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1 Introduction

Out-of-equilibrium many-body quantum dynamics is one of the most active and challenging
research areas in low-dimensional physics; see the special issue [1] and in particular the review [2].
A typical setup triggering out-of-equilibrium evolution from an initial equilibrium state is that
of a quantum quench [3]. In a quench protocol, a quantum system is prepared at t < 0 in the
ground state, denoted by |0〉, of a Hamiltonian H(λ0) which depends on a parameter λ0. At
t = 0, the parameter λ0 is suddently changed to a new value λ 6= λ0 and the unitary time
evolution for positive times is governed by the new Hamiltonian H(λ). The state of the system
at time t may be then formally written as e−itH(λ)|0〉.

In this context, the evolution of the bipar-

A B

Figure 1: Typical bipartition for the entan-
glement entropy of two semi-infinite intervals

tite, or von Neumann, entanglement entropy fol-
lowing a quantum quench has been intensively
studied; see [4] for a review and references therein.
Consider a space bipartition of a 1+1-dimensional
quantum system as sketched in fig. 1 and as-
sume that regions A and B are semi-infinite.
Then the entanglement entropy associated to
region A after a quench may be expressed as

S(t) = −TrA(ρA log ρA) where formally

ρA := TrB(e−itH(λ)|0〉〈0|eitH(λ)) , (1)

is the reduced density matrix associated to subsystem A. Since the regions are semi-infinite,
the entropies will not explicitly depend on the subsystem’s length. Another set of entanglement
measures is provided by the Rényi entropies which are defined as

Sn(t) :=
log TrρnA

1− n , (2)

and have the property limn→1 Sn(t) = S(t). It is in fact these Rényi entropies which we will
mostly be studying in this manuscript.

The universal features of the evolution of entanglement after a quench at a critical point
described by conformal field theory have been studied in [3, 5, 6]. In these works an intuitive
picture was put forward, namely one based on the production of highly entangled quasi-particle
pairs of opposite momenta right after the quench. These then propagate in space-time until a
critical time tsat = `

2v , where ` is the size of the subsystem and v is the propagation velocity. In

this region, the entanglement entropy grows linearly in time. For tsat >
`

2v the entanglement sat-
urates to a value proportional to the subsystem’s size `. These features were later demonstrated
analytically for the XY chain in a transverse magnetic field in [7], where the exact coefficients
of the terms linear in t and in ` were computed. Note however that for our configuration of two
semi-infinite regions tsat → ∞. Thus we expect the entanglement to continue to grow linearly
in time for all times; this must be beared in mind when comparing analytic results with lattice
numerical calculations.

Although the entanglement evolution after a quench has been studied for many physical
lattice models, both free [5, 7–20] and interacting [21–24], complete analytic derivations of such
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linear behaviour remained elusive so-far. In 1 + 1 dimensions, they are still based either on
conformal field theory techniques [5, 25] or conjectural large space-time asymptotics for block
Töplitz matrices [7–9]. An exception is represented by models with random unitary evolution
such as random circuits [26,27].

More recently, it has been shown that for gapped systems, the entanglement dynamics after a
quench features other non-trivial effects. In particular the time-dependence of the entanglement
entropy can show subleading corrections that might qualitatively alter the leading linear increase
at large times. For instance, the studies [28–30] have shown that quasi-particle confinement in a
linear potential can lead to oscillatory behaviour in time, as well as suppression of linear growth
for sufficiently large times.

The purpose of this paper is then twofold: first we will provide a general quantum field
theory framework to analyse entanglement dynamics in massive systems. Secondly, we will pro-
vide evidence that subleading oscillatory terms are actually a common feature of entanglement
dynamics in infinite volume. To this end, we will focus on one of the simplest and best known
theories: the Ising field theory. We may regard this as the scaling limit of the Ising chain
described by the Hamiltonian

HIsing(h) = −J
N∑
i=1

(
σxi σ

x
i+1 + hσzi

)
, (3)

where J > 0, and h is known as the transverse field. The Ising spin chain has a quantum
critical point, with a gapless spectrum, at h = 1, which separates a paramagnetic phase (h > 1)
from a ferromagnetic phase (h < 1). The two phases are related by a Kramers-Wannier duality
transformation, which interchanges the spin with the disorder field.

Near the critical point, for |h − 1| � 1 it is possible to define the scaling limit by taking
J →∞ and a→ 0, where a is the lattice spacing, while keeping

m := 2J |h− 1| , v := 2Ja , (4)

fixed and finite [31]. In the scaling limit, the low energy excitations of (3) are then relativistic
real non-interacting fermions with positive mass m, while the speed of light is fixed to v.

Finally, a word is due on the techniques that we will be using in this paper. We will exploit
the well-known relationship between Rényi entropies and correlation functions of branch point
twist fields [32–34]. For the simple configuration of fig. 1 this means that we will be computing
a one-point function of a branch point twist field T (x, t) and studying its time dependence after
the quench. Branch point twist fields are defined on a replicated quantum field theory containing
n identical copies of the original theory, and have been interpreted as symmetry fields associated
to the cyclic permutation of the copies in [34]. Explicitly, the Rényi entropies at time t are given
by

Sn(t) =
log
(
ε∆n

n〈0|T (0, t)|0〉n
)

1− n , (5)

where ε is some UV cut-off; T (0, t) := eiH(λ)tT (0, 0)e−iH(λ)t is the time-evolved twist field in the
Heisenberg picture; n is the replica number; |0〉n is the ground state of the replica theory before
the quench that is, for coupling constant λ0 (corresponding to mass gap m0); ∆n is the scaling
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dimension of the twist field at criticality. For t = 0, (5) gives the Rényi entropies at equilibrium
in terms of

τn := n〈0|T (0, 0)|0〉n , (6)

the Vacuum Expectation Value (VEV) of the branch point twist field, which by dimensional
analysis must be proportional to m∆n

0 . In particular, the UV cut-off ε is chosen in such a way
that no finite O(1) term appears at t = 0 on the right hand side of (5).

When comparing our field theoretical predictions for (5) with lattice calculations in the Ising
chain in the scaling limit, we will be actually comparing (5) with a similar quantity involving a
two-point function of branch point twist fields n〈0|T (0, t)T †(`, t)|0〉n: that is the entanglement
entropy of an interval of length `. To allow for comparison, we will take the length of such
interval to be very large, in which case we expect clustering of the two-point function to occur,
namely, the factorization

lim
`→∞ n〈0|T (0, t)T †(`, t)|0〉n ∼ n〈0|T (0, t)|0〉2n . (7)

Thus our results for (5) will generally give half the values obtained from computations involving
a large but finite interval `. We indeed confirm this in section 6 of this paper.

This paper is organized as follows: in section 2 we present a summary of our analytical results.
In section 3 we review the field theoretical tools that we have used: a time-dependent formulation
of the branch-point twist field approach [34] for the calculation of entanglement measures. In
particular, we present an expansion of the twist field one-point function in the post-quench quasi-
particle basis following the route traced in [31] for the order parameter. In section 4, we derive
the main analytical results. In section 5 we further generalize the perturbative approach to the
quench dynamics put forward in [35] to the calculation of the twist field one-point function. We
show that for sufficiently small quenches, these results are in agreement with the main outcome
of section 4. In section 6 we present a detailed test of our field theoretical predictions against
lattice results obtained in the scaling limit. Finally, we conclude in section 7. An appendix with
additional numerical lattice results completes the paper.

2 Summary of the Main Results

Consider the Ising field theory with mass scale m0 and a quench that changes it to a new value
m. Let us also introduce the function (θ ∈ R)

K(θ) = i tan

[
1

2
tan−1(sinh θ)− 1

2
tan−1

(
m

m0
sinh θ

)]
:= iK̂(θ) , (8)

whose meaning we discuss in section 3. Long time after the quench, namely for mt � 1 the
expectation value of the branch point twist field is conjectured to be

n〈0|T (0, t)|0〉n = τ̃ ′n exp

[
−nΓ′mt

2
− nµ2

64πmt
− µ

8
√
πn

cos π
2n

sin2 π
2n

cos(2mt− π
4 )

(mt)
3
2

+ · · ·
]
, (9)

where

µ := 1− m

m0
= −δm

m0
, with δm := m−m0 . (10)
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The ellipsis in (9) denote terms that are subleading with respect to t−3/2 for large times. The
parameters τ̃ ′n and Γ′ in (9) are calculated perturbatively in the function K(θ) whose absolute
value is then assumed small for θ real. In particular

τ̃ ′n = τ̃n e
A+O(K3) and Γ′ = Γ +O(K4) , (11)

where τ̃n is the expectation value of the branch point twist field in the post-quench ground state
|0̃〉n, similar to the definition (6) but with mass gap m. The decay rate Γ and the constant A
in (11) are

Γ := 2

∫ ∞
0

dθ

π
K̂2(θ) sinh θ , (12)

and

A :=
1

2 sin π
n

∫ ∞
−∞

dθ

2π
K̂2(θ) . (13)

We will provide a full derivation of the twist field one-point function up to O(K2) and conjecture
its general form in (9) following an analogous calculation as for the one-point function of the
spin operator after a mass quench [31] in Ising field theory. In particular, we will show that the
decay rate Γ in (12) is the same as for the spin operator [31] up to the second-order corrections
in the function K. The oscillatory contribution in (9) has also the same frequency and power
law in mt as for the spin operator, albeit with a different n-dependent overall coefficient.

From the explicit calculation of the one-point function of the branch-point twist field, we can
derive an exact expression at O(K2) for the Rényi entropies (5) at large times after the quench
which is given by

Sn(t) =
log(ε∆n τ̃ ′n)

1− n +
Γnmt

2(n− 1)
+

nµ2

64πmt(n− 1)
+

µ

8
√
πn

cos π
2n

sin2 π
2n

cos(2mt− π
4 )

(n− 1)(mt)
3
2

+O(t−3) . (14)

Since for |µ| � 1, K̂(θ) is O(µ) and

Γ =
µ2

3π
+O(µ3) , A =

µ2

24π sin π
n

+O(µ3) . (15)

Eq. (14) can also be viewed as a large-time expansion of a perturbative series in the quench
parameter µ. In particular, due to (15), eq. (14) is exact up to second-order terms in µ. This
claim will be checked explicitly against analytical and numerical lattice results for the Rényi
entropies in the scaling limit in section 6.

