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System size dependent avalanche statistics in the limit of high disorder
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We investigate the effect of the amount of disorder on the statistics of breaking bursts during
the quasi-static fracture of heterogeneous materials. We consider a fiber bundle model where the
strength of single fibers is sampled from a power law distribution over a finite range, so that the
amount of materials’ disorder can be controlled by varying the power law exponent and the upper
cutoff of fibers’ strength. Analytical calculations and computer simulations, performed in the limit
of equal load sharing, revealed that depending on the disorder parameters the mechanical response of
the bundle is either perfectly brittle where the first fiber breaking triggers a catastrophic avalanche,
or it is quasi-brittle where macroscopic failure is preceded by a sequence of bursts. In the quasi-
brittle phase, the statistics of avalanche sizes is found to show a high degree of complexity. In
particular, we demonstrate that the functional form of the size distribution of bursts depends on the
system size: for large upper cutoffs of fibers’ strength, in small systems the sequence of bursts has a
high degree of stationarity characterized by a power law size distribution with a universal exponent.
However, for sufficiently large bundles the breaking process accelerates towards the critical point
of failure which gives rise to a crossover between two power laws. The transition between the two
regimes occurs at a characteristic system size which depends on the disorder parameters.

I. INTRODUCTION

The disorder of materials plays a crucial role in fracture
phenomena when subject to mechanical loads. Exper-
iments and theoretical calculations revealed that under
constant or slowly varying external loads the fracture of
heterogeneous materials proceeds in bursts of local break-
ings [1–6]. Such crackling events can be recorded in the
form of acoustic signals providing insight into the micro-
scopic dynamics of the fracture process [7–10]. Cracking
bursts can be considered as precursors of the ultimate
failure of the system, so that they can be exploited to
forecast the impending catastrophic event [10–18].
The intensity of the crackling activity has been found

to depend on the degree of materials’ disorder [11, 19, 20]:
in the limiting case of zero disorder, the ultimate failure
occurs in an abrupt way with hardly any precursory ac-
tivity [21, 22]. However, the presence of disorder gives
rise to a gradual cracking process where macroscopic fail-
ure occurs as a result of the intermittent steps of damage
accumulation [23–25]. Recently, experiments have been
performed on the compressive failure of porous glass sam-
ples where the degree of heterogeneity could be well con-
trolled during the sample preparation [11]. These exper-
iments have shown that increasing disorder gives rise to
a more intensive bursting activity with a higher number
of cracking events whose size spans a broader range. As
a consequence, the precision of failure forecast methods
was found to improve with increasing disorder [11].
Motivated by these recent findings, here our goal is to

investigate the statistics of crackling noise in the limit-
ing case of extremely high disorder. The fiber bundle
model (FBM) provides an adequate framework [26–32]
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to study the statistics of breaking avalanches allowing for
a simple way to control the degree of disorder [31, 33–
37]. In FBMs the sample is discretized in terms of par-
allel fibers where controlling the mechanical response,
strength and interaction of fibers various types of mate-
rials’ behaviours can be captured. Disorder can be repre-
sented by the random strength of fibers while their Young
modulus is kept constant. In our study, high disorder is
realized by a power law distribution of fibers’ strength
over a finite range where the amount of disorder can be
controlled by the exponent and by the upper cutoff of the
strength values.

Assuming equal load sharing after fiber breakings, we
demonstrate that the fat tailed microscale disorder has a
substantial effect on the statistics of breaking bursts of
fibers. In particular, we show that the functional form
of the burst size distribution depends on the size of the
bundle: when the upper cutoff of fibers’ strength is in-
finite the burst size distribution is a power law with a
universal exponent. However, in the case of finite up-
per cutoff strength, for small system sizes the size dis-
tribution is identical with the one of the infinite cutoff
strength. Deviations start at a characteristic system size
beyond which a crossover occurs to another functional
form. We give an explanation of the system size depen-
dent avalanche statistics in terms of the extreme order
statistics of breaking thresholds.

II. FIBER BUNDLE MODEL WITH

FAT-TAILED DISORDER

We consider a bundle of N parallel fibers, which are as-
sumed to have a perfectly brittle behavior with a Young’s
modulus E and breaking threshold σth. The Young’s
modulus is assumed to be constant E = 1 so that materi-
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als’ disorder is captured by the randomness of the break-
ing threshold σth. The strength of individual fibers σi

th,
i = 1, . . . , N is sampled from a probability density p(σth).
The amount of disorder in the system can be controlled
by varying the range σmin

th ≤ σth ≤ σmax
th of strength

values and by the functional form of p(σth). FBMs with
moderate amount of disorder have been widely studied
in the literature considering uniform, Weibull, and Gaus-
sian distributions making the avalanche statistics of this
universality class well understood [28, 32].
To realize the limiting case of extremely high disorder,

a fat tailed disorder distribution is considered, i.e. we im-
plement a power law distribution of breaking thresholds
over the range σmin

th ≤ σth ≤ σmax
th with the probability

density

p(σth) =















0, σth < σmin
th ,

Aσ
−(1+µ)
th , σmin

th ≤ σth ≤ σmax
th ,

0, σmax
th < σth.

