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Peripheral gene interactions define interpretable clusters of
core ASD genes in a network-based investigation of the
omnigenic theory
Ábel Fóthi 1,2,3✉, Csaba Pintér1, Péter Pollner4,5 and András Lőrincz 1

According to the recently proposed omnigenic theory, all expressed genes in a relevant tissue are contributing directly or indirectly
to the manifestation of complex disorders such as autism. Thus, holistic approaches can be complementary in studying genetics of
these complex disorders to focusing on a limited number of candidate genes. Gene interaction networks can be used for holistic
studies of the omnigenic nature of autism. We used Louvain clustering on tissue-specific gene interaction networks and their
subgraphs exclusively containing autism-related genes to study the effects of peripheral gene interactions. We observed that the
autism gene clusters are significantly weaker connected to each other and the peripheral genes in non-neuronal tissues than in
brain-related tissues. The biological functions of the brain clusters correlated well with previous findings on autism, such as synaptic
signaling, regulation of DNA methylation, or regulation of lymphocyte activation, however, on the other tissues they did not enrich as
significantly. Furthermore, ASD subjects with disruptive mutations in specific gene clusters show phenotypical differences
compared to other disruptive variants carrying ASD individuals. Our results strengthen the omnigenic theory and can advance our
understanding of the genetic background of autism.
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INTRODUCTION
Autism spectrum disorder (ASD) is a complex neuropsychiatric
disorder both from the point of view of behavior and genetics1,2.
The diagnosis of the disorder is based on the results of behavioral
tests of the core symptoms in social behavior, speech/commu-
nication, repetitive behavior, and restricted interests3. Further-
more, the identification of autism-related genes is at the forefront
of research4. However, the concepts of both core behavioral
symptoms and “autism genes” are recently challenged5,6. Autism
is a high-complexity disorder, and the phenotypic and genetic
heterogeneity could not be explained by a small number of
factors, therefore holistic approaches seem advantageous7,8. The
recently proposed omnigenic theory9 is a promising novel way to
describe high-complexity disorders like autism from genetic
background. The omnigenic theory divides genes into two main
categories: core genes that have an identifiable direct impact on
complex disorders, and peripheral genes which do not have a
direct impact but are expressed in relevant tissues and affect the
expressions of the core genes. Peripheral genes have an indirect
influence on the disease by interacting with core genes and
regulating them through peripheral gene interaction networks.
Although omnigenic theory has many supporters, its reception

is not unequivocal. Wray et al.10 highlight the risk of putting too
much emphasis on core genes. Another critique of the omnigenic
theory concerns the strict distinction between core and peripheral
genes11. In a commentary paper from Franke12, a gradual
distinction of core and peripheral genes was suggested. Liu
et al.13 have been trying to overcome the limitations of the
original omnigenic model by giving a more precise definition of
core genes and introducing a practical systematic approach to

study the omnigenic hypothesis quantitatively. They defined a
model, which aggregates cis and trans effects on the core genes to
explain heritability. Cis-regulatory elements are on the same
molecule as their target; hence they can directly regulate the core
genes. The most prominent examples of cis-regulatory elements
are transcription factor binding sites. Genetic variants in cis-
regulatory elements can have a direct effect on the expression of
core genes, and they can be defined by expression quantitative
trait loci (eQTL)14 or predicted by machine learning approaches,
such as Expecto15. On the other hand, peripheral genes expose
their influence through trans effects, and in fact, a significant
portion of gene expression heritability is due to trans variants13,16.
In turn, the systematic evaluation of the omnigenic theory
requires the application of a quantitative description of
gene–gene interaction between the peripheral and core genes.
Gene interaction networks, especially when gene co-expression
data is also integrated, seem appropriate for this purpose.
Although trans effects and gene interactions are important factors
of the omnigenic model, this aspect of the theory still has a long
way to evolve in understanding the interactions of peripheral
genes and core genes in order to analyze the genetic background
of complex disorders.
GIANT17 (Genome-scale Integrated Analysis of gene Networks in

