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Abstract: The application of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) in the treatment of the
rare cholesterol and lipid storage disorder Niemann–Pick disease type C opened new perspectives
in the development of an efficient therapy. Even if the systemic administration of HPBCD was
found to be effective, its low permeability across the blood–brain barrier (BBB) limited the positive
neurological effects. Nevertheless, the cellular interactions of HPBCD with brain capillary endothelial
cells have not been investigated in detail. In this study, the cytotoxicity, permeability, and cellular
internalization of HPBCD on primary rat and immortalized human (hCMEC/D3) brain capillary
endothelial cells were investigated. HPBCD shows no cytotoxicity on endothelial cells up to 100 µM,
measured by impedance kinetics. Using a fluorescent derivative of HPBCD (FITC-HPBCD) the
permeability measurements reveal that on an in vitro triple co-culture BBB model, FITC-HPBCD has
low permeability, 0.50 × 10−6 cm/s, while on hCMEC/D3 cell layers, the permeability is higher,
1.86 × 10−5 cm/s. FITC-HPBCD enters brain capillary endothelial cells, is detected in cytoplasmic
vesicles and rarely localized in lysosomes. The cellular internalization of HPBCD at the BBB can help
to develop new strategies for improved HPBCD effects after systemic administration.

Keywords: blood–brain barrier; 2-hydroxypropyl-beta-cyclodextrin; endocytosis; Niemann–Pick
disease; type C

1. Introduction

Niemann–Pick disease, type C (NPC) is a fatal, lysosomal cholesterol and lipid storage
disorder, with neurological symptoms and visceral involvement [1]. The intracellular trans-
port of cholesterol is inhibited due to the mutation of the NPC1 or NPC2 genes, causing
the accumulation of unesterified cholesterol in lysosomes and late endosomes. Signifi-
cant alterations of glycosphingolipids were also observed in the brain. One of the most
promising treatments of NPC is using cyclodextrins [2,3]. The systemic administration
of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) reduced the cholesterol and ganglioside
accumulation in neurons and significantly increased the lifespan of both Npc1−/− and
Npc2−/− mice [4]. The positive neurological effects of subcutaneous or intraperitoneal
administration of HPBCD were unexpected, as HPBCD was considered to have low perme-
ability through the blood–brain barrier (BBB). The major limiting factor of the effectiveness
of HPBCD in the central nervous system (CNS) after systemic administration is the low BBB
permeation [5]. Indeed, the systemic administration of HPBCD was changed to intrathecal
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administration and proved to be more effective. The result of a non-randomized, open-label,
phase 1–2 trial showed that lumbar intrathecal HPBCD slowed disease progression with an
acceptable safety profile [6]. However, systemic administration is more convenient to the
patients than intrathecal administration. Nanoparticles containing beta-cyclodextrin (BCD)
can be a promising way to improve the bioavailability of CD in the central nervous system
of mice [7]. CD-based macromolecular systems [8,9], or improving the complexation capac-
ity by polymerization [10], can enhance the efficacy of intravenously administered HPBCD,
but the exact mechanism of the transport of HPBCD through the BBB is still undiscovered.
Recent studies in mice show that [14C]-HPBCD has an important interaction with BBB; sig-
nificant [14C]-HPBCD binding to the brain vasculature without crossing of the blood–brain
barrier was revealed [11]. In another study, the4 majority of the [14C]-HPBCD loosely ad-
hered to the luminal surface of brain endothelial cells without evidence of sequestration by
capillaries. Only a small amount crossed the BBB by a non-saturable mechanism consistent
with transcellular diffusion [12]. This phenomenon has not been investigated at cellular
level yet, even though the endocytosis of cyclodextrins was revealed earlier [13,14]. On the
other hand, the intracellular fate of HPBCD is another question. A recent study reported
that significant amount of rhodamine-labeled HPBCD and random methyl-β-cyclodextrin
(RAMEB) was detected in lysosomes after internalization in Caco-2 cells [15]. Other results
show that HPBCD and (2-Hydroxypropyl)-γ-cyclodextrin (HPGCD) mobilize cholesterol
from late endosomes/lysosomes [16], especially via the lysosome-associated membrane
protein 1 (LAMP-1) [17]. Furthermore, HPGCD improved the autophagic functions of
NPC1 patient-derived fibroblasts, resulting in the improvement in cellular homeostasis [18].
In the treatment of the NPC mouse model, equal efficacy, but significantly reduced toxicity,
was found in case of HPGCD compared with HPBCD [19]. According to another study,
the presence of suitable extracellular acceptors is required for the cyclodextrin-dependent
cholesterol exchange from the plasma membrane in U2OS cells [20]. It can be hypothesized
that the endocytosis of HPBCD can take place in the endothelial cells of BBB, therefore,
the aim of this study was to examine the permeability and internalization of HPBCD on
primary rat brain endothelial cells and compare it to immortalized human hCMEC/D3
cells. For this, the fluorescently labelled HPBCD derivative (FITC-HPBCD) was used on
the in vitro BBB models.