(1)

In our calculations, the lower bound of thresholds σmin
th

is fixed to σmin
th = 1, while the amount of disorder is con-

trolled by varying the power law exponent µ and the
upper bound σmax

th of thresholds. The value of σmax
th

covers the range σmin
th ≤ σmax

th ≤ +∞, while the dis-
order exponent is varied in the interval 0 ≤ µ < 1. For
this choice of µ, in the limiting case of an infinite upper
bound σmax

th → ∞ the thresholds do not have a finite
average, hence, varying the two parameters µ and σmax

th
the amount of disorder can be tunned in the bundle be-
tween the extrems of zero and infinity. Of course, at finite
cutoffs σmax

th , the average fiber strength 〈σth〉 is always
finite, however, the specific values of σmax

th and µ have a
very strong effect on the behavior of the system both on
the macro- and micro-scales. The cumulative distribu-
tion P (σth) can be obtained from the normalized density
as

P (σth) =















0 σth < σmin
th ,

σ−µ
th − (σmin

th )−µ

(σmax
th )−µ − (σmin

th )−µ
, σmin

th ≤ σth ≤ σmax
th ,

1 σmax
th < σth.

(2)

After fiber failure, we assume that the excess load of
broken fibers is equally redistributed over the remaining
intact ones. Hence, the constitutive equation σ(ε) of the
bundle can be obtained from the general form σ(ε) =
Eε[1 − P (Eε)] by substituting the distribution function
P (x) from Eq. (2)

σ(ε) =















ε, 0 ≤ ε ≤ εmin,
ε
(

ε−µ − ε−µ
max

)

ε−µ
min − ε−µ

max

, εmin ≤ ε ≤ εmax,

0, εmax < ε.

(3)

For brevity, we introduce the notation εmin = σmin
th /E,

εmax = σmax
th /E, with E = 1, for the lower and upper
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FIG. 1. Stress-strain curves σ(ε) of the bundle (a) for a fixed
value of the upper cutoff εmax = 40 varying the exponent µ,
and (b) for a fixed µ = 0.7 exponent varying the upper cutoff
εmax by means of the multiplication factor λ, where εmax =
λεcmax. Approaching the phase boundary, in both cases the
system becomes more and more brittle, i.e. the maximum of
σ(ε) is preceded by a smaller and smaller amount of fiber
breakings. For comparison, the curve corresponding to the
case of an infinite upper cutoff εmax → ∞ is also presented.

bounds of strength in terms of strain. The stress-strain
relation of the bundle is illustrated in Fig. 1. Perfectly
linear behaviour is obtained up to the lower bound εmin,
since no fibers break in this regime. After fiber breaking
sets on, the constitutive curve becomes gradually non-
linear and develops a maximum whose position εc and
value σc define the tensile strength of the bundle. Both
the critical strain εc and stress σc depend on the degree
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of disorder characterized by µ and εmax

εc = εmax(1 − µ)1/µ, (4)

and

σc =
µ(1− µ)1/µ−1ε1−µ

max

ε−µ
min − ε−µ

max

. (5)

Recently, we have shown that if the threshold distribution
Eq. (1) of the model is sufficiently narrow, already the
first fiber breaking can trigger the immediate failure of
the entire bundle [38]. It can be observed in Fig. 1 that
this occurs when the position of the maximum of the
constitutive curve εc coincides with the lower bound εmin

of the fibers’ strength. It follows that for all exponent
values µ there exists a critical upper bound εmax

c so that
in the range εmax < εcmax the bundle exhibits a perfectly
brittle behaviour. Perfect brittleness means that under
stress or strain controlled loading the breaking of the
weakest fiber gives rise to an immediate abrupt failure of
the bundle, or in a softening behaviour, respectively. The
critical upper bound can be obtained from Eqs. (4,5) as

εcmax =
εmin

(1− µ)1/µ
. (6)

The results imply that at a given value of the exponent µ
in the parameter regime εmax > εcmax a quasi-brittle re-
sponse is obtained where macroscopic failure is preceded
by breaking avalanches. The phase boundary separating
the brittle and quasi-brittle behaviours of the system is
given by the relation Eq. (6). The phase diagram of the
system is illustrated in Fig. 2 on the µ−εmax plane. Note
that as the exponent µ approaches 1 from below the value
of εcmax diverges so that the regime µ ≥ 1 is always brit-
tle. When presenting results at a fixed exponent µ, it is
instructive to characterize the upper cutoff εmax of fibers
strength relative to the corresponding point of the phase
boundary εcmax(µ). Hence, we introduce the parameter
λ = εmax/ε

c
max, which can take any value in the range

λ >= 1 (equality holds on the phase boundary between
the brittle and quasi-brittle phases).
Recently, we have demonstrated that the fat tailed mi-

croscale disorder gives rise to an anomalous size scaling
of the macroscopic strength of the bundle [38]. For fi-
nite upper cutoffs of fibers’ strength εmax, the average
strength of the bundle 〈εc〉 was found to increase with
the number N of fibers as

〈εc〉 ∼ N1/µ. (7)

The usual decreasing behaviour of strength [39, 40] gets
restored beyond a characteristic system size Nc which
depends on the disorder parameters as

Nc ∼ εµmax. (8)

We could explain this interesting effect based on the ex-
trem order statistics of the strength of single fibers, i.e.