Tissues)—created by Greene et al.—integrated many gene co-
expression and functionality databases into tissue-specific gene
interaction networks. Edges of the networks are weighted
according to the tissue-specific posterior probabilities of the
functional relationships between the pairs of genes. A brain-
specific GIANT network was subsequently used to analyze ASD
genes by Krishnan et al.18. This work expanded the set of core ASD
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genes by machine learning on the gene interaction network. They
also demonstrated that Louvain modularity19 is an effective way to
find clusters of this extended set of core ASD genes that can be
described with distinct biological processes. They could define
nine clusters: one for cellular and neuronal functions, three for
signaling pathways, one for histone modification and chromatin
remodeling, one for cell cycle regulation, one for enteric nervous
system development, one for a whole assortment of perceptions,
and one for circadian rhythm. However, their approach was based
on the interaction between ~10% of the genes expressed in the
brain, which is still a limited number of genes compared to an
omnigenic model.
Empirical graphs such as social networks and gene interaction

networks have common statistical properties as the small-world
property, power-law degree distributions, and the property of
community structure, in which the nodes form dense clusters,
which are loosely connected20. The Louvain method efficiently
detects these communities even in large networks. From a
biological perspective, the members of a community on a gene
interaction network tend to have stronger functional interactions
with each other than with the members of other clusters19.
The motivation of the present study was two-fold. First, we

aimed to quantitatively test whether the tissue-specific gene
interaction network of the brain, a tissue with neurodevelopment
relevance, is more suitable for the implementation of the
omnigenic model to autism rather than other networks without
neurodevelopmental roles (e.g., tissues from kidney, lung). We
hypothesized that the functional clusters of the autism genes are
embedded into larger clusters of brain-specific gene interactions.
Second, we wanted to exploit the community structure of gene
interaction network of the brain to find clusters of autism genes
with enriched biological functionality and connections to autism
phenotypes.

RESULTS
Autism genes are central nodes in brain-related gene
interaction networks
We analyzed the properties of autism-related genes in 144 tissue-
specific gene interaction networks from the GIANT database. All
networks have a similar number of nodes between 25,689 and
25,825, however, the number of their edges shows a high
discrepancy: it ranges from 30,879,035 to 282,977,319.
Putative core genes were selected based on the Simons

Foundation Autism Research Initiative (SFARI) Gene database.
SFARI genes with gene scores 5 and 6 were excluded, thus the set
of putative core genes contains 756 genes tied to autism based on
empirical evidence. We hypothesize that the subnetwork of the
SFARI genes on the GIANT network reveals the core subgraph of
autism. However, it does not imply that all genes of the core
subgraph are genuine core genes. Since different numbers of

SFARI genes are connected to each other in each tissue-specific
network, the sizes of core subgraphs differ from tissue to tissue.
A common measure of the node’s importance is node

strength21, which can highlight the central nodes in a weighted
network. Strength is proportional to node degree and edge
weight, therefore in GIANT, a set of genes with multiple strong
edges are more probably to form a functional cluster than genes
that are connected by weaker edges.
To quantify their importance, we measured the node strengths

of SFARI genes in the corresponding full graphs. The 144 available
tissues were divided into two groups: 37 brain-related and 107
non-brain-related tissues (Supplementary Data 1). In 16 from the
non-brain-related tissues and in 15 from the brain-related tissues
SFARI genes have significantly higher strength than other genes
(p: 2.303 × 10−4, Chi-squared test), thus brain-related tissues are
2.7 times enriched among the tissues, in which SFARI genes are
central.
For further investigations, three tissues were selected from the

GIANT database. Brain is the most relevant tissue for neuropsy-
chiatric disorders and SFARI genes are central in its network. For
comparison, two other networks were selected with edge
numbers of the same magnitude as in the brain: the kidney and
the lung networks (Table 1).
Comparing full networks of gene interactions, kidney and lung

networks have 48% and 43% more edges, respectively, than the
full network from the brain tissue. However, on core subgraphs
this changes in favor of the subnetwork of the brain, which
consists of 2.63 and 2.86 times more edges than the subgraph
from the kidney and from the lung (Table 1).
Furthermore, the central role of ASD genes in the relevant brain

tissue is reinforced by the average node strengths of the core
subnetworks: 17.66 for the brain compared to 6.97 and 6.88 for the
kidney and the lung, respectively. In fact, core genes are more
scattered with weaker connections on ASD-irrelevant tissues, while
they become central elements with stronger connections in the brain
network. This tendency is also observable in the “Core*” networks
(where core node strengths are calculated on the full network). Node
strengths of the SFARI genes were compared to the node strength of
the peripheral genes in all available tissue (n= 144), and among
them, three representative tissues were shown on the box plot
diagram (centerline, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; diamonds, outliers) (Fig. 1). Node
strengths of the SFARI genes on the networks of the kidney (319.712,
95% Confidence Interval (CI) [307.511, 331.913]) and lung (307.723,

Table 1. Network properties of the tissue-specific full and core
subnetworks.