2. Results
2.1. Effect of HPBCD on Viability of Brain Endothelial Cells

HPBCD does not change the impedance of primary rat brain endothelial cell monolay-
ers in the range of 0.001–0.1 mM concentrations, but above 0.3 mM (300 µM) concentration,
a decrease in the cell index values indicates cellular toxicity (Figures 1 and 2). Triton X-100
detergent (10 mg/mL) was used as a reference compound, inducing cell toxicity [21,22].
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Figure 2. Effect of 2 h treatment with HPBCD on the viability of primary rat brain endothelial cells.
Values presented are means ± SEM. Statistical analysis: one-way analysis of variance followed by
Dunnett’s post-test. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to control group, n = 6.

Similarly, in the primary rat brain endothelial cells, HPBCD does not decrease the cell
index of hCMEC/D3 monolayers in the range of 0.001–0.1 mM (Figures 3 and 4). Based on
the previous study of Fenyvesi et al. [13], the 50 µM concentration of HPBCD was selected
to test in BBB permeability studies, which can be considered as a safe concentration based
on the toxicity results after 2 h of incubation (Figures 2 and 4).
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measurement.
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are means ± SEM. Statistical analysis: one-way analysis of variance followed by Dunnett’s post-test. 
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Figure 4. Effect of 2 h treatment with HPBCD on the viability of hCMEC/D3 cells. Values presented
are means ± SEM. Statistical analysis: one-way analysis of variance followed by Dunnett’s post-test.
**** p < 0.0001 compared to control group, n = 4 (except in case of 0.05 and 0.01 groups, where n = 3).
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2.2. Uptake of FITC-HPBCD in Brain Endothelial Cells

The uptake of 50 µM FITC-HPBCD after 2 h treatment was visualized in primary rat
brain endothelial cells by confocal microscopy (Figure 5). The green fluorescent signal is
stronger after 24 h treatment monitored in living cells. Claudin-5 staining is concentrated
to the cell border at the interendothelial junctions of fixed brain endothelial cells after 2 h
treatment. The 24 h treatment with FITC-HPBCD results in the loss of continuous staining
pattern in the claudin-5 staining (Figure 5).
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Figure 5. Visualization of the claudin-5 immunostaining (red) on fixed brain endothelial cells after
HPBCD treatment (50 µM, 2 and 24 h) and the uptake of HPBCD (green) in living brain endothelial
cells. Blue: cell nuclei. Bar: 25 µm.

The cellular internalization of FITC-HPBCD on hCMEC/D3 cells was visualized by
fluorescence microscopy (Figure 6). Cyclodextrin-loaded vesicles are detected in the cyto-
plasm after 2 h and 24 h treatments. Claudin-5 immunostaining of hCMEC/D3 monolayers
shows only intracellular presence of the tight-junction protein, therefore, the effect of HP-
BCD on claudin-5 intercellular connections at the cell borders could not be investigated
(Figure 6).
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Figure 6. Fluorescence microscopic images of FITC-HPBCD-treated and untreated hCMEC/D3
cells. (Green: claudin-5 immunostaining on immunohistochemistry image and FITC-HPBCD on
FITC-HPBCD uptake image; blue: cell nuclei) Bar: 20 µm.

2.3. Permeability of FITC-HPBCD across the Culture Models of the BBB

The barrier property of the BBB co-culture model using primary rat brain endothelial
cells was sufficiently tight for the permeability assay based on the Papp values for the
marker molecules (SF: 1.5 × 10−6 cm/s; EBA: 0.12 × 10−6 cm/s, Figure 7) in accordance
with our previous studies [23,24]. The permeability coefficients of FITC-HPBCD in the
A–B direction are 0.50 × 10−6 and in the B–A direction are 0.37 × 10−6 cm/s (Figure 7).
These values indicate a low penetration of FITC-HPBCD across the rat BBB model in both
directions, between the two permeability markers.
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Figure 7. Permeability of FITC-HPBCD (50 µM) and marker molecules (SF, EBA) across the primary-
cell-based BBB model. Values presented are means ± SEM. Statistical analysis: one-way analysis
of variance followed by Dunnett’s post-test. *** p < 0.001, compared to SF treated group, n = 4.
(Papp-apparent permeability coefficient).