FIG. 2. Phase diagram of the system. The phase boundary
separating the brittle and quasi-brittle macroscopic response
is given by Eq. (6). Under stress controlled loading, in the
brittle phase the bundle suffers immediate abrupt failure at
the breaking of the weakest fiber, while in the quasi-brittle
phase failure is preceded by a sequence of breaking bursts.
For µ ≥ 1 the bundle is always in the brittle phase. The
horizontal and vertical dashed lines indicate the parameter
sets for which avalanche size distributions were determined
by computer simulations.

we pointed out that the bundle strength increases until
the strongest fiber dominates the ultimate failure of the
system [38]. For sufficiently small systems, at high cut-
offs εmax, the strongest fiber can be so strong that it can
keep the entire load on the system. Beyond the charac-
teristic system size Nc, this is no longer possible so that
the average strength decreases with N . In the following
we show that the fat tailed disorder of fibers’ strength
gives rise also to a complex behaviour of the statistics
of breaking bursts when the parameters µ and εmax are
varied.

III. STATISTICS OF BREAKING BURSTS

Inside the quasi-brittle phase, we analyse the fracture
process of the bundle under quasi-static loading, which is
realized by slowly increasing the external load to provoke
the breaking of a single fiber at a time. For simplicity,
we assume that the load of the broken fiber is equally
redistributed over the intact ones which may trigger ad-
ditional breakings, followed again by load redistribution.
As a consequence of the repeated breaking and load redis-
tribution steps, an avalanche emerges which stops when
all the remaining intact fibers are sufficiently strong to
keep the elevated load. Global failure occurs in the form
of a catastrophic avalanche which destroys the entire sys-
tem. The size ∆ of the avalanche is defined as the number
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FIG. 3. Series of bursts in a small system of N = 105 fibers
at the exponent µ = 0.8 for two different values of the upper
cutoff (a) λ = 100, and (b) λ = +∞. The size of bursts ∆
is presented as a function of the order number i of events.
The yellow lines represent the moving average of burst sizes
∆ averaging over 25 consecutive data points.

of fibers breaking in the correlated trail.

A. Acceleration towards failure

Inside the brittle phase (see Fig. 2) already the first
avalanche triggers the immediate catastrophic failure of
the system. However, in the quasi-brittle parameter
regime the system gradually approaches failure through
a sequence of bursts whose size ∆ spans a broad range.
Representative examples of the series of bursts are shown
in Fig. 3 for two different values of the upper cutoff
λ = 100, λ = +∞ at the same exponent µ = 0.8. For
the infinite cutoff in Fig. 3(b) the burst size ∆ fluctuates,
however, its moving average remains practically constant.
It means that in spite of the increasing external load the
system does not show any acceleration towards failure.
In fact, in this case the constitutive curve of the bundle
(see Fig. 1) does not have a maximum, it monotonically
increases until the last fiber breaks the bundle. Con-
trary, for a finite upper cutoff in Fig. 3(a) the system
approaches global failure through an increasing average
size of bursts. At the critical point of failure a catas-
trophic avalanche emerges, while the catastrophic event
is absent when the cutoff strength is infinite.

To understand the behaviour of the burst sequence, it
is instructive to calculate the average number a of fiber
breakings triggered immediately by the failure of a single
fiber at the strain ε [29, 32]. The load σ = Eε dropped
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FIG. 4. The average number of breaking fibers a(ε) Eq. (9)
triggered by the failure of one fiber due to the increase of the
external load for several values of the disorder exponent µ.
The cutoff strength εmax is fixed to εmax/εmin = 1000. All
curves are presented from εmin to the corresponding value
of εc(µ, εmax). For µ → 0 the critical point converges to
εc = εmax/e.

by the broken fiber is equally shared by the intact ones of
number N [1 − P (σ)], giving rise to the stress increment
∆σ = σ/N [1 − P (σ)]. Multiplying ∆σ with the prob-
ability density p(Eε) of failure thresholds and with the
total number of fibers N , the average number of triggered
breakings a can be cast into the form

a(ε) =
Eεp(Eε)

1− P (Eε)
=

µ

1−
(

ε

εmax

)µ . (9)