Tissue Nodes Edges Average node strength

Full Core Full Core Full Core* Core

Brain 25.6k 745 42m 43.7k 375.6 417.4 17.66

Kidney 25.6k 720 62m 16.6k 509 319.7 6.97

Lung 25.6k 684 60m 15.3k 495.9 307.7 6.88

Number of nodes, edges, and the average node strengths are listed for the
tissue-specific (Brain, Kidney, Lung) GIANT networks (Full), and their ASD
core subnetworks (Core). “Core*” indicates the average node strength of
core genes while all edges are kept from the full network.

Fig. 1 Core ASD genes have stronger connections in relevant
tissues. The box plots show the node strengths of the peripheral
genes and the SFARI genes for brain, kidney, and lung networks
(centerline, median; box limits, upper and lower quartiles; whiskers,
1.5x interquartile range; diamonds, outliers). Statistical test:
Mann–Whitney U test, significant differences are marked by
*(p < 0.05).

Á. Fóthi et al.

2

npj Systems Biology and Applications (2022)    28 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



95% CI [294.828, 320.618]) are significantly lower (p: 2.47 × 10−26 on
kidney, p: 3.033 × 10−29 on lung, Mann–Whitney U-test) than for the
peripheral genes (kidney: 514.627, 95% CI [508.791, 520.463]; lung:
501.501, 95% CI [495.731, 507.272]). Furthermore, the node strengths
of the SFARI genes in the brain (417.404, 95% CI [402.288, 432.52])
are higher than the values for either the SFARI genes in the irrelevant
tissues (p: 1.68 × 10−23, 4.146 × 10−31 compared to the kidney and
the lung, respectively, Mann–Whitney U test) or the peripheral brain
genes (374.352, 95% CI [371.341, 377.363], p: 1.079 × 10−13,
Mann–Whitney U test).

The highest core-periphery similarity is in the brain
According to the omnigenic hypothesis, we should consider the
relationships not only between the core genes but also the
influences from the peripheral genes.
Peripheral influence is propagated through the gene interac-

tions that connect the peripheral genes to each other and to the
core genes. These edges are part of the full network, but they are
ignored in the core subnetwork. It also means that the full network
represents both the core subnetwork and the peripheral influence
on them. Community detection on the GIANT networks finds
functional clusters, in which genes have a higher probability to be
in a functional relationship with each other than with genes from
other clusters. When the full network has a different community
structure than the core subnetwork, the peripheral influence
weakens the core clusters. On the other hand, interrelated full and
core communities are strengthened by peripheral influence and
these clusters of autism genes are core clusters even in the
omnigenic framework.
Community detection divided both the full and the core

networks into smaller clusters. The clusterings of two representa-
tive core subnetworks (from brain and kidney) are visualized in
Fig. 2a, where the size of the vertices corresponds to their node
strength. Clusters found by the Louvain method are marked with
different colors. This provides visualization for our observation

that in tissues with closer relevance to autism, SFARI genes have
substantially stronger connections than in less relevant tissues.
Community detection on the full brain network detected 4 large

clusters with 10939, 4748, 3720, and 6267 genes and 3 small
clusters with 6, 5, and 4 genes. The core subnetwork was divided
into 4 clusters having 326, 212, 107, and 100. We compared the
two sets of clusters by taking their intersections. Intersections of
the core clusters and the full clusters define the subclusters and
they are shown in contingency tables. The rows correspond to the
clusters on the core subgraphs, the columns correspond to the
clustering on the full networks and the cells of the contingency
tables show their intersections. With this contingency table, each
core cluster is further subdivided by considering the peripheral
influences. Figure 2b shows the contingency tables with a
colormap that is colored based on the average node strengths
of the subclusters. On the brain core subgraph, the 4 core clusters
were further divided into 16 subclusters by intersecting with the 4
clusters of the full brain network. On the kidney core subgraph,
there are 5 clusters, while the kidney full network has 3 clusters,
this gives us a contingency table with 5 rows and 3 columns.
Resulting contingency tables were used for testing, whether the

clusters of the autism-related genes are strengthened by the
peripheral interactions of the full network or not. If there is a
relationship between the community structures of the full network
and the core network, we expect to have the clusters in the core
network to be embedded in their corresponding clusters of the
full network. In contrast, when the nodes of genes of autism are
independently distributed over the full network of tissue-related
gene expression, a homogeneous overlap between core clusters
and full clusters is expected.
The hypothesis is tested by investigating the distribution of the

genes among the subclusters. Even distribution would indicate
that the peripheral influence is not correlating with the core
connections between the autism-related genes in the tissue. On
the other hand, each core cluster may have its community on the