Furthermore, notice that the oscillating term is O(µ). Indeed, under the assumption |µ| � 1
and provided the replacement m → m0 in the frequency, it can be also derived within a first-
order perturbative approach to the quench dynamics [35, 36]. We will postpone details of this
alternative derivation to section 5. Remarkably, this first-order perturbative approach is not
enough to capture the leading large-time asymptotics of the Rényi entropies. The latter is
governed by the decay rate Γ and is therefore an O(µ2) effect.

Another interesting feature of (14) is that the limit n → 1 is only well-defined for the
oscillatory term; for the von Neumann entropy we obtain in particular

lim
n→1

µ

8
√
πn(n− 1)

cos π
2n

sin2 π
2n

cos(2mt− π
4 )

(mt)
3
2

=
µ

4

√
π cos(2mt− π

4 )

4(mt)3/2
. (16)
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The same limit is obviously ill-defined for all the other contributions in (14). The reason for
this has to do with the way the O(µ2) terms are computed, namely from branch point twist
fields which are a priori only defined for n ∈ N \ {0, 1}. Taking the limit generally requires an
understanding of the analytic continuation to n ∈ R of the one-point function, which is non-
trivial, particularly for higher particle form factor contributions (e.g. precisely the ones that
give rise to the problematic terms in (14)). We have not carried out this limit here, but we have
found good agreement between (16) and lattice calculation in the scaling limit for the Neumann
entropy. We report these comparisons in section 6

3 Review of the Main Techniques

In this section we review the main techniques that we have employed in order to derive the
results of the previous section: branch point twist fields in relation to entanglement measures
in the Ising field theory and the expansion of the one-point function of a local operator in the
post-quench quasi-particle basis, as developed in [31]. Results obtained from a perturbative
approach [35,36] in the quench parameter will be given in section 5.

3.1 Branch Point Twist Fields and Entanglement

The main properties of branch point twist fields were described at length in [34] and the sub-
sequent review article [37]. In quantum field theory, it has been known for some time [32–34]
that, for integer n, the Rényi entropies in (2) may be expressed in terms of correlation functions
of branch point twist fields, with the number of twist field insertions equalling the number of
boundary points of the subsystems under consideration. This means that the entanglement
entropy of a semi-infinite region is simply given by the one-point function of the branch point
twist field. Eq. (5) can be thought as the obvious time-dependent generalization of the setting
in [34] at equilibrium.

Before embarking into the study of the time-dependent one-point function of the twist field,
it is useful to recall some of its properties at equilibrium. At equilibrium, the nth Rényi entropy
of a semi-infinite system in the ground state of H(λ0) is given by (5) at t = 0, namely

Sn(0) =
log
(
ε∆nτn

)
1− n , (17)

Obviously in the ground state |0̃〉n of the post-quench Hamiltonian H(λ) (with a mass gap
m) (17) applies by replacing τn → τ̃n. The power ∆n is the scaling dimension of the branch
point twist field at criticality, which is given by

∆n =
c

12

(
n− 1

n

)
, (18)

where c is the central charge of the underlying CFT [32,38,39]; for instance, c = 1
2 for Ising field

theory. The parameter n, which was already introduced in section 1, is the number of copies of
the replicated Hilbert space of the quantum field theory, upon which the branch point twist field
acts. Therefore, in such a replicated theory, the pre- and post-quench ground states |0〉n and
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|0̃〉n are tensor products of n copies of the physical ground states defined in the introduction.
The same construction carries over for the time-dependent case.

Finally, it is useful to remember that when comparing with lattice results for the Ising spin
chain, the natural choice for the cut-off is the lattice spacing a. The UV cut-off ε and a are
related by a model-dependent (i.e. non-universal) proportionality constant. Therefore on the
lattice (17) reads [32]

Sn(0) = − c

12

(
n+

1

n

)
log(m0a) +O(1) , (19)

where O(1) denotes non-universal terms that are finite or vanish in the scaling limit a → 0.
The leading logarithmic lattice spacing dependence in (19) can be used to extract the twist
field scaling dimension, alias the central charge of the UV fixed point, in lattice numerical
calculations. Actually the quality of such an extrapolation provides a useful measure of how
close the numerical calculation is to the scaling regime of the lattice model; see section 6 and
appendix A.

3.2 Expansion of the Time-Dependent One-Point Function in the Post-Quench
Basis

In this section we review the approach first employed in [31] to study relaxation dynamics of a
local operator in the Ising field theory after a mass quench. The technique needs two inputs:
an expansion of the initial state into eigenstates of the post-quench Hamiltonian and the matrix
elements of the local operator one is interested in, between states of the post-quench quasi-
particle basis. In principle the method is applicable also to interacting post-quench theories,
provided that such analytical data are known; in particular the post-quench theory, considered
in infinite volume and for all times, should be integrable. See for instance [40] for recent activity
devoted to overlap calculations.

In the specific case of the Ising mass quench, the non-normalized initial state |Ω〉 :=
√
〈Ω|Ω〉|0〉,

|0〉 being the ground state of the pre-quench Hamiltonian, can be exactly expressed in terms of
eigenstates of the post-quench Hamiltonian as

|Ω〉 = exp

[∫ ∞
0

dθ

2π
K(θ)a†(−θ)a†(θ)

]
|0̃〉 . (20)

Notice therefore that |0̃〉 is the vacuum of the post quench Ising field theory (i.e. with mass gap
m); a†(θ) is the fermionic creation operator, and K(θ) is the function given earlier in (8). The
integral in (20) is over the so-called rapidity which parametrizes the energy (E) and momentum
(P ) of the one-particle state |θ〉 := a†(θ)|0̃〉 as follows: E = m cosh θ and P = m sinh θ. The
normalization of the one-particle states is 〈θ|θ′〉 = 2πδ(θ − θ′).

Quenches leading to states with the structure (20) where studied in detail in [41, 42]. A
derivation of the function (8) is given in Appendix A of [42]. These states have the same
structure of the boundary states first described by Ghoshal and Zamolodchikov [43]. Their
structure neatly fits with the quasi-particle picture put forward in [3, 5, 6] as the initial state
(20) can be regarded as a coherent superposition of particle pairs, also known as a squeezed
coherent state. Exact solvability of the quench dynamics, which is generally not possible, has
been also related [44] to initial states analogous to (20), see for instance [35].
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In the n-copy theory, this simply generalises to

|Ω〉n = exp

 n∑
j=1

∫ ∞
0

dθ

2π
K(θ)a†j(−θ)a

†
j(θ)

 |0̃〉n , (21)

where a†j(θ) is the fermionic creation operator in copy j. We denote by |θ1, . . . , θk〉j1,...,jk;n

an element of an orthonormal basis in the replicated (in or out) Hilbert space consisting of
k particles with rapidities θi and copy labels ji, i = 1, . . . , k. The energy and momentum of
multi-particle states are the sum of the energies and momenta of their one-particle constituents.

In such a framework, the Rényi entropies after the quench can be written as

Sn(t) =
1

1− n log

(
ε∆n

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

)
. (22)

Substituting the representation (21) of the replicated initial state into (22), both numerator
and denominator admit a formal expansion as sums of integrals of matrix elements in the post
quench basis. Borrowing notations from [31], we will write these series as

n〈Ω|T (0, t)|Ω〉n := τ̃n

∞∑
k1,k2=0

C2k1,2k2(t) , (23)

with

τ̃nC2k1,2k2(t) =
1

k1!k2!

n∑
j1,...,jk1=1

n∑
p1,...,pk2=1

×
[
k1∏
s=1

∫ ∞
0

dθ′s
2π

K(θ′s)
∗e2itE(θ′s)

][
k2∏
r=1

∫ ∞
0

dθr
2π

K(θr)e
−2itE(θr)

]
× n;j1j1...jk1jk1

〈θ′1,−θ′1, . . . , θ′k1 ,−θ′k1 |T (0, 0)| − θk2 , θk2 , . . . ,−θ1, θ1〉pk2pk2 ...p1p1;n , (24)

and analogously

n〈Ω|Ω〉n :=

∞∑
k=0

Z2k , (25)

where now

Z2k =
1

(k!)2

n∑
j1,...,jk=1

n∑
p1,...,pk=1

[
k∏
s=1

∫ ∞
0

dθ′sdθs
(2π)2

K(θ′s)
∗K(θs)

]
×j1j1...jkjk〈θ′1,−θ′1, . . . , θ′k,−θ′k| − θk, θk, . . . ,−θ1, θ1〉pkpk...p1p1 for k > 0 , (26)

and Z0 = 1. The ratio in (22) can be then expanded formally in powers of the function K

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

:= τ̃n

∞∑
k1,k2=0

D2k12k2(t) , (27)
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with

D2k1,2k2(t) =

min(k1,k2)∑
p=0

Z̃2pC2(k1−p),2(k2−p)(t) , (28)

where Z̃2p are the expansion coefficients of the inverse of the norm, i.e.
∑∞

k,p=0 Z2kZ̃2p = 1. In

section 4 we present the calculation up to O(K2).
The matrix elements of the twist field in (24) can be related to the so-called elementary form

factors [34,45,46], see (35) in the next section. The transformation that relates the two functions
is called crossing. Consider for instance the matrix element n;j1〈θ1|T (0, 0)|θ2〉j2;n. This can be
written as

n;j1〈θ1|T (0, 0)|θ2〉j2;n = τ̃n n;j1〈θ1|θ2〉j2;n + n〈0̃|T (0, 0)|θ1 + iπ − iη, θ2〉j1,j2;n

= 2π τ̃n δ(θ12)δj1j2 + F j1j22 (θ12 + iπ − iη) , (29)

where θ12 := θ1 − θ2, η is a small positive parameter and F j1j22 (θ) will be given in (33). This
relation can be generalized to matrix elements involving states with larger number of parti-
cles [46]. The shift by iη makes the function F j1j22 (θ) on the right hand side of (29) regular for
θ → iπ. There are however additional sources of divergences related to the normalization of the
asymptotic states in infinite volume, see the δ function in (29).