The right hand side of the equation was obtained by sub-
stituting the PDF p Eq. (1) and the CDF P Eq. (2) of
failure thresholds of our model. The expression has to
be evaluated over the range εmin ≤ ε ≤ εc which is illus-
trated by Fig. 4 for several values of the exponent µ at
a fixed upper cutoff εmax = 1000. It can be seen that as
the system approaches the critical point of global failure
εc Eq. (4), the value of a increases to 1 indicating the
acceleration of the failure process and the onset of the
catastrophic avalanche at the critical point.
It follows from Eq. (9) that for an infinite upper cutoff

εmax → ∞, the average number of triggered breakings a
takes a constant value a = µ < 1, which implies stable
cracking and a constant average burst size as it could be
inferred from Fig. 3(b). When the cutoff strength εmax

is finite, for sufficiently small strains ε the value of a still
can be considered constant a ≈ µ and the acceleration
of the bursting process is constrained to the vicinity of
the critical point εc. Eq. (9) implies that the effect is
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FIG. 5. Inset: Size distribution of bursts p(∆) for a bundle
of N = 106 fibers at several values of the disorder exponent
µ when the cutoff strength of fibers is infinite εmax = +∞.
Main panel: data collapse of the curves of the inset obtained
by rescaling with a power of the distance from the critical
point µc = 1. Along the horizontal axis the scaling exponent
is ν = 2 in agreement with Eq. (14), while along the vertical
axis the product ντ is used with τ = 3/2. The straight line
represents a power law of exponent 3/2.

more pronounced when εc ≪ εmax which requires µ to
be close to 1 and a large value of the cutoff strength
according to Eq. (4). Figure 4 shows this behaviour for
µ = 0.85 where a remains close to µ for a broad range of ε,
while for smaller exponents µ a considerable acceleration
is observed from the beginning of the failure process. In
the limit µ → 0 the number of triggered breakings takes
the form

a(ε) ≈ 1

ln (εmax/ε)
, (10)

while the critical point εc converges to εc = εmax/e (see
also Fig. 4).

Note, however, that in the derivation of a implicitly an
infinite system size is assumed. Later on we show that
to obtain acceleration towards failure and a catastrophic
avalanche at finite cutoff strengths, the size of the sys-
tem N has to exceed a characteristic value, which is a
consequence of the fat tailed disorder.

B. Size distribution of bursts

The statistics of breaking bursts can be characterized
by the distribution p(∆) of their size ∆. The complete
size distribution p(∆) can be obtained analytically by
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FIG. 6. Burst size distributions p(∆) in a bundle of size N =
107 at a fixed upper cutoff εmax = 10 varying the value of the
exponent µ. The two straight lines represent power laws of
exponent 3/2 and 5/2.

substituting a(ε) into the generic form [29, 32, 41]

p(∆)

N
= (11)

∆∆−1e−∆

∆!

∫ xc

0

p(x)a(x) [1− a(x)]
∆−1

e∆a(x)dx,

where for the upper limit of integration xc we have to
insert the strength of the bundle. Utilizing the approx-
imation ∆! ≃ ∆∆e−∆

√
2π∆, in the limiting case of an

infinite upper cutoff with a(ε) = µ the burst size distri-
bution can be cast into a simple analytic form

p(∆)

N
≃ ∆−τe−∆/∆∗

. (12)

A power law of exponent τ = 3/2 is obtained followed by
an exponential cutoff. Here, ∆∗ denotes the characteris-
tic burst size, which controls the cutoff of the distribution

∆∗ =
1

µ− 1− lnµ
. (13)

This result means that at an infinite upper cutoff of fiber
strength εmax = +∞ the size distribution of bursts al-
ways follows a simple power law of a universal exponent
τ = 3/2, where the value of the disorder exponent µ only
controls the cutoff burst size ∆∗. Using the Taylor ex-
pansion of logarithm around 1, it can easily be shown
that as µ → µc = 1 the cutoff burst size has a power law
divergence

∆∗ ∼ (µc − µ)−ν , (14)

with a universal exponent ν = 2. Burst size distribu-
tions obtained by computer simulations of a bundle of
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FIG. 7. Crossover burst size ∆0 as a function of the disorder
exponent µ for the cutoff strength εmax = 10. The arrow
indicates the position of the corresponding critical point µc.
The inset presents ∆0 as a function of the distance from the
critical point µc(εmax)− µ for two upper cutoffs on a double
logarithmic plot.

size N = 106 fibres are presented in the inset of Fig. 5
for several µ values using an infinite cutoff strength. An
excellent agreement is obtained with the analytical pre-
dictions. The main panel of Fig. 5 demonstrates that
rescaling the distributions with (µc − µ)−ν the curves
of different µ can be collapsed on the top of each other
which confirms the validity of the scaling law Eq. (14).
In Ref. [42] we also showed that approaching µc = 1 at
εmax = +∞, a continuous phase transition emerges from
the quasi-brittle to the brittle phase, and we determined
the critical exponents of the transition. Note that the
modified gamma form of Eq. (12) of the burst size distri-
bution has also been proposed for earthquake magnitude
distributions to maintain a finite strain release rate in
natural earthquake populations [43, 44].