Fig. 2 SFARI genes define core clusters. a Visualization of the core gene clusters. Colors correspond to the different clusters; nodes are sized
based on their node strengths. b Contingency tables that provide the basis for Cramers’ V calculation. Numbers in cells of the table indicate
the number of intersecting genes between clusters of the subgraph (CC, rows) and the full network (FC, columns). Colormaps are based on
each subcluster’s average node strength to further demonstrate the centrality differences between the two tissues.
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full network, i.e., the numbers in the contingency table can be
concentrated into single cells in each row and each column. In this
case, the autism genes are expressed in the tissue according to
the peripheral interactions.
Proceeding from these expectations, we introduce a core-

periphery similarity measure, which quantitatively indicates the
interrelation between the core and full network communities in a
tissue. This measure should be high for strongly related core-
periphery community structures, and it should take lower values
for tissues with weak correlation between the core and peripheral
gene interactions. Furthermore, as the sampled subgraphs should
represent the community structure of the full network, these
subgraphs are expected to have a relatively high core-periphery
similarity. Because of technical considerations as the contingency
table may have different dimensions for different tissues, Cramer’s
V statistics were used as a quantitative measure.
In order to test this approach, we used Lancichinetti–

Fortunato–Radicchi (LFR) benchmark algorithm and generated a
network with 25,000 nodes and 4 communities (see “Methods”).
745 nodes were repeatedly selected and their subnetworks were
constructed similarly to the core subnetwork of SFARI genes. Two
groups of nodes were selected: a group of nodes with average
node strength and another with high node strength. The
cumulative distribution functions of the LFR network and the
two selected subnetworks are depicted in Fig. 3a. Nodes with high
strength kept the community structure of the benchmark network.
They clustered accordingly to the priori known communities of
the LFR network, hence their Cramer’s V values are 1. On the other
hand, peripheral nodes with average node strength form
communities with less similar structures, and therefore their
Cramer’s V values are significantly smaller (mean: 0.738; p:
6.223 × 10−4, df: 9, 95% CI [−0.377, −0.146], two-sided, two-
sample t-test) (Fig. 3b).
After validating that Cramer’s V value can measure the core-

periphery similarity, the GIANT networks were also tested.

Subgraphs were sampled from the full networks by strength-
based node selection as a basis for comparison. The sampled
subgraphs contained as many nodes as the number of core genes
in the given tissue. We speculated that the sampled subgraphs
represent well the community structures of the full network.
Therefore, we expect a moderate concentration of numbers in
their contingency tables. Cramer’s V values of the sampled
subnetworks of irrelevant tissues have a mean value of 0.738 with
a 95% CI [0.709, 0.767] on kidney, and a mean value of 0.739 with
95% CI [0.717, 0.76] on lung. These values are significantly higher
than the Cramer’s V values of the ASD core subnetworks on the
same tissues (0.48 for lung and 0.49 for kidney, p: 1.551 × 10−08, df:
9; p: 5.238 × 10−10, df: 9, respectively, one sample t-test) (Fig. 3c).
On the other hand, comparison of sampled subnetworks with the
core subnetwork in the relevant brain tissue results in very similar
dependency values (0.654, 95% CI [0.583, 0.726] and 0.672,
respectively, p: 0.596, df: 9, one sample t-test). It means that the
clusters of the sampled subnetwork and the core clusters are
similarly aligned to the communities of the brain full network.
These results imply that peripheral genes form similar commu-
nities as the core autism genes in the brain, while genes in the
kidney and the lung form weakly related core and periphery
community structures.
Comparison between the genes’ node strengths and their

position in the contingency matrices shows that the brain network
has strongly connected nodes in its largest subclusters, while in
the kidney networks, the genes in the largest subclusters have
relatively small node strengths (Fig. 2b). Furthermore, on the
kidney, 4 of the top 5 subclusters with the highest node strengths
are in the same cluster of the full network (FC3, 3rd column of the
contingency table). It strengthens that the interaction between
ASD genes does not align with the community structure of the full
kidney network and the full clusters are organized around
different sets of central nodes than the core clusters. In turn, in
the brain, the subclusters with the highest node strengths are