In the case of the model using hCMEC/D3 cells, different permeability values are
recorded compared to the primary rat brain endothelial cells. This model is more permeable
to each of the molecules, however there are differences among the permeability values
according to the molecular weights. The small molecule SF has the highest permeability
value of 3.26× 10−5 cm/s, while FD shows the lowest value, 1.0× 10−5 cm/s. The apparent
permeability of FITC-HPBCD is 1.86 × 10−5 cm/s and 2.82 × 10−5 cm/s in the A–B and
B–A directions, respectively (Figure 8.).
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Figure 8. Permeability of FITC-HPBCD (50 µM) and marker molecules (SF, FD) on hCMEC/D3
cells. Values presented are means ± SEM. Statistical analysis: one-way analysis of variance followed
by Tukey’s multiple comparisons post-test. **** p < 0.0001, compared to SF treated group, n for SF
(A—B) = 8; FD (A–B) = 12; F-HPBCD (A–B) = 8; F-HPBCD (B–A) = 4. (Papp—apparent permeability
coefficient).
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2.4. Uptake of FITC-HPBCD by hCMEC/D3 Cells

To further analyze the cellular uptake of FITC-HPBCD, flow cytometric analysis was
performed on hCMEC/D3 cells at 37 ◦C and keeping the cells on ice. hCMEC/D3 cells take
up significantly higher amount of FITC-HPBCD at 37 ◦C than upon cooling, indicating an
active cellular uptake process of the cyclodextrin (Figure 9).
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Figure 9. Uptake of FITC-HPBCD by hCMEC/D3 cells. Fluorescence intensity values of the samples
are normalized to the value of the untreated control and presented as means ± SEM. Statistical
analysis: unpaired t test with Welch’s correction (two-tailed p value). **** p < 0.0001, n = 12 for ‘37 ◦C’
and n = 13 for ‘on ice’.

2.5. Investigation of the Lysosomes
2.5.1. Fluorescence Microscopy

The intracellular localization of FITC-HPBCD after internalization into hCMEC/D3
cells was investigated by simultaneous fluorescence staining of lysosomes, in order to
reveal the intracellular fate of cyclodextrins. Figure 10 shows that FITC-HPBCD can be
detected in intracellular vesicles (green) after 30 min or 2 h of incubation, but only a smaller
fraction of vesicles colocalize (yellow) with lysosomes (red) even after 2 h of incubation.

2.5.2. Flow Cytometry

The formation of lysosomes in hCMEC/D3 cells was further investigated by flow
cytometry after 30 min or 2 h of incubation with cyclodextrins (Figure 11). In this exper-
iment, both FITC-HPBCD and unlabeled HPBCD were applied to have proper controls
for the fluorescence measurements. The red fluorescence of lysosomes does not increase
significantly after 30 min or 2 h of HPBCD or FITC-HPBCD incubation (p > 0.05 for both
molecules), compared only to the LysoTracker-stained control. The green cellular fluores-
cence of FITC-HPBCD is approximately twice as high after 2 h of incubation than after
30 min, indicating the continuous cellular uptake of cyclodextrins. The comparison of the
red fluorescence intensities of LysoTracker at the different time points reveals that there
is no significant difference between the 30 min and 2 h values of lysosomal fluorescence
(p > 0.05 for both HPBCD and FITC-HPBCD). The longer incubation of cells with HPBCD
or FITC-HPBCD does not increase the number or the activity of lysosomes.
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Figure 10. Fluorescence microscopic images of FITC-HPBCD containing intracellular vesicles and
lysosomes in hCMEC/D3 cells after 30 min and 2 h of incubation. Blue: cell nuclei, green: FITC-
HPBCD, red: lysosomes stained with Lysotracker, yellow pixels: colocalization of FITC-HPBCD and
lysosomes. Bar: 20 µm.
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Figure 11. Results of flow cytometry analysis of lysosomal fluorescence of hCMEC/D3 cells after
30 min (A) or 2 h (B) of HPBCD and FITC-HPBCD incubation at 50 µM concentration. Red lysosomal
fluorescence does not increase significantly after HPBCD or FITC-HPBCD treatments compared to
untreated cells (n.s; p > 0.05 for both molecules). FITC-HPBCD accumulation significantly increases
green cellular fluorescence compared to control cells (*** p < 0.001). Red fluorescence: LysoTracker,
green fluorescence: FITC-HPBCD. Values are presented as means ± S.D. n = 4.