To characterize the statistics of breaking bursts at fi-
nite cutoff strength εmax, we determined the burst size
distribution p(∆) for several parameter sets along two
straight lines inside the quasi-brittle phase of the bun-
dle (see Fig. 2). Figure 6 presents p(∆) varying the
disorder exponent µ at a constant finite upper cutoff
εmax. It can be seen that approaching the phase bound-
ary µ → µc(εmax) the burst size distribution tends to
a power law functional form followed by an exponential
cutoff consistent with the generic expression Eq. (12).
The value of the power law exponent is the same τ = 3/2
as for an infinite cutoff. As µ decreases from its criti-
cal value, the burst size distribution exhibits a crossover
between two power law regimes, i.e. the power law of ex-
ponent τ = 3/2 is followed by a steeper one of exponent
τ = 5/2 in the regime of large bursts. For decreasing µ
the crossover burst size ∆0 separating the two power law
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FIG. 8. Burst size distributions p(∆) for a fixed value of the
exponent µ = 0.85 varying the upper cutoff λ. The bundle
is composed of 107 fibers. The two straight lines represent
power laws of exponent 3/2 and 5/2. The case of an infinite
upper cutoff λ = +∞ is also included for comparison.

regimes, shifts to lower values. In the limit µ → 0 almost
the complete size distribution can be described by a sin-
gle power law of exponent 5/2, however, the crossover
burst size takes a small but finite minimum value.
For moderate amount of disorder, it has been shown

for fiber bundles under equal load sharing conditions that
the size distribution of avalanches has a power law func-
tional form with a universal exponent τ = 5/2 [29]. The
result proved to be valid for those threshold distributions
extending down to zero strength and having a sufficiently
fast decreasing tail, where the constitutive curve σ(ε) has
a quadratic maximum [29, 41]. In our system, the reason
for the crossover of the burst size distribution p(∆) be-
tween two power laws of exponent 3/2 and 5/2 is that the
lower bound of fibers’ strength εmin has a finite non-zero
value. Additionally, close to the boundary of the quasi-
brittle phase, bursts are generated in a narrow strain
interval since the breakdown point εc falls close to εmin.
It was pointed out in Refs. [14, 45] that in such cases the
crossover burst size ∆0 can be obtained as

∆0 =
2

a′(εc)(εc − εmin)2
, (15)

where a′(εc) denotes the derivative of a(ε) at the break-
down point. To apply this generic result to our truncated
fat tailed disorder distribution, we substitute Eqs. (4,9)
which yields

∆0 =
2εmax(1 − µ)1/µ−1

[

εmax(1− µ)1/µ − εmin

]2 . (16)

This expression is valid for exponents 0 < µ ≤ µc(εmax).
It can be seen in Eq. (16) that approaching the phase
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FIG. 9. Size distributions p(∆) of the first L bursts of a bun-
dle of N = 107 fibers varying L in a broad range at the fixed
disorder parameters µ = 0.8 and λ = 500. The complete
distribution of the entire failure process is also presented to-
gether with the distribution of the last events just preceding
global failure. The total number of events is about 1.08×106.
The two straight lines represent power laws of exponents 3/2
and 5/2.

boundary µ → µc(εmax), the crossover size diverges
∆0 → +∞, and hence, the burst size distribution p(∆)
has a single power law regime of exponent τ = 3/2. The
crossover to a higher exponent τ = 5/2 for large bursts is
observed away from the phase boundary where ∆0 takes
finite values (see Fig. 6). Starting from Eq. (16), it can
simply be shown that the divergence is described by a
power law

∆0 ∼ (µc − µ)−γ , (17)

with a universal exponent γ = 2. To test the valid-
ity of this prediction Eq. (17), we determined the value
of ∆0 numerically as the crossing point of fitted power
laws of exponents 3/2 and 5/2. Figure 7 demonstrates
that the crossover burst size ∆0 rapidly increases as µc

is approached, and it has a power law dependence on
the distance from the critical point µc − µ, in agreement
with Eq. (17). The exponent of the fitted power law is
γ = 1.87± 0.1 which falls close to the analytical predic-
tion.

IV. SIZE DEPENDENT AVALANCHE

STATISTICS

When the cutoff strength εmax is varied while keeping
the disorder exponent µ fixed, the burst size distribution
exhibits an even more complicated behaviour. For a fixed
µ, we express the cutoff strength relative to the phase
boundary using the parameter λ = εmax/ε

c
max, which
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FIG. 10. Size distribution of bursts p(∆) for different system
sizes N at fixed values of the disorder parameters µ = 0.8 and
λ = 500. For small system sizes p(∆) agrees with the corre-
sponding distribution of the infinite cutoff λ = +∞. Above a
characteristic system size a second power law regime gradu-
ally develops for large bursts.