These infinite volume singularities are expected to be cancelled by similar singularities in the
denominator in (26) in the combination as (28). The precise way in which this cancellation occurs
has been the object of much investigation over the past decade and a rigorous understanding now
exists. That is, to consider the theory in finite volume V and use the volume as regulator [47,48].
However, this rigorous approach is rather involved and for this reason some simpler methods,
have also been developed. In [31] a regularization scheme known as κ-regularization [49, 50]
was used. The technique requires to shift the coinciding rapidities by a real value κ (or several
values κi for multi-particle states) so that the singularities are avoided. Then introduce a smooth
function P (κ) which is strongly peaked about κ = 0 with the properties

P (0) = V , and

∫ ∞
−∞

dκP (κ) = 1 . (30)

Of course, there are many functions that would meet the criteria above but one expects that in
the infinite volume limit V → ∞ they will all lead to the same finite result. A natural choice
also employed in [31] is a gaussian P (κ) = V e−πκ

2V 2
. For instance for a two-particle form factor

the regularization would be implemented as

n;j1〈θ1|T (0, 0)|θ2〉j2;n 7→
∫ ∞
−∞

dκP (κ) n;j1〈θ1|T (0, 0)|θ2 + κ〉j2;n . (31)

After using the crossing relation (29), it is possible to isolate the infinite volume divergences,
coming from the normalization of the states, and the leading contribution for V → ∞, by
expanding the integrand as a series about κ = 0. Applications can be found in [31] and in
section 4.
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3.3 Form Factors of the Branch Point Twist Field in the Ising Field Theory

In this section, we will finally recall the necessary results for the form factors of the twist
field in the Ising field theory. The explicit form of the form factors is needed to evaluate the
numerator of (22). In the replicated Ising field theory fermionic particles have an extra copy
index j = 1, . . . , n. There is also an internal Z2 symmetry in each copy which implies, for Z2

even fields, such as the twist field, that only even-particle form factors are non-vanishing. As
already mentioned in the previous section, let |θ1, . . . , θk〉j1,...,jk;n be an asymptotic in state of
the replicated theory consisting of k particles with rapidities θi and copy labels ji, i = 1, . . . , k.
We further assume θ1 > θ2 > · · · > θk. The two-particle twist field form factor is defined as [34]

F j1j22 (θ1 − θ2) := n〈0|T (0, 0)|θ1θ2〉j1,j2;n , (32)

and is given by

F j1j22 (θ) =
τn sin π

n

2n sinh
[
iπ(1+2(j1−j2))+θ

2n

]
sinh

[
iπ(1−2(j1−j2))−θ

2n

] F j1j2min (θ)

F 11
min(iπ)

, (33)

with

F j1j2min (θ) =

{
−i sinh[ θ+2πi(j1−j2)

2n ] j1 ≥ j2
+i sinh[ θ+2πi(j1−j2)

2n ] j1 < j2
, (34)

and τn was defined in (6). Here we have used the fact that the twist field is a Lorentz scalar
and therefore the form factor depends only on the rapidity difference, rather than two separate
rapidities. Due to the free nature of the theory the k-particle form factors are given in terms of
Pfaffians [51],

F j1...jkk (θ1, . . . , θk) := n〈0|T (0)|θ1 . . . θk〉j1,...,jk;n = τnPf(W ) , (35)

where Pf is the Pfaffian of the matrix W (i.e. Pf2(W ) = det(W )), which in turn is defined as

Wjijr =
F jijr2 (θi − θr)

τn
. (36)

In practice, (35) implies that, if we call the two-particle form factor in (36) a contraction, k-
particle form factors (k even) are obtained as sums of products of contractions as prescribed
by the Wick theorem for fermionic fields. Due to the particular monodromy properties of the
branch point twist field discussed in [34], all form factors can be ultimately expressed in terms
of form factors involving only one copy of the theory. In particular

F j1...jkk (θ1, . . . , θk) = F 1...1
k (θ1 + 2πi(j1 − 1), . . . , θk + 2πi(jk − 1)) , (37)

for j1 ≥ j2 ≥ · · · ≥ jk. For the Ising field theory this means that the two-particle form factor
of particles in the first copy is effectively the building block for any other form factor. For this
reason it is useful to adopt a simpler notation for this form factor. We then define the normalized
two-particle form factor

f(θ) :=
F 11

2 (θ)

τn
. (38)

All formulas presented in this section are valid when considering the post-quench ground state
|0̃〉n, if one replaces τn with τ̃n.
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4 Rényi Entropies after a Mass Quench: Field Theory Results

As outlined at the beginning of section 3.2, the calculation is organized as a perturbation series
in powers of the function K introduced in (8). In principle, the final result is not limited to
δm � 1, see (10), provided K(θ) is sufficiently small for θ ∈ R. Physically this is equivalent
to truncating the series in (20) to a few multi-particle states. In this section we will fill in the
details of the derivation of (14).

4.1 Contributions at O(K)

Apart from a trivial K-independent term, corresponding to C00 = D00 = 1 in (23), the leading
term in the K expansion of (22) is O(K) and given by

C2,0(t) + C0,2(t) = n

[∫ ∞
0

dθ

2π
K(θ)∗f(2θ)e2itE(θ) +

∫ ∞
0

dθ

2π
K(θ)f(2θ)∗e−2itE(θ)

]
= −

∫ ∞
0

dθ

2π
K̂(θ)

2 cos π
2n sinh θ

n

sinh iπ−2θ
2n sinh iπ+2θ

2n

cos [2mt cosh θ] , (39)

where we have used (38) and (33). Notice that the expansion of the denominator in (25) starts as
1+O(K2), therefore, see (28), C2,0 +C0,2 = D2,0 +D0,2. At large times, according to stationary
phase analysis, we can expand the integrand in (39) close to θ = 0 and observe that

K̂(θ) =
µ

2
θ +O(θ3) , (40)

with µ defined by (10). By retaining only contributions up to O(K), the one-point function of
the twist field is then for mt� 1

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

= τ̃n

(
1− µ

8
√
πn

cos π
2n

sin2 π
2n

cos(2mt− π
4 )

(mt)3/2
+ . . .

)
+O(K2) . (41)

As anticipated in section 1 for |µ| � 1 the same result can be derived from a perturbation theory
approach [35]; see section 5 for details. We will show in a subsequent section that the terms
above are in fact just the first two contributions to the expansion of an exponential, hence the
expression (9).

4.2 Contributions at O(K2)

The O(K2) contributions are considerably more involved and provide a first indication that
Rényi entropies after the quench grow linearly in time. Taking into account numerator and
denominator in (22), the O(K2) contributions in the expansion of the one-point function are
given by, see again (28)

D2,2(t) = C2,2(t)− Z2C0,0 , (42)

and
D0,4(t) +D0,4(t) = C0,4(t) + C4,0(t) . (43)
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4.2.1 The Contribution D2,2

We start analysig D2,2 in (42); from (24) one has

τ̃nC2,2(t) =

n∑
j,p=1

∫ ∞
0

dθdθ′

(2π)2
M(θ′, θ; t) n;jj〈θ′,−θ′|T (0, t)| − θ + κ, θ + κ〉pp;n

= n

n∑
j=1

∫ ∞
0

dθdθ′

(2π)2
M(θ′, θ; t) n;11〈θ′,−θ′|T (0, t)| − θ + κ, θ + κ〉jj;n . (44)

The second equality follows from permutation symmetry of the replicas, and we also defined

M(θ′, θ; t) := K̂(θ′)K̂(θ)e2imt[cosh θ′−cosh θ] . (45)

Finally, C0,0 = 1 and from (25) it follows

Z2 = n
n∑
j=1

∫ ∞
0

dθ′

2π

∫ ∞
0

dθ

2π
K̂(θ′)K̂(θ) n;11

〈
θ′,−θ′| − θ + κ, θ + κ

〉
jj;n

. (46)

To further manipulate (44), we exploit the crossing relation [46]

n;11〈θ′,−θ′|T (0, 0)| − θ + κ, θ + κ〉jj;n =

(2π)2τ̃n
[
δ(θ′ − θ − κ)δ(−θ′ + θ − κ)δ1j − δ(θ′ + θ − κ)δ(−θ′ − θ − κ)δ1j

]
− 2π

[
δ(−θ′ − θ − κ)F 1j

2 (θ′+ − iη + θ − κ)− δ(θ′ − θ − κ)F 1j
2 (−θ′− − iη + θ − κ)

]
δ1j

− 2π
[
δ(θ′ + θ − κ)F 1j

2 (−θ′− − iη − θ − κ)− δ(−θ′ + θ − κ)F 1j
2 (θ′+ − iη − θ − κ)

]
δ1j

+ F 11jj
4 (θ′+ − iη1,−θ′− − iη2,−θ + κ, θ + κ) , (47)

which generalises (29) to four-particle states. In (47) and hereafter, we used the notation:
θ± := θ ± iπ . After substituting (47) into (44) we regroup the result into three terms: C2,2 :=

C
(0)
2,2 + C

(2)
2,2 + C

(4)
2,2 . The integrand of C

(0)
2,2 contains the first line in (47), the integrand of C

(2)
2,2

contains the second and third line in (47) while the integrand of C
(4)
2,2 includes the four-particle

form factor in the last line of (47). Now it is easy to see that C
(0)
2,2 = Z2C00 and therefore the

only non-vanishing contribution at O(K2) is, see (42),

D2,2(t) = C
(2)
2,2 (t) + C

(4)
2,2 (t) . (48)

