathogenic/likely pathogenic and benign/likely benign;
(II) molecular consequence: missense; and (III) review status: reviewed by an expert
panel. The obtained variants were then filtered to remove duplicates and erroneously
included non-missense variants. This filtering step resulted in 1053 missense variants
(505 pathogenic and 548 benign), which were then screened against the training datasets of
the following prediction algorithms: PredictSNP, PhD-SNP, META-SNP, HumDiv, HumVar,
SNPs&GO, and PMut. All of the pathogenic and benign variants present in the training
datasets of the abovementioned algorithms were removed to avoid inherent bias in their
overall performance introduced by type 1 circularity [31]. To ensure that all predictors
were evaluated on the same set of missense variants, those present in the training dataset
of one algorithm but not the others were also excluded. Moreover, a portion of the benign
variants in the BRCA1 and BRCA2 genes were randomly removed in order to reduce the
imbalance between the pathogenic and benign variants. These steps resulted in 404 mis-
sense variants, 199 pathogenic and 205 benign variants, which were then utilized to form
the expert panel dataset.

Additionally, due to the high degree of overlap between our initial dataset of 1053 fil-
tered variants and the training datasets of the prediction algorithms, we generated an
additional dataset, the circularity dataset. The circularity dataset was composed of the
1053 filtered missense variants and was utilized to analyze the potential effect of type 1
circularity on the performance of the prediction algorithms.

Furthermore, two additional benchmarking datasets were generated to compare the
performance of the prediction algorithms in predicting missense variants in the BRCA1
and BRCA2 genes. The BRCA1- and BRCA2-specific datasets were created by collecting
pathogenic or likely pathogenic and benign or likely benign missense variants for which
assertion criteria by multiple submitters were available without conflicts of interpretation
(assigned to a two-star status in ClinVar) and expert panel-reviewed variants (assigned to a
three-star status in ClinVar). Initially, we obtained a total of 254 BRCA1 and 199 BRCA2
variants from the ClinVar database which were then processed and screened against the
training datasets of the computational tools as described previously. For downstream
analysis, we retained 151 BRCA1 (pathogenic: 59, benign: 92) and 134 BRCA2 variants
(pathogenic: 29, benign: 105).
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4.2. Dataset Composition

The datasets contained missense variants derived from a set of 21 clinically rele-
vant genes, 14 of which were extracted from the PanCancer 405 gene panel provided by
the diagnostics company Delta Bio 2000 Ltd., Szeged, Hungary. This panel—consisting
of 405 genes—was screened against ClinVar, and only those genes that contained both
pathogenic and benign expert panel-reviewed variants were included in the EP and CircD
benchmarking datasets. Genes containing either only pathogenic or benign variants were
filtered out in order to avoid potential bias introduced by type 2 circularity [31].

4.3. Prediction Algorithm Selection

Ten prediction algorithms were selected based on a stringent set of criteria: (I) requiring
only amino acid changes as input; (II) availability of the training dataset(s); and (III) a
minimum of 15 citations in peer-reviewed journals in the two-year period between 2020
and 2022 (excluding benchmarking studies). The last criterion aims to ensure the relevance
of these computational tools in scientific research. The selected prediction algorithms
include the eight individual predictors PANTHER-PSEP, PROVEAN, SIFT, Polyphen2
(HumDiv, HumVar), PMut, PhD-SNP, SNPs&GO, and two consensus predictors, META-
SNP and PredictSNP.

META-SNP combines the output of four well-established predictors, namely, SIFT,
PANTHER, SNAP, and PhD-SNP, whereas PredictSNP combines the input of six predic-
tion algorithms: MAPP, PolyPhen-1, PolyPhen-2, PhD-SNP, SIFT, and SNAP. The main
characteristics of these in silico tools are listed in Supplementary Figure S5, and a detailed
description can be found in Supplementary Text File S1.

4.4. Benchmarking

The performance of ten in silico tools, namely, PANTHER-PSEP, PROVEAN, SIFT,
HumDiv (Polyphen2), HumVar (Polyphen2), PMut, PhD-SNPs, SNPs&GOs, Meta-SNP,
and PredictSNP, was evaluated for each dataset.
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All of the computational tools, apart from SIFT and PhD-SNP, were accessed via their
respective web interfaces and run using default parameters (Supplementary Text File S2).
As input, all tools required either the amino acid sequence in FASTA format or the UniProt
ID of the protein and the amino acid change. Predictions for PROVEAN, HumDiv, HumVar,
and PMut were obtained through batch submissions, while SIFT and PhD-SNP prediction
scores were retrieved from PROVEAN (Protein Batch Mode, Human) and SNPs&GO (All
Methods), respectively.

We retrieved and utilized only canonical protein sequences from the UniProtKB
database [46]. In the case of the MECP2 gene, missense variants in ClinVar were reported
according to their position in the MECP2 Isoform B sequence. The “MVAGMLGLR”
string of amino acids in the MECP2 canonical sequence (UniProt ID: P51608) differs from
the “MAAAAAAAPSGGGGGGEEER” string that is present in the MECP2 Isoform B
(Uniprot ID: P51608-2). In order to utilize the canonical sequence of MECP2, we found the
corresponding amino acid positions, which were then utilized as input for the computa-
tional methods.