takes values in the range λ > 1. Figure 8 presents p(∆)
for several values of λ at the disorder exponent µ = 0.85,
i.e. along the vertical dashed line inside the quasi-brittle
phase of Fig. 2. It can be observed that starting from a
single power law of exponent τ = 3/2 at the phase bound-
ary, p(∆) shows again a crossover between two power law
regimes, where the crossover burst size ∆0 shifts to lower
values as λ increases. Starting from Eq. (16) it is easy to
show that ∆0 exhibits again a power law divergence

∆0 ∼ (λ− 1)−γ , (18)

when approaching the phase boundary λ → 1. The value
of the exponent γ is the same γ = 2 as in Eq. (17).
However, a significant difference, compared to the case
of a constant cutoff, is that far from the phase boundary,
after some transients, the steeper power law regime of
exponent τ = 5/2 gradually disappears. A single power
law remains with exponent τ = 3/2, as at the phase
boundary Eq. (12), but with a significantly lower cutoff
burst size ∆∗.
It is important to note in Fig. 8 that at sufficiently large

cutoffs λ > 1000, the burst size distributions coincide
with the one corresponding to the infinite cutoff λ =
+∞, in spite of the fact that the system has a finite
critical point εc. The reason is that, at the µ exponent
considered, the beginning of the series of bursts is close
to stationary as it has been illustrated in Fig. 3(a). Since
the average number of triggered breakings a(ε) is nearly
constant over a broad range of strain ε, as λ increases,
the critical point is preceded by a shorter and shorter
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FIG. 11. Average size of the catastrophic avalanche 〈∆c〉 as a
function of the system size N for several values of the upper
cutoff λ of fibers strength at a fixed exponent µ = 0.8.

accelerating regime which has a diminishing contribution
to the entire distribution p(∆).

To test this idea we analyzed in detail the statistics of
burst sizes in a bundle of size N = 107 at the disorder
parameters µ = 0.8 and λ = 500 where both power law
regimes are present. Figure 9 shows the burst size dis-
tribution p(∆, L) evaluated in event windows containing
the first L bursts, i.e. p(∆, L) is the size distribution of
bursts ∆i, i = 1, . . . , L, averaged over several realizations
of the disorder at a given value of L. For comparison, the
size distribution of the entire failure process is also pre-
sented together with the one corresponding to the case of
an infinite cutoff λ = +∞ obtained at the same system
size N and µ exponent. It can be seen that up to the first
L ≈ 106 bursts, the distributions p(∆, L) perfectly agree
with the case of an infinite cutoff p(∆, λ = +∞). Devi-
ations from p(∆, λ = +∞) start around L ≈ 1.06 × 106

above which gradually a steeper power law regime devel-
ops. The result confirms that in spite of the existence of
a well defined critical point εc, for a broad event range
the statistics of burst sizes is consistent with the station-
ary process of the infinite strength cutoff, and accelera-
tion towards failure is restricted to the close vicinity of
εc. The argument is further supported by the size distri-
bution of the last bursts with event index greater than
L = 1.064 × 106, which are generated in the vicinity of
global failure. In this regime the functional form of p(∆)
is consistent with what has been obtained for varying µ
in Fig. 6, i.e. a crossover emerges between two power laws
of exponents τ = 3/2 and τ = 5/2, as expected in the
vicinity of the critical point.

In Ref. [38] we have shown that for fat tailed distri-
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FIG. 12. The same data as in Fig. 11 is presented in such
a way that along the horizontal axis the system size N is
rescaled with λµ. High quality data collapse is obtained. The
straight line represents a power law of exponent 1.

butions of fiber strength, the number of fibers N has a
substantial effect on the ultimate failure strength of the
bundle: for small system sizes the strongest fiber controls
the macroscopic failure, consequently the average bundle
strength increases with the system size N described by
Eq. (7). The number of fibers N has to exceed a char-
acteristic value to observe the usual decreasing trend to-
wards the strength of the infinite system given by Eqs.
(4,5). Since at large λ the system size N controls the
behaviour of the system at the critical point, it follows
that N must play a decisive role also for the statistics of
breaking avalanches. This is illustrated in Fig. 10 which
presents burst size distributions of bundles of different
sizes N at fixed values of the disorder parameters µ = 0.8
and λ = 500. It can be observed that for small N val-
ues, the burst size distributions p(∆) coincide with the
corresponding curve of a large system N = 107 obtained
at the infinite cutoff λ = +∞. Above the system size
N ≈ 105 a second power law regime gradually develops
as it has been observed in Fig. 9 for a single system size
N = 107 with varying event window L.