The double integral C
(2)
2,2 , after integrating the delta function over θ′ and exploiting the symme-

tries M(−x, y; t) = −M(x, y; t) and M(−x,−y; t) = M(x, y; t), can be rewritten as

C
(2)
2,2 (t) = nf(−2κ+ iπ − iη)

∫ ∞
−∞

dθ

2π
M(θ + κ, θ; t) . (49)

Notice that the sum over j in (44) reduces in this case to only one term, due to the Kronecker
delta in (47). In the κ regularization scheme, eq. (49) should be first integrated with the
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measure P (κ), discussed in section 3, and then the outcome of the integration evaluated in the
limit V →∞ and η → 0. In practice, one expands (49) in a power series in κ close to κ = −iη/2
and observes that

∫
dκP (κ)κn = O(V −n), therefore in the infinite volume limit only terms that

are singular or finite for κ, η → 0 contribute to the final result. Actually, when summed up at a

given order in K, divergent terms in κ should cancel consistently. Expanding the function C
(2)
2,2

around κ = −iη/2 we obtain

C
(2)
2,2 (t) = − in

2κ+ iη

∫ ∞
−∞

dθ

2π
K̂2(θ) +

1

2 sin π
n

∫ ∞
−∞

dθ

2π
K̂2(θ)

− in

2

∫ ∞
−∞

dθ

2π

dK̂(θ)

dθ
K̂(θ) + nmt

∫ ∞
−∞

dθ

2π
K̂2(θ) sinh(θ) +O(κ) . (50)

The third and fourth terms vanish by symmetry, while the first one which is divergent in the

limit κ, η → 0, will be cancelled by an opposite contribution coming from C
(4)
2,2 . In conclusion

only the second time-independent term in (50), contributes to the final result for the twist field
one-point function. Such a constant was called A in (13).

Let us then finally analyze C
(4)
2,2 . This is a double integral weighted by the function M(θ′, θ; t)

of the four-particle form factor in (47). For the Ising model such a form factor is obtained, see
the definition (35), applying the Wick theorem as

τ̃nF
11jj
4 (θ′+ − iη1,−θ′− − iη2,−θ + κ, θ + κ) = F 11

2 (2θ′ − i(η1 − η2))F jj2 (−2θ)

− F 1j
2 (θ′+ + θ − iη1 − κ)F 1j

2 (−θ′− − θ − iη2 − κ)

+ F 1j
2 (θ′+ − θ − iη1 − κ)F 1j

2 (−θ′− + θ − iη2 − κ) . (51)

Using (37) and in particular F 1j
2 (θ) = τ̃nf(2πi(j − 1) − θ) = −τ̃nf(θ − 2πi(j − 1)) for j 6= 1,

we can rewrite the two-particle form factors in (51) in terms of the elementary function f , see
section 3. The sums over j, needed to construct C4

2,2, see (44), can be then performed by using
the identity

G(x, y) :=
n∑
j=1

f(−x+ 2πij)f(y + 2πij)

= − i sinh x+y
2

2 cosh x
2 cosh y

2

[f(x+ y + iπ) + f(x+ y − iπ)] , (52)

that can be found for instance in the Appendix of [51]. This gives

n∑
j=1

F 11jj
4 (θ′+ − iη1,−θ′− − iη2,−θ + κ, θ + κ) = nτ̃nf(2θ′ − i(η1 − η2))f(−2θ)

+ τ̃n[G(θ′+ − θ − iη1 − κ, θ′− − θ + iη2 + κ)−G(θ′+ + θ − iη1 − κ, θ′− + θ + iη2 + κ)] . (53)

The two lines in (53) have to be finally integrated over the rapidities θ and θ′ to obtain the
function C4

2,2(t). We define I(t) to be the result of integrating the second line in (53) (i.e. the
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function inside the square bracket) and I ′(t) to be the result of integrating the first line (i.e. the
product of functions f). In this way C4

2,2(t) = I(t) + I ′(t); we start by analyzing I ′(t) which is
simply

I ′(t) = n2

∫ ∞
0

dθdθ′

(2π)2
M(θ′, θ; t)f(2θ′)f(−2θ) = |C2,0(t)|2 , (54)

C2,0 given in (39); the result follows from f(θ) = −f(θ)∗ for θ ∈ R. Notice that, according to
the discussion in (16), for large times I ′(t) = O(t−3).

The remaining integral to complete our calculation of D2,2(t) is I(t). After substituting the
explicit form for the function G, given in (52) into (53) and using M(x, y; t) = −M(x,−y; t) it
can be eventually rewritten as

I(t) = n

∫ ∞
0

dθ′

2π

∫ ∞
−∞

dθ

2π
M(θ′, θ; t)

H(θ′, θ)

2 sinh( θ
′−θ−κ−iη1

2 ) sinh( θ
′−θ+κ+iη2

2 )
, (55)

where we have introduced the function

H(θ′, θ) = −i sinh

(
θ′ − θ − iη12

2

)[
f(2θ′ − 2θ − iη12 + iπ) + f(2θ′ − 2θ − iη12 − iπ)

]
, (56)

which is regular along the integration contour in the variable θ in the limit η1,2 → 0; also
η12 := η1 − η2.

The denominator in (55) has poles at θ = θ′ − κ − iη1 and θ = θ′ + κ + iη2. To calculate
the κ-regularized part of the integral and evaluate the η1,2 → 0 limit, we modify the integration
contour for θ to be the sum of the contours

C1 = {x− s+ iφ|x ∈ [−∞, 0]} ,
C2 = {−s+ ix|x ∈ [φ,−φ]} ,
C3 = {x− s− iφ|x ∈ [0,∞]} , (57)

where s and φ are parameters chosen carefully. We have that s < θ′−κ, η1 < φ, and φ has to be
smaller than the position of the branch point in the function K̂. When shifting the contour from
the real axis to C3 we encounter a pole at θ = θ′ − κ− iη1 and pick up the residue contribution,
in a clockwise direction, with the value

n

∫ ∞
0

dθ′

2π
M(θ′, θ′ − κ; t) [f(2κ+ iη + iπ) + f(2κ+ iη − iπ)] . (58)

where η := η1 + η2. Expanding the integrand in (58) around κ = −iη/2, sending η → 0, and
calling θ the integration variable, we have

in

κ+ iη2

∫ ∞
0

dθ

2π
K̂2(θ)− 2nmt

∫ ∞
0

dθ

2π
K̂2(θ) sinh θ − n

∫ ∞
0

dθ

2π

dK̂(θ)

dθ
K̂(θ) +O(κ) . (59)

The first term in (59) exactly cancels the two-particle form factor singularity, i.e. the first term
on the right hand side of (50). The second term is remarkably linear in time with coefficient
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−nmΓ
2 and Γ given in (12). The third term vanishes due to K̂2(0) = K̂2(∞) = 0. We can then

finally write

I(t) =− nΓmt

2
+ n

∫ ∞
0

dθ′

2π

∫
C1∪C2∪C3

dθ

2π

M(θ′, θ′; t)H(θ′, θ)

2 sinh2( θ−θ
′

2 )
, (60)

where the last integral is now well defined as there are no singularities along the contour of
integration of the rapidity θ.

It is also possible to extract the large time limit of the integral

R(t) := n

∫ ∞
0

dθ′

2π

∫
C1∪C2∪C3

dθ

2π

M(θ′, θ′t)H(θ′, θ)

2 sinh2( θ−θ
′

2 )
, (61)

which appears in (60). The integrand of (61) has a double pole on the real axis of the variable θ,
however this can be cured, without spoiling convergence at infinity, by taking a double derivative
with respect to time. After taking the double derivative the integration contour for θ can be
lifted back to the real axis. We are then led to consider the large t asymptotics of the following
double integral

d2R(t)

dt2
= −4m2n

∫ ∞
0

dθ′

2π

∫ ∞
−∞

dθ

2π

M(θ′, θ)H(θ′, θ)(cosh θ′ − cosh θ)2

2 sinh2
(
θ−θ′

2

) . (62)

This can be done by standard application of the stationary phase approximation for two-
dimensional integrals. There is only one stationary point at θ = θ′ = 0; Taylor-expanding
the integrand about θ = θ′ = 0 gives at leading order

d2R(t)

dt2
= − nµ2

32mπt3
+O(t−5) . (63)

Integrating back twice we obtain the desired asymptotic for the integral R(t) in (60) which is

R(t) = − nµ2

64mπt
+O(t−3) . (64)

Notice that when integrating back, we are setting to zero possible terms O(t) and O(1), due to
the asymptotic of the original integral. In summary, we have shown that

I(t) = −nΓmt

2
− nµ2

64mπt
+O(t−3) . (65)

We will revisit this result in subsection 4.3 where we argue that these contributions are nothing
but the first non-trivial term in the expansion of the exponential featuring in (9).