Molecules 2022, 27, 7738 8 of 15

3. Discussion

Enormous effort was made to develop efficient drugs of NPC in recent years. Until
now, the number of available treatments was limited, and the attention was mainly focused
on HPBCD. Earlier, HPBCD was used as a pharmaceutical excipient to improve drug
solubility and bioavailability, but the effectiveness of this cyclodextrin in NPC shed light on
new strategies in the treatment of cholesterol storage disorders and neurological diseases
related to cholesterol [25]. Presumably, the effectiveness of HPBCD in the treatment of
NPC is based on the complexation of cholesterol and immobilization from intracellular
pools. However, depending on the site of administration, HPBCD must at least overcome
the barrier of the cell membrane in order to reach the sequestered cholesterol in late en-
dosomes/lysosomes. After intravenous administration, HPBCD must also overcome the
BBB to develop its positive neurological effects. There are different theories to explain
the positive effect of HPBCD on BBB [4], but the interaction of this cyclodextrin with the
brain capillary endothelial cells regarding its cellular internalization has not been exam-
ined yet. At first, the cytotoxicity of HPBCD was tested on primary rat brain endothelial
cells and human hCMEC/D3 cells, and it was found that up to 100 µM HPBCD has no
cytotoxicity. This was in accordance with earlier findings, where HPBCD was non-toxic on
immortalized murine microvascular endothelial cells of the blood–brain barrier [26]. To
study the permeability of HPBCD, the fluorescently labeled derivative (FITC-HPBCD) was
used on the in vitro triple co-culture blood–brain barrier model, and also the hCMEC/D3
model. According to the results, FITC-HPBCD has low permeability on the rat BBB model,
which agrees with the in vivo findings [11,12] and the results obtained with the in vitro BBB
model with HPBCD [27]. Nevertheless, hCMEC/D3 monolayers show much less TEER
and higher apparent permeability of HPBCD, even if the different permeabilities of marker
molecules correspond to their molecular weight and show a functional barrier. The weak
barrier property is in agreement with the low expression of claudin-5 tight-junction protein
on hCMEC/D3 cells, while in primary rat brain endothelial cells, claudin-5 is well visible on
the cell borders [28]. The permeability of fluorescein measured on hCMEC/D3 monolayers
in an earlier study of Veszelka et al. is comparable to the presented results, showing the
weak barrier properties of this cell line [28]. In this study, the cellular internalization of
FITC-HPBCD was also investigated in both cell lines. According to the results, after 24 h
incubation, a significant amount of FITC-HPBCD could be detected in the intracellular
vesicles of primary rat brain endothelial cells, while in hCMEC/D3 cells, the green vesi-
cles could be detected in endosomes after 30 min and the process could be inhibited by
cooling. This is in accordance with previous findings, where Caco-2 cells internalize the
fluorescence derivatives of HPBCD and RAMEB within 30 min of incubation [13,15,29],
and in human umbilical vein endothelial cells (HUVECs), FITC-HPBCD could be detected
too [30]. Interestingly, the cellular fluorescence measured by flow cytometer is different in
the above-mentioned cell lines, indicating the different ability of cell types to internalize cy-
clodextrins. The possible explanation of the intracellular localization of FITC-HPBCD in the
brain endothelial cells is that FITC-HPBCD enters the cells by endocytosis. This mechanism
can also explain the unusual in vivo behavior of HPBCD at the BBB, by binding to the brain
vasculature [11] or initiating the transcellular diffusion through endothelial cells [12]. The
intracellular fate of cyclodextrins in brain-derived endothelial cells has not been examined
yet. For the further investigations of lysosomes, only hCMEC/D3 cells were used, because
of the limited availability of primary rat brain endothelial cells, while, on the other hand,
this cell type shows the rapid internalization of FITC-HPBCD. In this study, the localization
of FITC-HPBCD in late endosomes/lysosomes was investigated and it was found that only
some lysosomes contained FITC-HPBCD on the fluorescence images of hCMEC/D3 cell
layers. There is also a great difference compared to Caco-2 cells, where a significant amount
of FITC-HPBCD localizes in lysosomes after internalization [15]. The internalization of
cyclodextrins does not increase the fluorescence of lysosomes, indicating that probably
neither the number of lysosomes or the lysosomal activity are increased by internalized
HPBCD in the brain endothelial cells. In NPC1 mutant cells, HPBCD-treatment significantly
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increases the expression of lysosome-associated membrane protein 1 [17], indicating that
the regulation of fine molecular mechanisms of cholesterol transport can be influenced and
the mechanism of action of HPBCD is complex. On the other hand, the pathophysiology of
NPC is also complex, and requires new combinative therapies with HPBCD. An alternative
combination of VEGF overexpression in the brain and HPBCD systemic administration
shows a synergistic effect and improvement in the pathophysiology of NPC [31].