Fig. 3 Core-periphery community similarity measurements. a Node strength cumulative distribution functions were calculated on all nodes
(red line), sampled nodes with average node strength distribution (green), and sampled strong nodes (blue) of the LFR benchmark network.
b Bar plots show the Cramer’s V values of replicated selection (n= 10) of nodes with average (green) and strong nodes (blue) of the LFR
network (centerline, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; circles, outliers). c Cramer’s V value of
sampled and core (SFARI) subnetworks of three tissues are presented: brain (blue), kidney (red), and lung (green). ‘Sampled’ indicates
repeatedly sampled subgraphs (n= 10), with error bars showing standard deviation. Statistical test: b, t-test; c one sample t-test; significant
differences are marked by *(p < 0.05).
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distributed more evenly among the full clusters in accordance
with the higher core-periphery similarity.

Functional analysis of the tissue-specific clusters
We used Gene Ontology enRIchment anaLysis and visuaLizAtion
(GOrilla) tool22 to perform Gene Ontology (GO) analysis both on
the core clusters and subclusters. On the network of tissues,
enrichments were calculated from the enrichment of GO terms on
the core clusters or the subclusters compared to the background
set of all expressed core genes in the given tissue. We tested
whether the brain-specific clusters of core genes could be
functionally better described than the irrelevant clusters of the
same genes or not.
Comparisons of the tissue-specific core clusters were performed

from multiple perspectives: first by analyzing the number of GO
enriched genes of the core clusters (according to the p-values of
the GOrilla results). The number of enriched genes is higher for the
brain (531) than for the kidney and the lung (482 and 508,
respectively). It implies that SFARI genes form functionally more
homogenous clusters in the brain than in the other two networks.
Secondly, we also compared the number of associated GO

terms. Core clusters of the brain have 265 associated GO terms,
while the kidney and the lung have 199 and 187, respectively.
These results indicate that on the brain tissue more core genes are
enriched, and more GO terms associated with them, than on the
irrelevant tissues.
For further validation of the functional clusters, we regrouped

the SFARI genes into size matching new clusters and tested
whether the same terms will be enriched in these new sets of
SFARI genes or not. Our results show that SFARI genes lose their
functional homogeneity in these reorganized sets (Fig. 4a). In the

regrouped clusters the mean of the enriched GO terms is 3.8 (95%
CI [0.708, 6.892]) and they are associated to 26.6 genes on average
(95% CI [0.679, 52.521]). Both are significantly lower than the
values of the original clusters (p: 7.026 × 10−7, df: 9 for the number
of GO terms (265) and p: 1.982 × 10−9, df: 9 for the number of
genes (531), one sample t-test).
Finally, we investigated the dependency between the core

clusters and the full networks. We calculated the Cramer’s V values
on the distributions of GO terms in the tissue-specific contingency
tables. The number of enriched GO terms showed stronger
peripheral dependence in the brain (0.7801) than in the kidney
(0.6003) and lung (0.6366) (Fig. 4b).
We also compared the functional interpretability of the core

clusters and subclusters. Dividing sets of genes into smaller
subsets has the possibility of diminishing efficiency in finding
enriched biological processes because parallel to decreasing
group sizes it could be increasingly difficult to identify homo-
geneous subgroups of genes. In order to test whether the clusters
diminished their functional comprehensibility due to the sub-
dividing, we compared the ratio of enriched genes, the number of
associated GO terms, and the significance of these GO terms
between core clusters and their derivatives, the subclusters. In
order to control the high rate of type I errors arising from multiple
hypothesis testing, we calculated corrected p-values (q-values) by
using false discovery rate (FDR) controlling. For each core cluster
and subcluster, we calculated the median –log(q) value to
describe the strength of enrichment. Results were visualized
similarly to the node strengths: the obtained values were
represented by a single vector for the core clusters and a
contingency table for the subclusters, both the ratio of enriched
genes (Fig. 5a) and for the number of GO terms (Fig. 5b).