4.2.2 The Contributions D0,4 and D4,0

Finally we analyze the contributions D0,4 and D4,0. Since D4,0 = D∗0,4, we focus only on D0,4,
which is given by D0,4 = C0,4 with

τ̃nC0,4(t) = −n
2

n∑
j=1

∫ ∞
0

dθdθ′

(2π)2
N(θ′, θ; t)F 11jj(−θ′, θ′,−θ, θ) , (66)
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and we defined, analogously to (45)

N(θ′, θ; t) := K̂(θ′)K̂(θ)e−2imt(cosh θ′+cosh θ) . (67)

The four-particle form factor in (66) can be decomposed as in (51) by applying Wick’s theorem
and the sum over the index j performed by recalling (53). By repeating steps similar to those
employed in the section 4.2, the integral C0,4 can be written as a sum of two terms, namely

C0,4(t) := C
(1)
0,4 (t) + C

(2)
0,4 (t). In particular, one obtains

C
(1)
0,4 (t) = −1

2

[
n

∫ ∞
0

dθ

2π
K̂(θ)f(−2θ)e−2imt cosh θ

]2

=
1

2
[C0,2(t)]2 , (68)

and

C
(2)
0,4 (t) =

n

2

∫ ∞
0

dθ′

2π

∫ ∞
−∞

dθ

2π
N(θ′, θ; t)

H(θ′, θ)

2 cosh2
(
θ′−θ

2

) , (69)

where H(x, y) is the same function given in (56). By applying the stationary phase approxima-
tion we can estimate the large time limit of (69). This gives another O(t−3) contribution (since
(68) is also of O(t−3)), namely

C
(2)
0,4 (t) + C

(2)
4,0 (t) =

bnµ
2

32π

sin(4mt)

(mt)3
+O(t−7/2) , (70)

with

bn =
2 + n2 − 12 cot

(
π
n

)
csc
(
π
n

)
48n

. (71)

This closes our calculation of the branch point twist field one-point function at O(K2).

4.2.3 The Complete Formula at O(K2) for the Twist Field One-point Function

We can finally summarize the result for the twist field one-point function up to O(K2)

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

= τ̃n

[
1 +A+ C2,0(t) + C0,2(t)− nΓmt

2
+

+
(C2,0(t) + C0,2(t))2

2
+R(t) + C

(2)
4,0 (t) + C

(2)
0,4 (t)

]
+O(K3) , (72)

where A is given in (13), C2,0(t) +C0,2(t) in (39), Γ in (12), R(t) in (61) and C
(2)
0,4 (t) = [C

(2)
4,0 (t)]∗

in (69). Note also that

(C2,0(t) + C0,2(t))2

2
= C

(1)
0,4 (t) + C

(1)
4,0 (t) + I ′(t) , (73)

with I ′(t) given in (54) and the other terms in (68). The presence of the contributions 1 +

C2,0(t)+C0,2(t)+
(C2,0(t)+C0,2(t))2

2 suggests that these and higher-order terms may arise from the
exponentiation of C2,0(t)+C0,2(t). Indeed, it is possible to argue that all terms in the expansion
(72) exponentiate. We will give a simple argument towards this conclusion in subsection 4.3.
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Reinserting the cut-off dependence ε∆n in (72), taking the logarithm, expanding its argument
up to O(K2) and dividing by 1−n we obtain the following expression up to O(K2) for the Rényi
entropies

Sn(t)− S̃0,n =
1

1− n

[
A+ C2,0(t) + C0,2(t)− nΓmt

2
+R(t) + C

(2)
0,4 (t) + C

(2)
0,4 (t)

]
+O(K3) , (74)

where S̃0,n is the Rényi entropy in the ground state of the post-quench Hamiltonian i.e.

S̃0,n =
log(ε∆n τ̃n)

1− n . (75)

Expanding (74) for mt� 1, we obtain the result quoted in (14).

4.3 An Argument Towards Exponentiation at Higher Orders

A simple combinatorial argument can be provided to show that all the terms in the expansion
(72) exponentiate. In other words, they result from the expansion of an exponential at order
O(K2). The exponent will receive O(K3) and higher corrections which we will not investigate
in this paper. Note that in [31] an argument was given for the exponentiation of the term
−Γmt (the equivalent of our −Γnmt

2 term but for the order parameter). An entirely similar
argument can be given for the branch point twist field to show the exponentiation of this term.
However, we find that exponentiation is a much more general feature of the one-point function,
extending to other terms at O(K2) as well. As we will see, our calculation does not use any
special properties of the branch point twist field form factors, apart from their Pfaffian structure.
Therefore we expect the same exponentiation to occur for the order parameter 〈Ω|σ(0,t)|Ω〉

〈Ω|Ω〉 .

Examining the generalization of the crossing relation (47) and the Wick contraction nature
of the form factor expressions (35) and (36), it is natural to expand the C2k,2l(t) functions as
sums of products of connected contributions, that is

C2k,2l(t) =
∑
{ni,j}

∞∏
i,j=0

(
Cc2i,2j(t)

)ni,j
ni,j !

, (76)

where Cc2i,2j(t) are related to integrals of “connected” matrix elements, which are defined recur-
sively from the condition of not being factorizable into other connected expressions. The ni,j
are non-negative integers that satisfy the constraints

∑∞
i,j=0 i ni,j = k and

∑∞
i,j=0 j ni,j = l. By

inverting the expansion (76), for the first few connected terms we get for instance

Cc2,0(t) = C2,0(t) , Cc0,2(t) = C0,2(t) , (77)

Cc4,0(t) = C4,0(t)− 1

2
(C2,0(t))2 , Cc0,4(t) = C0,4(t)− 1

2
(C0,2(t))2 , (78)

Cc2,2(t) = C2,2(t)− C2,0(t)C0,2(t) . (79)

These new combinations of terms are immediately recognizable from our earlier computation.

For instance, Cc0,4(t) is nothing but C
(2)
0,4 (t) defined in (69), and Cc2,2(t) is obtained from C2,2(t)
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after subtracting the term I ′(t) defined in (54). The norm of the initial state |Ω〉n admits an
analogous expansion

Z2k =
∑
{ñi}

∞∏
i=0

(Zc2i)
ñi

ñi!
, (80)

where
∑∞

i=0 i ñi = k. To calculate the regular terms of the one-point function D2k,2l(t), see eq.
(28), we need to calculate the inverse of the norm defined by the condition

∑∞
km,p=0 Z2kZ̃2p = 1.

From observation of the first few terms of the inverse of the norm, we expect its connected
expansion to have the form

Z̃2k =
∑
{ñi}

∞∏
i=0

(−Zc2i)ñi
ñi!

. (81)

In the following, we are only focusing on terms of the one-point function, that contain connected
matrix elements of at most O(K2), i.e. we consider only terms where powers ni,j = 0 for i+j > 2
and ñi = 0 for i > 1. With this assumption (76) takes the form

C2(k+l),2k =
k∑
r=0

(
Cc2,2(t)

)k−r
(k − r)! Lr+l(t)Rr(t) , (82)

where

Lk(t) =

b k
2
c∑

p=0

(
Cc4,0(t)

)p
p!

(
Cc2,0(t)

)k−2p

(k − 2p)!
, and Rk(t) =

b k
2
c∑

q=0

(
Cc0,4(t)

)q
q!

(
Cc0,2(t)

)k−2q

(k − 2q)!
, (83)

with b.c denoting the integer part. Plugging these formulas and (81) into D2(k+l),2k using the
form (28), and exchanging the order of the summations leads to

D2(k+l),2k(t) =

k∑
r=0

(
Dc

2,2(t)
)k−r

(k − r)! Lr+l(t)Rr(t) , (84)

where the combination Dc
2,2(t) = Cc2,2(t) − Zc2 is both connected and regular. Similar results

hold for D2k,2(k+l)(t) and D2k,2k(t), hence the one-point function (27) takes the form

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

= τ̃n

{ ∞∑
k=0

k∑
r=0

(
Dc

2,2(t)
)k−r

(k − r)!

[ ∞∑
l=1

[
Lr+l(t)Rr(t) + Lr(t)Rr+l(t)

]
+ Lr(t)Rr(t)

]
+ O(K3)

}
. (85)

Further manipulation of the order and range of the summations, allows us to write the one-point
function as

n〈Ω|T (0, t)|Ω〉n
n〈Ω|Ω〉n

= τ̃n

{
eD

c
2,2(t)

∞∑
r=0

Lr(t)
∞∑
s=0

Rs(t) +O(K3)

}
= τ̃n e

Dc2,2(t)+Dc2,0(t)+Dc4,0(t)+Dc0,2(t)+Dc0,4(t)+O(K3) , (86)
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where Dc
2i,0(t) = Cc2i,0(t), Dc

0,2i(t) = Cc0,2i(t), since these terms are regular without any sub-
traction. Note that the terms in the exponent are precisely those inside the bracket in (74).
With this we showed, using the assumption (81), that the one-point function exponentiates up
to O(K2) terms. The expression is regular, since all the singularities are cancelled as explained
in detail in the previous sections.

Given the simplicity of the Ising form factors, we expect exponentiation to occur also at
higher orders in K, and we are planning to investigate this further in the future.

5 Perturbation Theory in the Quench Parameter

Integrable model perturbation theory was developed in [52] for the study of integrable models
subject to a small integrability-breaking perturbation. The case considered there was translation
invariant in time. In a non-equilibrium protocol, such as a quench, the field theory action is
no longer time-translation invariant. In [35] it was then observed that requiring factorization of
the scattering at all times for such an action is consistent only if the latter is free. An approach
to tackle the quench problem was also proposed in which the state in the Heisenberg picture
after the quench could be expanded perturbatively in the quench parameter over the pre-quench
quasi-particle basis. The approach requires the pre-quench theory to be integrable but allows
for considering integrability breaking protocols.

Let us first review the main results of [35]. Consider an integrable quantum field theory with
ground state |0〉 and action A0. At time t = 0 the system is quenched and from t = 0 onwards
it is described by the new action

A = A0 − λ
∫ ∞

0
dt

∫ ∞
−∞

dxΨ(x, t) , (87)

where Ψ(x, t) is some local field. In the interaction picture, with respect to the Hamiltonian
of the pre-quench theory, the state of the system at infinite time after the quench is the time
ordered exponential

|ψ0〉 = lim
t→∞

T

[
exp

(
−iλ

∫ t

0
ds

∫ ∞
−∞

dxΨ(x, s)

)]
|0〉 . (88)

The state |ψ0〉 in (88) can then be expanded perturbatively in λ over the basis of the out-states
of the pre-quench theory. k-particle states of this type are denoted by |θ1, . . . , θk〉out, with
θ1 < θ2 < · · · < θk, being the rapidities. It can then be shown that integrability of the pre-
quench theory allows for relaxing the constraint of ordering on the rapidities in the expansion
over the out-states. In fact, the expansion [35]

|ψ0〉 = |0〉+ λ
∞∑
k=1

2π

k!

∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))[F
Ψ
k (θ1, . . . , θk)]

∗∑
iE0(θi)

|θ1 . . . θk〉+O(λ2) , (89)

represents the state in the pre-quench basis in the Heisenberg picture at all times after the
quench, up to first order in λ. E0(θ) = m0 cosh θ and P0(θ) = m0 sinh θ are the pre-quench
energy and momenta of the particles, and

FΨ
k (θ1, . . . , θk) := 〈0|Ψ(0, 0)|θ1, . . . , θk〉 , (90)
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is a k-particle form factor of the local field Ψ, calculated in the pre-quench quasi-particle basis.
This state can then be employed to compute perturbative corrections to the one-point function
of any local field Φ after the quench. These are found to be

δ〈Φ(t)〉 = 〈ψ0|Φ(0, t)|ψ0〉 − 〈0|Φ(0, 0)|0〉 = λ
∞∑
k=1

2π

k!

×
∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))∑
iE0(θi)

2Re
[
[FΨ
k (θ1, . . . , θk)]

∗FΦ
k (θ1, . . . , θk)e

−i∑k
i=1 E0(θi)t

]
+CΦ +O(λ2) , (91)

where [36]

CΦ = −λ
∞∑
k=1

2π

k!

∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))∑
iE0(θi)

2Re
[
[FΨ
k (θ1, . . . , θk)]

∗FΦ
k (θ1, . . . , θk)

]
, (92)

is a constant which is introduced to ensure that δ〈Φ(0)〉 = 0 at first order in perturbation theory.

5.1 Perturbation Theory for the Entanglement Entropy

In order to calculate the quantity δ〈T (t)〉n, defined similarly to (91), we shall work in a replica
version of (87); however this introduces a few changes. As discussed in section 3 particles are
labelled by a replica index j = 1, . . . , n and we will denote the replicated normalized pre-quench
ground state by |0〉n = ⊗n|0〉. By repeating the steps leading to (89), it follows that the first
order expansion of the state of the system in the replica theory after the quench is

|ψ0〉n = |0〉n + λn

∞∑
k=0

2π

k!

∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))[F
Ψ
k (θ1, . . . , θk)]

∗∑
iE0(θi)

|θ1 . . . θk〉1...,1;n +O(λ2) .

(93)
The expression (93) is essentially identical to (89) except for the prefactor n, which takes into
account the sum over the replicas. Such a sum is however trivial since the local operator Ψ when
insterted in the j-th replica has only non-vanishing form factors among particles with copy index
j. Similarly, the generalization of (91) and (92) for the twist field is also straightforward and
given by

δ〈T (t)〉n = n〈ψ0|T (0, t)|ψ0〉n − n〈0|T (0, 0)|0〉n = λn

∞∑
k=1

2π

k!

×
∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))∑
iE0(θi)

2Re
[
[FΨ
k (θ1, . . . , θk)]

∗F 1...1
k (θ1, . . . , θk)e

−i∑k
i=1 E0(θi)t

]
+CnT +O(λ2) , (94)

where

CnT = −λn
∞∑
k=1

2π

k!

∫ ∞
−∞

k∏
i=1

dθi
2π

δ(
∑

i P0(θi))∑
iE0(θi)

2Re
[
[FΨ
k (θ1, . . . , θk)]

∗F 1...1
k (θ1, . . . , θk)

]
, (95)
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and Fk are the form factors defined in (35), see section 3. The entanglement entropy may then
be computed at first order in perturbation theory as

Sn(t) =
log[ε∆n(τn + δ〈T (t)〉n)]

1− n =
log(ε∆nτn)

1− n +
δ〈T (t)〉n
τn(1− n)

+O(λ2) . (96)

Finally, we can define the first order correction to the Rényi entropies as

δS1
n(t) :=

δ〈T (t)〉n
τn(1− n)

. (97)

Notice that in the perturbative approach, the pre-quench VEV (i.e. τn) appears at the denomi-
nator of (97).

5.2 Entanglement Entropy Oscillations after a Small Mass Quench

Let us now evaluate (97) for a mass quench in the Ising field theory. In this case the field Ψ(x, t)
is the energy field, denoted by ε(x, t), which has only a non-vanishing two-particle form factor
with the pre-quench basis. Indeed, the pre-quench action A0 in (87) is obtained by perturbing
the conformal invariant UV fixed point by the energy operator itself. The two-particle form
factor, suitably normalized reads

F ε2 (θ) = −2m0i sinh
θ

2
. (98)

With the normalization choice for the energy form factor given in (98), we can directly iden-
tify [36] λ in (94) with δm� 1, given in (10). From (94)–(96), and also recalling (33), the first
order correction in δm to the Rényi entropies after the quench can be easily calculated:

δS1
n(t) =

1

1− n
δm

m0

∫ ∞
−∞

dθ

4π cosh2 θ

sinh θ sinh θ
n cos π

2n

sinh iπ−2θ
2n sinh iπ+2θ

2n

cos(2m0t cosh θ) +
CnT

τn(1− n)
. (99)

The constant CnT can be determined exactly in this case [36] and it turns out to be

CnT
τn

=
δm

m0
∆n , (100)

where ∆n is the scaling dimension of the twist field in (18). Observing that at first order in the
quench parameter

τ̃n = τn

(
1 + ∆n

δm

m0

)
+O

(
δm2

m2
0

)
, (101)

then from (96) and (99), the large time limit at first order in perturbation theory for the Rényi
entropies finally follows

Sn(0) + δS1
n(t) =

log(ε∆n τ̃n)

1− n +
1

8
√
πn(1− n)

δm

m0

cos π
2n

sin2 π
2n

cos(2m0t− π
4 )

(m0t)
3
2

+O(t−5/2) . (102)

Eq. (102) reproduces the main result in (14), up to O(µ) as anticipated in section 2. By
expanding K̂ around µ = 0, it is actually easy to verify that eq. (99) coincides with the first
order of (74) at all times.
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6 Lattice Results and Numerical Study in the Scaling Limit

In this section we present a detailed comparison of the field theory results obtained in section 4
against lattice numerical calculations in the Ising spin chain with Hamiltonian

HIsing(h) = −J
N∑
i=1

(σxi σ
x
i+1 + hσzi ) . (103)

In the following, as already anticipated in the introduction, the lattice spacing will be denoted
by a. In a lattice model, it is not possible to access directly the Rényi entropies Sn(t) for a
semi-infinite interval after a quench. Numerical techniques, based on the correlation matrix,
are however known for calculating the Rényi entropies SLn (t) of a subsystem of L neighbouring
sites with physical length ` := La, embedded into an infinite system (i.e. in the limit N → ∞
in (103)). To extract the semi-infinite Rényi entropies, which we determined analytically in
section 4, we then assume the validity of the same clustering property that holds for the spin-
operator two-point function. The clustering property translates for the Rényi entropies into

lim
L→∞

SLn (t) = 2Sn(t) . (104)

As also discussed in section 1, from a field theoretical perspective (see for instance (7)) eq. (104)
is a consequence of locality of the branch point twist field, nevertheless it constitutes a non-trivial
and new prediction when applied to the lattice model.

6.1 Correlation Matrix

For the Ising spin chain, the time evolution of correlation functions and entropies can be calcu-
lated using the restricted correlation matrix of a subsystem A of L sites [5, 53], embedded into
an infinite system

ΓAL =


Π0 Π−1 · · · Π1−L

Π1 Π0
...

...
. . .

...
ΠL−1 · · · · · · Π0

 , with Πj =

[
−fj gj
−g−j fj

]
, (105)

where1

gj =
1

2π

∫ π

−π
dϕe−iϕje−iθϕ (cos Φϕ − i sin Φϕ cos 2εϕt) ,

fj =
i

2π

∫ π

−π
dϕe−iϕj sin Φϕ sin 2εϕt ,

(106)

1Note that the matrix ΓAL has nothing to do with the decay rate Γ introduced earlier in (12). Both these
notations have been previously used in the literature so we maintain them here.
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and, for the Ising chain, we have

εϕ =
1

a

√
(1 + am− cosϕ)2 + sin2 ϕ ,

ε0ϕ =
1

a

√
(1 + am0 − cosϕ)2 + sin2 ϕ ,

e−iθϕ =
cosϕ− (1 + am)− i sinϕ

aεϕ
,

sin Φϕ =
sinϕ(am0 − am)

a2εϕε0ϕ
,

cos Φϕ =
1− cosϕ(am0 + am+ 2) + (1 + am)(1 + am0)

a2εϕε0ϕ
.

(107)

Here, we already rewritten the transverse fields h0 and h in terms of the pre- and post-quench
masses defined in the scaling field theory by: h0 = 1 + am0, h = 1 + am. Since m0,m are
positive, the lattice calculations will be performed in the paramagnetic phase, the results should
hold also in the ferromagnetic phase by duality. We also set the speed of light to v = 1, therefore,
according to (4), J = 1

2a .
The matrix ΓAL has 2L purely imaginary eigenvalues ±iνk, k = 1, . . . , L, and the 2L eigen-

values of the reduced density matrix ρA matrix have the form

λj =
1

2L

L∏
k=1

(
1 + (−1)a

(j)
k νk

)
, (108)

where a
(j)
k ∈ {0, 1}. A straightforward calculation gives the Rényi entropies for an interval of

length L

SLn (t) =
1

1− n log TrρnA =
1

2(1− n)
Tr log

(
Pn(iΓAL)

)
, (109)

where the polynomials are

Pn(x) =

(
1 + x

2

)n
+

(
1− x

2

)n
. (110)

Therefore the Rényi entropies can be easily calculated numerically by diagonalizing the correla-
tion matrix.