In conclusion, the reported mechanism in this study can open new routes for drug
development. Even if HPBCD cannot permeate the BBB in large amounts, it may enter
the endothelial cells and start the cholesterol mobilization at the BBB. Modified HPBCD
derivatives may have more efficient cellular internalization and better permeability. By
applying more effective HPBCD derivatives, the intravenous doses could also be decreased
in the treatment of neurological diseases [25]. On the other hand, further investigations are
needed to reveal the exact internalization mechanism and its role in cholesterol mobilization
at the BBB.

4. Materials and Methods
4.1. Reagents

All reagents were purchased from Merck (Budapest, Hungary), unless otherwise
indicated. HPBCD and 6-deoxy-6-[(5/6)-fluoresceinylthioureido]-(2-hydroxypropyl)-β-
cyclodextrin (FITC-HPBCD) were the products of Cyclolab Ltd. (Budapest, Hungary). FITC-
HPBCD product number: CY-F-2005.1, average degree of substitution (DS) determined by
NMR was DS = 0.7 for FITC and DS = 4.1 for hydroxypropyl group. FITC-HPBCD was
purified by extensive dialization to remove impurities. Free dye and 6-deoxy-6-monoamino-
HPBCD contents were tested by capillary electrophoresis (CE) and were below limit of
detection. Stock solution of the cyclodextrin was prepared in sterile distilled water, from
which treatment solutions were made in culture medium.

4.2. Cell Cultures

Isolation of rat brain endothelial cells, glia, and pericytes, and the construction of
the in vitro BBB model, was established according to the method described in our previ-
ous studies [23,24]. After isolation, cells were cultured on dishes (Corning, Costar, New
York, NY, USA) coated with 100 µg/mL collagen type IV and 100 µg/mL fibronectin in
sterile distilled water. Endothelial cells were cultured in DMEM/HAM’s F-12 (Gibco,
Life Technologies, Carlsbad, CA, USA), 15% plasma-derived bovine serum (PDS, First
Link, Wolverhampton, UK), 100 µg/mL heparin, medium supplement with 5 µg/mL in-
sulin, 5 µg/mL transferrin, 5 ng/mL sodium selenite (ITS, Pan-Biotech Gmbh, Germany),
1 ng/mL basic fibroblast growth factor (bFGF, Roche, Basel, Switzerland), and 50 µg/mL
gentamycin. During the first three days, the culture medium of endothelial cells contained
3 µg/mL puromycin to eliminate P-glycoprotein negative, contaminating cell types [32].
For the triple co-culture BBB model, in addition to brain endothelial cells, primary rat brain
pericytes and glial cell cultures were performed. Pericytes were isolated using the same
method as brain endothelial cells, except that pericytes were cultured in uncoated dishes in
DMEM/HAM’s F-12 supplemented with 10% fetal bovine serum (FBS, Pan-Biotech GmbH,
Germany) and did not receive puromycin. Primary glial cells were prepared from one-
day-old Wistar rats, as previously described [23], and passaged to 12 well plates (Corning,
Costar, New York, NY, USA) coated with collagen type IV (100 µg/mL in sterile distilled
water). Rat glial cells were cultured in DMEM/HAM’s F-12 supplemented with 10% FBS
for two weeks before using them for the triple-culture BBB model.

The human immortalized hCMEC/D3 cells (Merck KGaA, Darmstadt, Germany,
Cat. # SCC066) were cultured in EndoGRO-MV Complete Culture Media (supplemented
with the components of the kit and fibroblast growth factor 2 (FGF-2) at 1 ng/mL final
concentration). Cell culture flasks and the membranes of culture inserts were coated with
1:20 diluted collagen type I in phosphate-buffered saline (PBS).
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4.3. Measurement of Cellular Toxicity

Kinetics of the reaction of rat brain endothelial cells to the HPBCD treatment were
monitored by impedance measurement at 10 kHz (xCELLigence RTCA-SP instrument;
Agilent, Santa Clara, CA, USA). Impedance measurement is a label-free, real time, non-
invasive method, and correlates linearly with adherence, growth, number, and viability
of cells [22]. For background measurements, 50 µL cell culture medium was added to the
wells, then cells were seeded at a density of 5 × 103 cells/well to rat tail collagen-coated
96-well plates with integrated gold electrodes (E-plate 96, ACEA Biosciences, San Diego,
CA, USA). Cells were cultured for 4 days and monitored every 5 min until the end of
experiments. At the beginning of plateau phase of growth, cells were treated with HPBCD
(0.001–10 mM) for 15 h. Cell index was defined as Rn-Rb at each time point of measurement,
where Rn is the cell–electrode impedance of the well when it contains cells, and Rb is the
background impedance of the well with the medium alone.