Fig. 4 SFARI genes form functionally enriched clusters and subclusters on the brain network. a The bar plots show the number of enriched
GO terms (upper panel) and the number of enriched genes (bottom panel). The control group consists of the size matching new clusters of
the regrouped sets of SFARI genes, while the core shows the enrichment values on the original brain core clusters of SFARI genes. b The bar
plots show the functional similarity between core clusters and full clusters of brain, kidney, and lung from the perspective of the number of
enriched GO terms. Statistical test: a, one sample t-test, significant differences are marked by *(p < 0.05).
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The ratio of enriched genes for the entire first core cluster is 0.1.
If we look into the subdividings, out of the 4 potential subclusters
only one is enriched significantly with 0.1 enrichment ratio. In the
other three clusters, no significant enrichment is found. The
number of associated GO terms for this core cluster is 3, while this
increases to 24 for the enriched subcluster. The median –log(q) for
the entire core cluster is 1.63 while 1.74 for the subcluster.
The second core cluster has two enriched subclusters. The

entire core cluster has an enrichment ratio of 0.9 from 147
associated GO terms, while the two subclusters are similar, with
enrichment ratios of 0.71 and 0.9 from 13 and 11 associated GO
terms, respectively. The median –log(q) is 2.95 for the whole core
cluster, and this value becomes slightly smaller on the subcluster
level: 2.43 and 2.61, respectively.
The third core cluster also has two enriched subclusters,

however, these are larger in the number of genes relative to the
second core cluster. Compared to the core cluster with an
enrichment ratio of 0.77, one of the subclusters improves this
number to 0.86, despite having fewer genes (185 instead of 326),
while the other one has a smaller ratio (0.26). The more enriched
subcluster also has stronger significance (–log(q): 3.18 vs. 2.11),
although both of these are weaker than the entire core cluster’s
(–log(q): 3.46). The number of associated GO terms are 133 and 5
for the subclusters and 69 for the entire core cluster, respectively.
The last cluster has no enrichments. However, on the subcluster

level, there is one, with an enrichment ratio of 0.12, median
–log(q) of 2.49 from 3 associated GO terms.
In both metrics, subclusters kept the enrichment ratio of genes

and the number of associated GO terms—instead of letting it
spread across subclusters as it would be mathematically expected
(without biological aspects). This preservation of biological
meaning implies the effectiveness of the peripheral influence-
based subdividing.

Peripheral interactions of the brain network divide core gene
clusters into functionally interpretable smaller clusters
Statistical analysis of the Gene Ontology Enrichment Analysis results
suggests that peripheral influence on core genes enables biologically
plausible subdividing. To strengthen this observation, we investigate
the most prominent GO terms for each cluster and subcluster and
whether they are previously connected to autism, or not.

Fig. 5 Functional enrichments show that subclusters on brain tissue keep their functional comprehensibility. The separate vertical vectors
illustrate exclusively the core clusters, while the rows and columns of the contingency tables determine the intersections of core and full
clusters, respectively. Numbers in the cells of the vectors and the tables represent a the number of genes and b the number of associated GO
terms of core clusters and the subclusters., respectively. Colormaps show a the ratio of genes that are enriched (enriched/total genes in the
cell) and b median of the –log(q) values associated with the enriched GO terms in the cell.

Fig. 6 Subdividing by peripheral influences results in functionally
interpretable subclusters of autism core genes. a–d −log(q-values)
of the GO terms associated with the 6 comprehensible subclusters
of the 4 core clusters.
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The size of the first cluster (CC1) is relatively small (107 genes).
GO terms for this group are not enriched as strongly as for the
second and the third clusters, but they are still significant. The
largest term is regulation of intracellular signal transduction, which
includes 30 genes, among them important autism genes such as
mTOR. However, the most significant processes are related to
immunology. Peripheral interactions further subdivide this cluster
first, to a general white blood regulatory subcluster with
significant terms such as regulation of lymphocyte activation and
regulation of lymphocyte proliferation (CC1:FC4), and second, a
statistically insignificant (q > 0.05, but p < 0.001, hypergeometric
test) regulatory subcluster related to regulation of interferon
gamma production (CC1:FC1) (Fig. 6a).
The second main cluster (CC2) is larger than the first, it contains