The reason of this astonishing dependence of the statis-
tics of avalanches on the size of the system is that for
small system sizes, even for finite cutoff strength of fibers,
global failure occurs when the strongest fiber breaks.
Consequently, the entire sequence of bursts is close to
stationary and their statistics is practically the same as
for the infinite cutoff. The existence of a finite critical
point εc is only realized when the system size N exceeds
a characteristic value Nc. For bundles with N > Nc

global failure is preceded by an acceleration of the fail-
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ure process with increasing burst sizes. In this regime
macroscopic failure occurs in the form of a catastrophic
avalanche, however, the catastrophic event is completely
absent for N < Nc. In order to quantify this crossover
of the avalanche statistics with respect to the size of the
system N , we determined the average size of the catas-
trophic avalanche 〈∆c〉 as a function of the size of the
bundle N varying the upper cutoff of fibers’ strength λ
in a broad range. The size of the catastrophic avalanche
can be estimated as

〈∆c〉 ∼ N (1− P (εc)) , (19)

so that if a well defined critical bundle strength εc ex-
ists, a linear dependence is obtained on the system size
〈∆c〉 ∼ N . Figure 11 shows that for low λ values the
simulation results are consistent with the above predic-
tion. However, far from the phase boundary λ > 1000,
a more complex behaviour is obtained: for small system
sizes 〈∆c〉 does not depend on N , it takes a small con-
stant value 〈∆c〉 ≈ 7. The regular linear increase with N
is restored above a characteristic system size Nc which
increases with λ. Figure 12 demonstrates that rescaling
N with the µth power of λ, the curves of 〈∆c〉 obtained
at different λ values can be collapsed on the top of each
other. The high quality data collapse implies that the
characteristic system size Nc, separating the two types
of avalanche statistics, has a power law dependence on λ
as

Nc ∼ λµ. (20)

This characteristic value Nc is of course the same as
the one which controls the size scaling of the ultimate
strength of the bundle Eq. (8) [38]. It also follows that
the event window analysis presented in Fig. 9, can only
be performed for system sizes N > Nc, and the crossover
event index Lc below which the burst size distribution
is close to the one of the infinite cutoff, has the same
dependence Eq. (20) on the disorder parameter.

V. DISCUSSION

The degree of materials disorder has a substantial ef-
fect on the fracture of heterogeneous materials both on
the micro- and macro-scales. When subject to a slowly
increasing external load, fracture proceeds in bursts
which can be considered as precursors of global failure.
Failure forecast methods of the imminent catastrophic
failure strongly rely on the bursting dynamics [11, 46, 47].
It has been demonstrated experimentally that increasing
amount of disorder gives rise to a more intensive precur-
sory activity which then improves the quality of forecasts
[11, 12].
In this paper we investigated the effect of the amount

of disorder on the microscopic dynamics of the fracture
process of heterogeneous materials in the framework of a
fiber bundle model focusing on the limit of very high dis-
order. We considered a power law distribution of fibers’

strength where the degree of disorder could be controlled
by tuning the power law exponent and the upper cutoff
of breaking thresholds. Assuming equal load sharing af-
ter local breakings, we showed that on the macro-scale
the mechanical response of the bundle is either perfectly
brittle where the bundle abruptly fails right at the break-
ing of the first fibre, or it is quasi-brittle where macro-
scopic failure is approached through a sequence of break-
ing bursts.The evolution of the crackling event series and
the statistics of burst sizes have a high importance for
the forecasting of the imminent failure of the bundle.

We showed that for an infinite upper cutoff of fibers’
strength, the sequence of bursts is stationary in the sense
that the average burst size is constant. Hence, the system
does not exhibit any sign of acceleration towards failure.
Consequently, a power law burst size distribution is ob-
tained, where the disorder exponent only controls the
cutoff burst size. For finite upper cutoffs we showed that
there exists a well-defined critical point of global failure,
however, it can only be realized in sufficiently large sys-
tems. In small systems the global strength of the bundle
is controlled by the strongest fiber. This peculiar be-
haviour gives rise to an astonishing dependence of the
statistics of burst sizes on the size of the system: for
small systems the burst sequence proved to be close to
stationary, and hence, the burst size distribution coin-
cides with the one corresponding to the infinite upper
cutoff of fibers’ strength. For large systems the initially
stationary sequence is followed by an accelerating regime
in the close vicinity of the critical point, which gives rise
to a crossover between two power laws of the burst size
distribution. Analysing the dependence of the average
size of the catastrophic burst on the size of the bundle,
we pointed out that the transition between the two types
of burst size distributions occurs at a characteristic sys-
tem size which depends on the disorder parameters of the
bundle. The results can have relevance for the design of
laboratory experiments: when the micro-scale materials
disorder has a rapidly (exponentially) decaying distribu-
tion, the sample size mainly affects the cutoff of the size
distribution of bursts but not its functional form. How-
ever, for fat tailed disorder the sample size has a strong
effect on the functional form of the burst size distribution
so that the size of specimens in laboratory tests has to
be sufficiently large to reproduce the acceleration of the
burst sequence towards failure obtained in field measure-
ments.

We also demonstrated that for a moderate amount of
disorder, i.e. varying the disorder parameters in the vicin-
ity of the phase boundary between the brittle and quasi-
brittle phases, a crossover occurs between two power laws
of exponents 3/2 and 5/2. The reason is that bursts are
generated in a narrow strain interval close to the critical
point of macroscopic failure. In this case the crossover
burst size was found to have a power law divergence as
the phase boundary is approached.