To determine the cytotoxicity of different concentrations of HPBCD on hCMEC/D3
cells an RTCA-DP Instrument (XCelligence system, ACEA Biosciences Inc., San Diego,
CA, USA) was used. In this experiment, 1 × 104 hCMEC/D3 cells/well were seeded on
E-plates. After 3 days of incubation and reaching of plateau phase of growth, cells were
treated with HPBCD solutions in different concentrations. The control group received
culture medium. For both cell types, Triton-X100 was used as a reference agent to induce
cell death. Cells were incubated with the solutions for 72 h and the cell index was measured
every hour. Values were expressed as normalized cell index calculated by the software of
the instrument.

4.4. Establishment of the In Vitro Triple Co-Culture Blood–Brain Barrier Model

Primary cultures of rat brain endothelial cells, glia, and pericytes, and construction
of the in vitro blood–brain barrier (BBB) model were prepared according to the method
in our previous studies [23,33]. For the establishment of the BBB model, pericytes were
passaged at 1.5 × 104 cells / cm2 density to the bottom side of 12-well tissue culture inserts
(Transwell®, polycarbonate membrane, 0.4 µm pore size, Millicell, Merck, Germany). After
attachment of pericytes, endothelial cells at the density of 7.5 × 104 were seeded to the
upper side of the membranes. Culture inserts were placed in 12-well plates containing glial
cells with endothelial culture medium in both compartments. After three days of co-culture,
when brain endothelial cells reached confluency and made tight barrier based on TEER
measurements, we used the endothelial cells for permeability experiments.

4.5. Measurement of the Integrity of the Paracellular Barrier

Transendothelial electrical resistance (TEER), reflecting the tightness of the interen-
dothelial junctions, was measured by an EVOM Volt-ohmmeter (World Precision Instru-
ments, Sarasota, FL, USA) combined with STX2 electrodes, and expressed relative to the
surface area of the monolayers (Ω cm2). Resistance of cell-free inserts (100 Ω cm2) was
subtracted from the measured values. The BBB model based on primary rat cells showed a
TEER value of 292 ± 23 Ω cm2 (n = 10), indicating good barrier properties for the perme-
ability assay. The hCMEC/D3 monolayer showed a TEER value of 53 ± 15 Ω cm2 (n = 40)
before the experiments, indicating weaker barrier properties compared to primary rat brain
endothelial cells.

4.6. Visualization of the Uptake of FITC-HPBCD in Brain Endothelial Cells

To visualize the cellular uptake of the FITC-HPBCD, primary rat brain endothelial cells
were grown on glass-bottom Petri dishes (Greiner Bio-One, Monroe, NC, USA) coated with
collagen IV and fibronectin and treated with 50 µM FITC-HPBCD for 2 or 24 h. To stain
cell nuclei, Hoechst dye 33342 (1 µg/mL; 10 min) was used. After incubation, living cells
were washed three times with Ringer–Hepes buffer (118 mM NaCl, 4.8 mM KCl, 2.5 mM
CaCl2, 1.2 mM MgSO4, 5.5 mM D-glucose, 20 mM Hepes, pH 7.4) supplemented with 1%
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PDS, and examined with a confocal laser scanning microscope (Olympus Fluoview FV1000,
Olympus Life Science Europa GmbH, Hamburg, Germany).

The cellular uptake experiment on hCMEC/D3 cells was performed as follows:
1 × 105 cells/well were seeded on round glass cover-slips placed into 24-well plates. Two
days later, cells were washed once with Hank’s Balanced Salt Solution (HBSS) and incu-
bated for 2 h or 24 h at 37 ◦C with 50 µM FITC-HPBCD solution. After incubation, cells
were washed three times with HBSS and fixed with 3.7% paraformaldehyde solution for
15 min at room temperature. After fixation, cells were washed three times with HBSS and
cell nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI; 283 nM) for 10 min at
room temperature. The cells were washed once with HBSS and the round glass cover-slips
were mounted to glass microscope slides. Fluorescence microscopy measurements and
analyses were carried out by a Zeiss Axioscope A1 microscope (Jena, Germany). The
following filters were used to examine the samples: DAPI: excitation G 365 nm, emission
BP 445/50 nm; fluorescein: excitation BP 470/40 nm, emission BP 525/50 nm.