212 genes. In this cluster, the processes include (1) protein
modifications such as histone modifications, protein ubiquitination,
and peptidyl-lysine modification, (2) DNA metabolic processes such
as DNA repair and (3) RNA metabolic processes. The most significant
process for the cluster is chromatin organization (p-value:
6.42 × 10–14 and q-value: 4.37 × 10–10, hypergeometric test). 75
core genes are involved in chromatin organization, of which 51 fall
into this cluster (enrichment: 2.38). Its subprocess, histone
modification, is also enriched strongly (33/48 genes, 2.41 enrich-
ment). In addition, other genes of CC2 play a role in the regulation
of gene expression (107/251 genes, 1.49 enrichment). In summary,
in CC2 there are mainly genes that are able to regulate the level of
gene products formed, either through gene expression or the
necessary metabolic processes. Interestingly, this result also
showed that the epigenetic regulators appeared in the same
cluster as the regulators of metabolic processes. However,
subdividing by the peripheral influences separated the genes
into these two distinct sets of processes (Fig. 6b). The first
subcluster (CC2:FC1) contains genes related to epigenetics as
chromatin organization, histone methylation, and regulation of DNA
methylation, while the genes in the second subcluster (CC2:FC2)
have metabolic regulatory functions like regulation of biosynthetic
processes, regulation of RNA metabolic process, DNA metabolic
process, regulation of protein metabolic process. In addition, the
genes related to the regulation of cell cycle are also members of
this subcluster.
The third core cluster (CC3) consists of the most genes (326

genes). Based on biological processes, the most strongly enriched
set of genes is related to membrane depolarization (15/15 genes,
2.3 enrichment). Furthermore, a large number of genes are related
to glutamatergic transmitters, calcium ion transporters, and
regulators of synaptic vesicle clearance. Based on these, this cluster
mostly contains genes that are responsible for neural commu-
nication. At the same time, in connection with behavior, learning
has also emerged as a significant GO term. Peripheral interactions
further divided this cluster into two smaller, but still interpretable
clusters (Fig. 6c). The first one (CC3:FC3) includes the neuronal-
specific processes such as ion transport, ion homeostasis regulation
of membrane potential, and synaptic signaling, while the second
subcluster (CC3:FC4) connects genes with general cell interaction
processes such as cell–cell adhesion.
The fourth cluster (CC4) is the smallest (100 genes), the

biological processes are enriched, but they lost their significance
after multiple hypothesis correction. Most of the genes in this
cluster have cell motion (25 genes), angiogenesis (6 genes), and
blood vessel-related functions. Subdividing increases the inter-
pretability of the subclusters, but among the resulting three
enriched subclusters only one had GO terms with significant q-
values (CC4:FC1) such as regulation of blood coagulation (p-value:
4.76 × 10−7, q-value: 0.00162, hypergeometric test) (Fig. 6d).
Tissue specificity of the functional results was tested by

analyzing the clusters of kidney and lung networks. The autism-
related GO terms from Fig. 6 were more significantly enriched in
the brain clusters than in the other tissues, where they were less

significantly enriched or not enriched at all (p: 2.312 × 10−2 for
brain vs. kidney; p: 9.647 × 10−3 for brain vs. lung, Mann–Whitney
U test) (Fig. 7).

Functionally interpretable clusters are connected to co-
morbidity between autism and intellectual disability
A major implication of the omnigenic theory is that core genes
have a direct effect on the manifestation of a disease. Therefore,
we hypothesized that functionally different subclusters of core
genes would associate with different subtypes of autism.
To investigate this theory, we reanalyzed a large-scale genetic

dataset of autism from Satterstrom et al.4 This dataset contains a
few phenotypic properties of individuals with rare/de novo
variants. Among the ASD subjects 3244 also had both IQ and
‘Age of Walking’ data.
First, IQ and age of walking values of individuals with variants in

any of the SFARI genes (SFARI group) were compared to the
individuals without SFARI gene affecting variants (non-SFARI
group). The IQ values of the SFARI group (mean: 76.781) were
significantly lower than the non-SFARI group (mean: 82.225) by
5.444 points (p: 9.411 × 10−8, df: 1722.9, 95% CI [−7.436 −3.452],
two-sided, two-sample t-test). The age of walking values also
showed a significant difference (0.764 month, p: 1.168 × 10−5, df:
1470.8, 95% CI [0.423, 1.105], two-sided, two-sample t-test):
individuals in the SFARI group had delayed age of walking (mean:
14.529) compared to the non-SFARI group (mean: 13.765).
Individuals were grouped based on their association with core