6.2 Linear Growth in the Scaling Limit

Exact lattice results are available [7] for the leading, linear in time, contribution to the Rényi
entropies SLn (t). The linear growth is obtained in the regime 1 � t � L, while for t �
L, according to a semi-classical quasi-particle picture the Rényi entropies saturate to a value
proportional to the size L of the interval.

We will then compare the field theoretical results of section 4 valid up to the second order in
the quench parameter µ, with the scaling limit of the lattice predictions in [7]. Computationally,
see again (4) and the remarks below (107), the scaling limit is defined as follows: replace lattice
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quantities according to (107), then introduce the continuum momentum variable p substituting
ϕ := pa, and 0 ≤ p ≤ 2π

a , and eventually take the limit a→ 0. The mathematical operation will
be denoted by the shorthand notation limscal. For instance, it is easy to verify that

lim
scal

εϕ := Em(p) =
√
m2 + p2 . (111)

The main result in [7], evaluated for L→∞ then reads

lim
L→∞

SLn,lin(t) =
2t

1− n

∫ π

0

dφ

π
|ε′ϕ| log(Pn(cos Φϕ)) , (112)

with ε′ϕ :=
dεϕ
dϕ and Pn as in (110). The lin subscript indicates that the formula only captures

the linear growth part of the entanglement. With the definition

ζ(p) :=
mm0 + p2

Em0(p)Em(p)
, (113)

the scaling limit of (112) is thus

lim
scal

lim
L→∞

SLn,lin(t) =
2t

π(1− n)

∫ ∞
0

dp p

Em(p)
log

[(
1 + ζ(p)

2

)n
+

(
1− ζ(p)

2

)n]
. (114)

Expanding (114) for small quenches (i.e. m = m0 + δm) and substituting p = m0 sinh θ, which
is consistent at second order in δm, we find

lim
scal

lim
L→∞

SLn,lin(t) =
nt δm2

2πm0(n− 1)

∫ ∞
0

dθ
tanh3 θ

cosh θ
+O(δm3) =

nm0tµ
2

3π(n− 1)
+O(µ3) , (115)

where we used the definition (10). It then follows, as expected according to (104), that the
result in (115) is precisely twice the leading large-time asympotics obtained expanding (14) for
a small quench, see in particular (15). By considering the limit n→ 1 in (112), the scaling limit
of the von Neumann entropy turns out to be

lim
scal

lim
L→∞

SL1,lin(t) = −2t

π

∫ ∞
0

dp p

Em(p)

[(
1 + ζ(p)

2

)
log

(
1 + ζ(p)

2

)
+

(
1− ζ(p)

2

)
log

(
1− ζ(p)

2

)]
,

(116)
and expanding for small quenches

lim
scal

lim
L→∞

SL1,lin(t) = −
t δm2 log

(
δm2

m2
0

)
3πm0

+O(δm2) . (117)

In the scaling limit, and for small quenches, the von Neumann entropy determined in [7] is dom-
inated by a term O(δm2 log δm) and therefore is not analytic in the quench parameter. This
unexpected result provides another indication that the limit n→ 1 in the Rényi entropies does
not commute with a pertubative expansion in δm. Incidentally, the emergence of logarithmic
corrections to the expectation values of certain fields in the massive Ising field theory is com-
patible with previous studies, such as [54]. It is generally due to ambiguities in the definition of
some local operators: For instance in the Ising field theory, the energy field can be regarded as
a linear combination of the usual fermion bilinear and a term proportional to the identity field
with proportionality constant equal to the mass.
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6.3 Numerical Evaluation of the Correlation Matrix

In this section we test the field theory results against the numerical results on the lattice, where
one can directly diagonalize the correlation matrix (105) and calculate the entropies as shown
in section 6.1.

We expect that the results match in the scaling limit defined in the previous section and
for small quenches. Therefore we chose the transverse field to be close to the critical value i.e.
m,m0 � 1 and the quench δm � 1. Then the scaling limit can be carried out by decreasing
a while keeping the physical subsystem size ` = La fixed. Then one can extrapolate to a = 0
taking into account corrections to the scaling of the entropies as discussed in Appendix A.

This method gives the entanglement entropies of a finite subsystem, which is proportional
to the logarithm of the two point function of branch point twist fields. Therefore one needs to
consider large enough subsystem sizes in order to observe clustering, namely factorization into a
one-point function squared. All our numerical results show excellent agreement with analytical
predictions up to a factor two due to clustering. We note that for larger subsystems and times
the evaluation of (105) gets harder due to the highly oscillatory integrands in (106).

As recalled in (19), in a massive field theory the logarithmic divergence of the von Neumann
entropy is encoded in the term

S1 = − c
6

logma+O(1) , (118)

where c is the central charge of the ultraviolet CFT and the O(1) corrections are discussed in
Appendix A. The scaling limit technique can be then used to extract the central charge c. For
instance at values of the mass m = 0.04 we obtained c = 0.50195(3), which is very close to the
theoretical value c = 1

2 . The central charge extrapolation provides a means to numerically probe
the scaling regime of the Ising spin chain. We found that differences of entropies calculated at
different times do not have any divergences in the scaling limit as expected. More details on the
numerical results corresponding to the scaling limit can be found in Appendix A.

6.3.1 Saturation and Oscillations

As was already pointed out in [5] for a finite subsystem size the entanglement entropy saturates
to a constant after a finite time. The saturation constant is linear in the subsystem size. The
authors studied large quenches, where the leading behaviour is the linear growth, and there was
no trace of oscillatory behaviour. The left panel of fig. 2 shows the time evolution of the von
Neumann entropy of different subsytems for a small quench with fixed lattice spacing. It is clear
that also after saturation the entropy continues to oscillate. The baseline of the oscillations
saturates as well, but apart from this offset, the functional form is predicted well by the field
theory formula (39), which in principle is not supposed to be valid for t� L.

For a comparison we plot the entanglement entropy together with (39) shifted by an arbitrary
constant. In the right panel of fig. 2 we plot the differences of the entanglement entropy,
calculated at different subsystem sizes. After the saturation the curves are equally spaced,
which shows that the oscillations do not depend on the subsystem size.

From fig. 2 we can draw several conclusions:

• Before saturation, the values of the entanglement entropy are independent of the subsys-
tem’s size. This demonstrates the clustering of the two point function of twist fields.
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Figure 2: Left: The time evolution of the von Neumann entropy after the mass quench m0 =
0.0095 → m = 0.01 for various subsystem sizes with a = 1. The symbols correspond to the
numerical evaluation of the correlation matrix, while the continuous line is limn→1 2(C2,0(t) +
C0,2(t)) + 1.1082. For short times, before the saturation sets in, the points corresponding to
different subsystem sizes overlap. After the saturation, all curves exhibit oscillations that persist
for large times, and are well reproduced by the formula (39) for C2,0(t)+C0,2(t) up to a constant
offset and a factor of two, due to clustering of the branch point twist field two-point function.
The different heights of the curves are due to the different subsystem finite sizes and the presence
of a contribution to the entanglement entropy that is proportional to the subsystem size. Right:
Differences between the von Neumann entropies calculated at different subsystem sizes after the
same quench. For large enough times all curves coincide, demonstrating that the oscillatory part
of the entropies is independent of the subsystem size and the dependence on the subsystem size
is (as expected) linear.

• The saturation times and saturation values are equally spaced for different subsystem sizes
(with fixed difference in the size). This shows the ∝ L behaviour of the saturation values,
which was already discussed in [5, 7].

• The oscillations are present, independently of the linear growth and the saturation. After
the saturation sets in, the shape of the oscillations is the same for different subsystem
sizes. Moreover, they persist for large times and are well reproduced by the formula (39)
up to a constant offset, and a factor of two. As already discussed, the factor of two is the
result of the clustering.

6.3.2 Linear Growth and Oscillations

To observe linear growth in time and test the field theory result (74), one needs larger subsystem
sizes in order to prevent saturation within the time window. Fig. 3 shows the time evolution of
the Rényi entropies after a mass quench. The theoretical prediction (74) is in remarkably good
agreement with the numerical data. One can also see how the successive contributions of the
different terms in (74) improve accuracy.

Within our field theoretical approach, as mentioned in section 2, for the von Neumann
entropy we can obtain only the oscillatory behaviour. Additional contributions are also expected
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Figure 3: The time evolution of the 2nd and 3rd Rényi entropies after the mass quench m0 =
0.048 → m = 0.04 for subsystem size ` = 128 extrapolated to a = 0. The S̃l0,n subtraction
is the equilibrium entropy of the post-quench ground state, analogously to (75). The curves
exhibit both oscillations and linear growth. The dotted line corresponds to the contribution
c2(t) = C2,0(t) + C0,2(t). Other curves incorporate the indicated contributions to (74) one-by-

one with c4(t) := C
(2)
40 (t) + C

(2)
04 (t). The full prediction (74) is in remarkably good agreement

with the numerical data.

to be present in this case. One can then take the time derivative in order to eliminate the time
independent offset and subtract the value predicted by (117) to eliminate the linear growth,
which, in turn, produces an offset in the time derivative. The results can be seen in fig. 4.
The agreement with the field theory prediction is again very good except for the small t region.

Notice that the corrections coming from C
(2)
40 (t) + C

(2)
04 (t) and R(t) can not be calculated at

n = 1 and, although subleading for large time, they might affect the small time behaviour.

7 Conclusion

In this paper we have presented an analytic derivation of the leading large-time post-quench
dynamics of entanglement in the massive Ising field theory. We considered in particular a global
quench resulting from a sudden change in the mass of the fermionic particle, from an initial value
m0 at time t = 0 to a subsequent value m for t > 0. For the first time in a dynamical context for
massive quantum field theories, we have employed the branch point twist field approach [34] in
our computations. We have computed the Rényi entropies of a semi-infinite interval, which are
proportional to the logarithm of the one-point function of a branch point twist field in a replica
quantum field theory. In particular, the twist field one-point function has been computed exactly
up to O(K2), in the post-quench quasi-particle expansion of the initial state by employing a
regularization scheme for the infinite volume divergences discussed in [31].
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Figure 4: The time derivative of the von Neumann entropy after the mass quench m0 = 0.048→
m = 0.04 for subsystem size ` = 128 extrapolated to a = 0. The numerics was shifted by the
value calculated in (116). In other words, the linear time growth has been subtracted to leave
only the oscillatory part.