4.7. Immunostaining of Claudin-5 in Brain Endothelial Cells

To see the effect of FITC-HPBCD on integral membrane junctional protein claudin-5,
primary rat brain endothelial cells were cultured on collagen IV and fibronectin-coated
glass cover slips. After 50 µM HPBCD treatment for 2 or 24 h, cells were fixed with ethanol–
acetic acid (95:5 v/v) for 5 min, blocked with 3% bovine serum albumin diluted in PBS,
and incubated overnight with primary antibody anti-claudin-5 (rabbit polyclonal antibody,
1:200, AB_10753223). Incubation with secondary antibody Cy3-labeled anti-rabbit IgG, and
Hoechst dye 33342, for nucleus staining, lasted for 1 h. Cells were washed three times with
PBS between incubations. After mounting the samples (Fluoromount-G; Southern Biotech,
Birmingham, AL, USA), staining was visualized by Olympus Fluoview FV1000 confocal
laser scanning microscope (Olympus Life Science Europe GmbH, Hamburg, Germany).

hCMEC/D3 cells were seeded onto sterile collagen-coated glass microscope cover
slides at a density of 5 × 104 cells/slide and cultured until the formation of monolayers.
Cells were washed with Hank’s Balanced Salt Solution (HBSS) three times and fixed with
acetone/methanol 1:1 for 10 min at 4 ◦C. Cells were washed with HBSS three times and
incubated in fetal bovine serum (FBS) for 30 min at room temperature to block the unspecific
binding sites. Samples were washed again with HBSS three times, and primary staining
was accomplished using mouse anti-human claudin-5 antibodies (1:200 dilution). After
washing with HBSS three times, secondary labelling with Alexa Fluor 488 conjugated
goat-anti-mouse IgG (1:400 dilution) was performed. Cell nuclei were stained with bis-
benzimide and the samples were mounted on glass microscope slides for analysis. All
antibodies were from Thermo Fisher Scientific (Waltham, MA, USA). For TJ protein staining,
samples were observed by Zeiss Axio Scope.A1 fluorescence microscope (HBO 100 lamp)
(Carl Zeiss Microimaging GmbH, Gottingen, Germany). Images were analyzed with ZEN
2012 v.1.1.0.0. software (Carl Zeiss Microscopy GmbH, Gottingen, Germany).

4.8. Permeability Measurements

The permeability of the FITC-HPBCD across the primary-cell-based BBB model was
measured in the apical-to-basolateral (A–B, blood-to-brain) and basolateral-to-apical (B–A,
brain-to-blood) directions at 37 ◦C in permeability buffer (phenol red free DMEM/F12
medium supplemented with 1% PDS, 1% ITS, and 1% HEPES) [22]. In the A–B perme-
ability assay, cell culture medium was changed in the lower compartment of the inserts to
1500 µL permeability buffer. In the upper (donor) compartment, medium was replaced by
permeability buffer containing 50 µM of FITC-HPBCD. In the case of the B–A permeability
direction, cell culture medium was changed in the lower compartment of the inserts to
1500 µL permeability buffer containing 50 µM of cyclodextrin, and the upper (receiver)
compartment medium was replaced by 500 µL permeability buffer. To check the monolayer
integrity inserts with the BBB model were incubated with 10 µM sodium fluorescein (SF,
376 Da) and Evans blue-albumin (EBA, 67 kDa; 167.5 µg/mL and 1 mg/mL, respectively)
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passive hydrophilic permeability marker molecules. The culture plates were kept in a
37 ◦C incubator with 5% CO2 for 120 min on a rocking platform. Permeability measure-
ment was also performed on cell-free inserts to test the cyclodextrin passage across the
membrane alone. After 120 min incubation, samples from all compartments were collected
and the concentration of FITC-HPBCD and the marker molecules were determined with
spectrofluorometer (Fluorolog 3, Horiba Jobin Yvon, Edison, NJ, USA).

The apparent permeability coefficients (Papp) of the test compounds were calculated as
we described previously [28]. Briefly, cleared volume was calculated from the concentration
of the tracer in the acceptor compartment ([C]A) after 120 min (t) and donor compartments
at 0 h ([C]D), the volume of the acceptor compartment (VA; 1.5 or 0.5 mL), and the surface
area available for permeability (A; 1.1 cm2) by the following equation:

Papp (cm/s) =
[C]A × VA

A× [C]D × t
(1)