Our results set important limitations on the forecasta-
bility of the imminent failure [11, 17, 18] of the sys-
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tem when the microscale disorder is fat tailed. We have
demonstrated that even if a considerable avalanche ac-
tivity accompanies the failure process, the collapse may
not be predictable either because it is controlled by the
extreme order statistics of fibers’ strength, or the accel-
erating regime preceding failure is too short. In failure
forecast methods accelerating precursors have to be iden-
tified above a null hypothesis of stationary event rate,
then one needs to wait for a sufficient amount of data
to define a singularity with accuracy and precision at a
finite time before the time of ultimate failure [18]. The
effect of high disorder on the statistics of breaking bursts,
revealed by our study, may be a real limitation for practi-
cal applications of forecasting methods based on acoustic
or seismic precursors of failure [18, 48].

In the present study we focused mainly on the inte-
grated statistics of burst sizes considering all events up

to failure. The quantitative characterization of the evo-
lution of the event series towards failure requires further
careful analysis which is in progress.
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[6] J. Baró, P. Shyu, S. Pang, I. M. Jasiuk, E. Vives, E. K. H.
Salje, and A. Planes, Phys. Rev. E 93, 053001 (2016).

[7] P. Diodati, F. Marchesoni, and S. Piazza, Phys. Rev.
Lett. 67, 2239 (1991).

[8] D. Lockner, International Journal of Rock Mechanics
and Mining Sciences & Geomechanics Abstracts 30, 883
(1993).

[9] M. B. J. Meinders and T. v. Vliet, Phys. Rev. E 77,
036116 (2008).

[10] G. Niccolini, A. Carpinteri, G. Lacidogna, and
A. Manuello, Phys. Rev. Lett. 106, 108503 (2011).

[11] J. Vasseur, F. B. Wadsworth, Y. Lavallée, A. F. Bell, I. G.
Main, and D. B. Dingwell, Sci. Rep. 5, 13259 (2015).

[12] X. Jiang, H. Liu, I. G. Main, and E. K. H. Salje,
Phys. Rev. E 96, 023004 (2017).

[13] J. Koivisto, M. Ovaska, A. Miksic, L. Laurson, and M. J.
Alava, Phys. Rev. E 94, 023002 (2016).

[14] S. Pradhan, A. Hansen, and P. C. Hemmer, Phys. Rev.
Lett. 95, 125501 (2005).

[15] J. Davidsen, S. Stanchits, and G. Dresen, Phys. Rev.
Lett. 98, 125502 (2007).

[16] D. Sornette, Proc. Natl. Acad. Sci. USA 99, 2522 (2002).
[17] B. Voight, Nature 332, 125 (1988).
[18] A. F. Bell, M. Naylor, and I. G. Main, Geophys. J. Int.

194, 1541 (2013).
[19] J. Rosti, X. Illa, J. Koivisto, and M. J. Alava, Journal

of Physics D: Applied Physics 42, 214013 (2009).
[20] Y. Xu, A. G. Borrego, A. Planes, X. Ding, and E. Vives,

Phys. Rev. E 99, 033001 (2019).
[21] S. Zapperi, P. Ray, H. E. Stanley, and A. Vespignani,

Phys. Rev. Lett. 78, 1408 (1997).
[22] C. B. Picallo, J. M. Lpez, S. Zapperi, and M. J. Alava,

Phys. Rev. Lett. 105, 155502 (2010).
[23] A. Guarino, A. Garcimartin, and S. Ciliberto, Eur. Phys.

J. B 6, 13 (1998).
[24] O. Ramos, P.-P. Cortet, S. Ciliberto, and L. Vanel, Phys.

Rev. Lett. 110, 165506 (2013).
[25] S. Santucci, L. Vanel, and S. Ciliberto, Phys. Rev. Lett.

93, 095505 (2004).
[26] L. de Arcangelis, A. Hansen, H. J. Herrmann, and

S. Roux, Phys. Rev. B 40, 877 (1989).
[27] J. V. Andersen, D. Sornette, and K. Leung, Phys. Rev.

Lett. 78, 21402143 (1997).
[28] A. Hansen, P. Hemmer, and S. Pradhan, The Fiber

Bundle Model: Modeling Failure in Materials, Statisti-
cal Physics of Fracture and Breakdown (Wiley, 2015).

[29] M. Kloster, A. Hansen, and P. C. Hemmer, Phys. Rev.
E 56, 26152625 (1997).

[30] F. Kun, F. Raischel, R. C. Hidalgo, and H. J. Her-
rmann, in Modelling Critical and Catastrophic Phenom-
ena in Geoscience: A Statistical Physics Approach, Lec-
ture Notes in Physics, edited by P. Bhattacharyya and
B. K. Chakrabarti (Springer-Verlag Berlin Heidelberg
New York, 2006) pp. 57–92.
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