Such an expansion can be also recast as a perturbative series in the quench parameter
δm := m−m0, and is then exact up to O(δm2). At first order in the quench parameter δm the
result for the twist field one-point function can also be recovered from a perturbative expansion
in the pre-quench quasi-particle basis by generalizing the approach introduced in [35]. We
demonstrated, moreover, that crucial effects of the relaxation dynamics, such as linear growth
of entanglement must manifest as second order corrections in such a perturbative expansion.
The main conclusions from the analytic results can be then summarized as follows:

• We showed the presence of a contribution to the Rényi entropies which grows linearly in
time with slope nΓm

2(n−1) , where Γ is up to O(K2) exactly the decay rate of the spin operator

after a mass quench found in [31].

• The Rényi and von Neumann entropies contain contributions which are oscillatory, with
frequency of oscillation 2m and amplitude proportional to (mt)−3/2 for large-time. Those
contributions are of first order in K and can be also obtained from a perturbative expansion
in the quench parameter δm. Our result implies that oscillations in the entanglement
entropies are not produced by finite size-effects, as for instance stated in [7], but are rather
inherent properties of those quantities. The same reasoning will apply to the constant
shift of the Rényi entropies, which we also determined in section 4.

• We have provided a simple argument to show that, up to a constant normalization by the
VEV of the twist field, the one-point function can be expressed as the exponential of a
Laurent polynomial in the variables (mt)

p
2 for p ≤ 2 and p 6= 1. We have shown this at

O(K2) and expect to generalize this conclusion to higher orders in the future. Interestingly,
the arguments leading to exponentiation of the one-point function also apply to the order
parameter discussed in [31].

As expected, our field-theoretical results for the linear large-time behaviour of the Rényi
entropies reproduce the scaling limit of the formulae found in [7] up to O(δm2). The field-
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theoretical expansion, however, extends the lattice results to intermediate times and is confirmed
with remarkable accuracy by numerical calculations directly in the scaling limit. Comparison
between analytic and numerical results also shows that the two-point function of branch point
twist fields after a global quench satisfies clustering, as previously observed for the spin field
[8,9,31]. Thus the entanglement entropies are proportional to the number of subsystem boundary
points, just as in equilibrium situations.

It would be interesting to use twist fields and the approaches discussed in section 3.2 and
section 5 to consider other (small) global quenches. In particular, quenches that drive the theory
away from an integrable point or to a different interacting integrable model. A particular case is
the quench of the longitudinal magnetic field in the Ising spin chain while fixing the transverse
field at its critical value h = 1. In the scaling limit, this corresponds to a mass quench in
the so-called minimal E8 Toda theory. The prediction is then that the entanglement entropies
will oscillate with frequencies that are directly the quasi-particle masses of the E8 field theory.
An analogous phenomenon has been observed numerically in the Ising spin chain [28–30], for a
quench of the longitudinal magnetic field, but in the ferromagnetic phase h < 1. The presence of
oscillations in the entanglement entropies and their slower (linear) growth in time were ascribed
to the confinement of the kinks.

Finally, it would be useful to develop a quasi-particle interpretation/derivation of the oscil-
latory contributions to entanglement. Even though our results are restricted to the Ising field
theory, the emergence of such oscillations in the context of form factor expansions seems very
natural. This suggests that it is a universal feature of quenches in gapped theories.

A powerful unifying picture emerges from our work: the dynamics of entanglement and that
of correlators of local fields after a global quench are not fundamentally distinct. Rather, the
dynamics of entanglement is just the dynamics of correlators of a particular field, the branch
point twist field. As a consequence, the large time linear growth of entanglement emerging from
the quasi-particle picture of [5] is nothing but the exponential decay of correlators (in our case,
the one-point function) at large time after the quench. Suggestively, out-of-equilibrium dynamics
where no indication of linear growth of entanglement is observed, such as in the presence of
confinement [28–30], could signal that certain local observables fail to relax exponentially fast
at large times. The present work extends the seminal results of [3] out-of-criticality and, for a
very simple model, provides further evidence of the rich and interesting dynamics of correlators
in out-of-equilibrium massive QFT.
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A Numerics in the Scaling Limit

A.1 Extrapolations and Extraction of the Central Charge and Scaling Di-
mensions

In this appendix we present further details on the numerical scaling limit discussed in section 6.3.
The central charge and the operator scaling dimensions can be extracted from the evaluation
of the restricted correlation function at t = 0. We fix m to a certain value in the scaling field
theory, and change a and L in such a way that the physical subsystem size ` = aL is kept fixed.
Then one can fit the lattice spacing dependence of the logarithm of the one-point function of
the disorder operator and the Rényi entropies with the following functional forms

log〈µ(a)〉 ≈ A+B log a+ Ca+Da2 , (119)

Sn ≈ A+B log a+ Ca1/n +Da2/n . (120)

For the Rényi entropies unusual corrections are present [55]. For the disorder operator one
assumes standard corrections, more on this operator can be found in section A.2.

The coefficient of the log a term corresponds to the scaling dimension of the operators or in
the case of the von Neumann entropy the central charge of the UV CFT. We carried out the
fit with the following parameters: m = 0.04, ` = 128, a = 1/4, 1/7, 1/8 . . . 1/20. The results are
summarized in Table A.1.

c ∆µ ∆2 ∆3 ∆4

Theory 0.5 0.125 0.0625 0.11111 0.15625

Fit 0.50195(3) 0.124969(4) 0.06258(1) 0.11002(9) 0.1525(3)

Table 1: UV central charge and operator dimensions from the scaling limit extrapolations in the
ground state with m = 0.04 and ` = 128.

The agreement for the central charge, the dimension of the disorder operator, and of the
twist field with n = 2, 3, 4 is excellent (see equation (18)). Note that the central charge can be
extracted with better precision by calculating the von Neumann entropy at the critical point,
with fixed lattice spacing and changing the number of sites in the subsystem, based on the
logarithmic violation of the area law. In our case we extract the UV central charge away from
the critical point, therefore we have less precision.

Using the above fits one can extrapolate to a = 0. At different times, we used the same set
of lattice spacings to carry out the extrapolations. Note that in our comparison we subtract
the post-quench ground state entropy from the numerical results. The logarithmic singularity
cancels from these differences, therefore we did not include the logarithm when extrapolating
these quantities.
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Note that going closer to the critical point would require more computational power since one
has to increase the subsystem size correspondingly, therefore the size of the correlation matrix
increases. The calculation of the intergrals (106) gets also more difficult. One also has to make
sure, that the chosen subsystem size is large enough for the clustering of the two-point functions.
For the quench studied in this paper we checked this using the saturation of the post-quench
entropies. We found that for a = 1 and L ≈ 120 the entropies are saturated up to O(10−6),
therefore we claim that our numerical results for the entropies have errors of this order.

A.2 Scaling Limit and the Disorder Operator

In [8,9] the decaying exponential characterizing the post-quench behaviour of the spin operator
was found to be

log〈σ(t)〉 = t

∫ π

0

dϕ

π
|ε′ϕ| log(cos(Φϕ)) , (121)

therefore, in the scaling limit, see (113)

lim
scal

log〈σ(t)〉 = t

∫ ∞
0

dp p

πEm(p)
log(ζ(p)) . (122)

For small quenches, eq. (122) becomes

log〈σ(t)〉 = − t δm
2

2πm0

∫ ∞
0

dθ
tanh3 θ

cosh θ
+O(δm3) = − t δm

2

3πm0
+O(δm3) , (123)

that agrees with the field theory result presented in [31], when expanded up to the second order
in the quench parameter.

In [9] the authors determine the time dependence of the order parameter by calculating
the determinant of the correlation matrix. However, their definition of the correlation matrix
is slightly different. In particular, in our notations, their Töplitz matrix starts with Π−1 in
the upper left corner. From [56] one can see that this can be absorbed into the redefinition
of h → 1/h, realizing the Kramers–Wannier duality. Therefore calculating the determinant
of (105) gives the square of the two-point function of the disorder operator, up to a constant:

Det ΓL(t) ∝ (〈µ(L, t)µ(0, t)〉lattice)
2 ∝ a2∆µ (〈µ(` = aL, t)µ(0, t)〉field theor.)

2 . (124)

Using the fitting procedure outlined in section A.1 we obtained ∆µ ≈ 0.12497, which is very
close to the theoretical value 1

8 = 0.125.
If the separation is large, the two-point function of µ clusters, just as for the order parameter

in the ferromagnetic phase [9]

〈µ(`, t)µ(0, t)〉 = (〈µ(0, t)〉)2 +O(e−`m) . (125)

Therefore for large enough separations one can get access to the one-point function. It can be also
seen that in the scaling limit µ̃(t) = log〈0̃|µ(0, t)|0̃〉− log〈0̃|µ(0, 0)|0̃〉 has a finite limit. Based on
the Kramers–Wannier duality the formulas of [31] for the order parameter in the ferromagnetic
phase can be directly used to test the disorder operator in the paramagnetic phase. Such a
comparison can be seen in fig. 5. The agreement is excellent. Note that in the case of the
order/disorder operator there is no offset at O(K2) [31].
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Figure 5: Time evolution of µ̃(t) compared to [31] after quench m0 = 0.048 → m = 0.04 in
the paramagnetic phase. The dots are the numerical results extrapolated to a = 0, the line is
the theoretical prediction for the oscillation and the linear growth of [31]. The agreement is
excellent, and it is clear that for smaller times one has to take into account the 1/t correction
and there is no visible offset.
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