For permeability measurements, hCMEC/D3 cells (2.5× 105 cells /insert) were seeded
on culture inserts (Corning Costar 3401 Transwell®, polycarbonate membrane, 0.4 µm pore
size, Millicell, Merck, Germany). ENDOGRO-MV culture medium was changed every
2–3 days on the cells. The model was used two weeks after seeding. The integrity of
the monolayer was monitored by TEER measured with a Millicell–ERS volt-ohmmeter
(Millipore, Billerica, MA, USA). In the case of hCMEC/D3 cell line, the permeability
measurements were performed with the same protocol as in the case of primary rat brain
endothelial cells with the following differences: cells were kept in ENDOGRO-MV culture
medium, and SF, FITC-HPBCD, and FITC-dextran (4 kDa) solutions were used (1 mM stock
solutions in HBSS were diluted in ENDOGRO-MV culture medium to a final concentration
of 50 µM). Samples were collected from the donor compartment at 0 and 120 min and
from the acceptor compartment at 30, 60, and 120 min (100 µL sample volumes were
always replaced with ENDOGRO-MV). In permeability experiments, TEER values were
also measured at the beginning and at the end of sampling to check monolayer integrity
and follow the effects of cyclodextrin treatments.

4.9. Uptake of FITC-HPBCD by hCMEC/D3 Cells, a Flow Cytometric Analysis

For flow cytometric measurement, hCMEC/D3 cell suspension was used (detached
cells were washed two times with HBSS). The cell concentration was set to 1× 106 cells/mL
using HBSS. In each experiment, the cellular fluorescence of untreated control cells, 50 µM
FITC-HPBCD treated at 37 ◦C for 30 min, and 50 µM FITC-HPBCD treated on ice for 30 min
was measured in duplicates. After treatment, samples were washed three times with
ice-cold HBSS, kept on ice, and propidium iodide (1 µg/mL) was added to exclude dead
cells. Measurement was made with Guava easyCyte HT flow cytometer (Merck, Darmstadt,
Germany). GreenB and RedB channels were used to analyze the cellular fluorescence.
Three or four independent experiments were carried out.

4.10. Investigation of the Lysosomes
4.10.1. Fluorescence Microscopy

Fluorescence microscopy investigation of lysosomes was carried out as described
earlier on Caco-2 cells [15]. hCMEC/D3 cells (5 × 104 cells/well) were cultured on round
glass coverslips placed into 24-well plates. Three days later, cells were washed once with
HBSS and incubated for 30 min or 2 h at 37 ◦C with 50 µM FITC labeled or unlabeled
HPBCD solutions. In the last 30 min of experiment, LysoTracker® fluorescent reagent at
50 nM was added to the samples. Then, cells were washed three times with HBSS and fixed
with 3.7% formaldehyde solution for 15 min at room temperature. After fixation, cells were
washed three times with HBSS, and cell nuclei were stained with DAPI (283 nM) for 10 min
at room temperature. Cells were washed once with HBSS and the round glass cover-slips
were glued to the slides. Fluorescent microscopy measurements and analyses were carried
out by a Zeiss Axioscope A1 (Carl Zeiss AG, Jena, Germany) fluorescent microscope. The
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following filters were used to examine the samples: DAPI: excitation G 365 nm, emission
BP 445/50 nm; fluorescein: excitation BP 470/40 nm, emission BP525/50 nm; rhodamine:
excitation BP 546/12 nm, emission BP 575–640 nm.

4.10.2. Flow Cytometry

In this experiments, FITC-HPBCD and HPBCD were used similarly to the earlier
investigations [15]. hCMEC/D3 cell suspension was prepared by trypsinization of cells
with 0.05% trypsin–EDTA solution, washed twice with HBSS, and the cell concentration
was set to 1× 106 cells/mL. Cells were pre-incubated with 50 µM cyclodextrin solutions for
30 min or 2 h at 37 ◦C. For the last 30 min of incubation, 50 nM LysoTracker® reagent was
added to the cells. After incubation time, cells were washed twice with ice-cold HBSS and
fixed with 1% PFA. Cellular fluorescence was analyzed by Guava Easy Cyte 6HT-2L flow
cytometer (Merck Ltd., Darmstadt, Germany). FITC-labeled cyclodextrins were analyzed
by using 488 nm excitation and 525/30 nm emission wavelengths (green channel), while
LysoTracker was measured at 695/50 nm.

4.11. Statistics

Data are presented as means ± SEM. Values were compared using one-way ANOVA
following Dunnett post-tests (GraphPadPrism 5.0 and 7.0; GraphPad Software, (GraphPad
Software Inc., San Diego, CA, USA). Changes were considered statistically significant at
p < 0.05. The number of parallel samples was 4–8.
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as by the ÚNKP-22-3-SZTE-446 New National Excellence Program of the Ministry for Innovation
and Technology from the source of the National Research, Development and Innovation. M.M.
was supported by the research grant (PD 138930) of the National Research, Development and
Innovation Office, Budapest, Hungary, the Gedeon Richter Plc. Centenarial Foundation (H-1103
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