4.5. Variant Classification

Predictions for each dataset were generated utilizing author-recommended thresholds
as indicated in their respective publications. META-SNP, PhD-SNP, PMut, and SNPs&GO
classify variants into either “Disease” (score > 0.5) or “Neutral” (score ≤ 0.5) categories,
whereas SIFT classifies variants with scores ≤ 0.05 as “Damaging” and those with scores
above 0.05 as “Tolerated”.

PROVEAN applies a threshold of −2.5, where variants scoring ≤−2.5 are classified
as “Deleterious” and those scoring >−2.5 as “Neutral”. By contrast, Polyphen2 (HumDiv
and HumVar) classifies the variants into three different categories: probably damaging
(0.85 to 1.0), possibly damaging (0.15 to 1.0), and benign (0.0 to 0.15). Similarly, PANTHER-
PSEP classifies variants into probably damaging (preservation time >450 million years),
possibly damaging (preservation time ranges between 200 and 450 million years), and
probably benign (preservation time is less than 200 million years) based on a position-
specific evolutionary preservation (PSEP) score. In addition to the PSEP score, PANTHER
also outputs a probability score (pdel), which indicates the probability of the mutation
affecting protein function. To facilitate the downstream analysis, the outputs from HumDiv,
HumVar, and PANTHER were dichotomized by considering both probably damaging and
possibly damaging variants as damaging. PredictSNP, on the other hand, considers variants
that score within the interval [−1, 0] as “Neutral” and those within [0, +1] as “Deleterious”.

4.6. Performance Evaluation Metrics

Confusion matrices consisting of true positive (TP), false negative (FN), true negative
(TN), and false positive (FP) values were created for each dataset. Variants that were
correctly predicted as deleterious or damaging by the tools were classified as true positives,
while those incorrectly predicted as benign or neutral were classified as false negatives.
Correctly predicted benign or neutral variants were classified as true negatives, whereas
those predicted as deleterious or damaging were classified as false positives.

Based on the generated confusion matrices, we evaluated the performance of the
classifiers using seven metrics: accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), the area under the receiver operating characteristic
(ROC) curve, and the Matthews correlation coefficient (MCC).

The prediction algorithms were categorized into two distinct categories: top-performing
and poor-performing, based on their MCC and AUC values. The Matthews correlation
coefficient was selected as one of the main classification criteria, since it weighs each class
of the confusion matrix equally, and high values can only be generated if the algorithms are
capable of correctly identifying cases in both classes (pathogenic and benign) [47]. Alterna-
tively, the area under the curve (AUC) was chosen, as it determines how well a prediction
algorithm is able to discriminate between benign and pathogenic variants, with values
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closer to 1 indicating a better ability of the prediction algorithms to differentiate neutral
from the deleterious variants [48]. These metrics were calculated in R (version 4.2.0, R Foun-
dation for Statistical Computing, Vienna, Austria) [49] using the cvms (cross-validation for
model selection) package (version 1.3.3, Ludvig Renbo Olsen, Aarhus University, Aarhus,
Denmark) [50]. The graphs were created using the R package ggplot2 (version 3.3.5, Hadley
Wickham [51]. ROC curves and AUC values were generated using the Python library
scikit-learn [52]. The utilized formulas were as follows:

MCC =
(TP × TN) − (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

PPV =
TP

TP + FP
(5)

NPV =
TN

FN + TN
(6)

5. Conclusions

To conclude, our results emphasize the importance of systematic benchmarking of
computational tools on novel datasets composed of variants with a high degree of con-
fidence. The performance of the prediction algorithms varied considerably across the
benchmarking datasets. Accordingly, for the EP dataset, HumVar, SNPs&GO, and PMut
displayed above-average MCC and AUC values, outperforming all of the other prediction
algorithms analyzed in this study. In contrast, PANTHER-PSEP, PMut, and SNPs&GO
were determined to be the best performing prediction algorithms in the BRCA1 datasets,
whereas PMut was determined to be the best performing prediction algorithm for the
BRCA2 dataset. Due to their ability to accurately predict both pathogenic and benign mis-
sense variants in the BRCA1 and BRCA2 genes, we strongly recommend these algorithms
for the classification of missense variants in these two genes.

Additionally, we recommend avoiding the use of PROVEAN for prioritizing variants
in the BRCA1 and BRCA2 genes, since it would hinder the congruence between the utilized
prediction algorithms, rendering the computational evidence futile. Furthermore, using a
specific dataset (CircD), we demonstrated that seven of the evaluated tools were notably
confounded by type 1 circularity, which, if not addressed prior to benchmarking the predic-
tion algorithms, can lead to an artificial increase in their performance and, consequently, to
selection of the wrong algorithms.
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