subclusters in order to study whether the peripheral influence-
based clustering can identify phenotypically different subgroups
inside the SFARI group. After correcting for multiple testing (FDR,
n= 14), only individuals with variants in Neuronal Communication
I (CC3:FC3) genes had a significantly lower IQ score (mean: 73.327)
than that of individuals without mutations in that subcluster
(mean: 81.407) by 8.08 points (FDR: 3.002 × 10−5, df: 348.44, 95%
CI [4.783, 11.376], two-sided, two-sample t-test).
By studying ‘age of walking’ values, another group of ASD

subjects could be defined. Carriers of disruptive variants in Gene
Expression Regulation II (CC2:FC2) genes showed significantly
delayed age of walking (15.138 months versus 13.874 months)
with a difference of 1.264 months (FDR: 7.944 × 10−4, df: 285.86,
95% CI [0.655, 1.873], two-sided, two-sample t-test).

Fig. 7 Autism-related GO terms enriched more significantly in the
brain subclusters than in kidney and lung. Q-values (FDR) of the
autism-related GO terms are presented on the box plot; brain with a
blue, kidney with a red, and lung with a green box (centerline,
median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; diamonds, outliers). Statistical test:
Mann–Whitney U test, significant differences are marked by
*(p < 0.05).
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DISCUSSION
The aim of this study is to exploit tissue-specific gene interaction
networks to endorse the tissue specificity of the omnigenic model
and find autism gene clusters with distinct functional properties.
The omnigenic hypothesis suggests that small perturbations
caused by peripheral genes are propagated toward core genes
and have an aggregate influence on phenotype. One possible way
to extract this effect is to study gene interactions organized in
graph structures. The importance of tissue specificity is a key
element of the hypothesis, as the core/peripheral gene distinction
is plausible only in tissues relevant to the disorder. In the brain,
among the putative autism genes, there is a high number of core
genes from both the omnigenic and the network perspectives.
These genes have higher node strength in the brain-related GIANT
networks than in the networks without any association to the
brain. In the case of autism, clustering gene interactions should
therefore give us an overall picture of core and peripheral gene
community structures in the brain tissue. Clusters of the putative
core genes were previously analyzed, and these studies gave
insights into the direct genetic contributors to the disorder.
However, the two types of clusters (core and full network) can be
studied together by analyzing their interrelations. Peripheral
influence from certain full network clusters toward core clusters
can reinforce or weaken the distinction between the core clusters.
Cramer’s V quantifies this relationship by measuring the
dependence between the community structure of the core
subgraph and the full network. Combining this concept with our
motivation to verify the relevance of tissue-specific gene
interactions, our work shows that on a relevant tissue peripheral
influence is more concentrated on core gene clusters, while on
irrelevant ones it is more scattered. The illustrative drawing in
Fig. 8 provides a graphical overview of this concept.
By studying the core and peripheral community structures of

tissue-specific networks, we could also support new evidence for
the tissue specificity of the omnigenic model. Peripheral and

putative core genes of autism formed the most similar community
structures in the most relevant tissue to autism: the brain. It
suggests that peripheral influences converge to distinct clusters of
autism genes.
Our functional analysis also emphasizes the importance of

peripheral influences. The theoretical consideration behind the
functional evaluation of clustering results is that strongly
connected genes more probably have similar functions than
loosely connected ones. This observation is referred to as ‘guilt by
association’23, which is a commonly used approach to predict the
function of genes with unknown biological role24. Since autism
core genes are strongly connected in brain tissues, the functional
description of the brain clusters is more plausible than their
clustering on non-neuronal tissues. This is further strengthened by
the fact that the most important biological functions are generally
more significantly enriched in the brain. Random rearrangements
of the SFARI genes showed that GIANT-based clustering detected
communities with high functional homogeneities in the brain.
Most of these biological processes are consistent with previous

functional studies of autism genes, such as synaptic signaling since
communication problems between neurons are considered to be
one of the main causes of autism25.
Another large subcluster contains genes related to epigenetic

regulation. The structure of chromatin and especially histones play
an important role in the regulation of gene expression and thus
also in the amount of protein formed26. These functions are also
frequently associated with autism27.
A further large subcluster is related to intracellular signaling,

which includes important autism genes such as mTOR being a
central component of cell growth28. Processes affecting cell life,
such as cell growth or cell division, in certain forms of autism, such
as comorbid autism with increased head diameter, certainly play a
role29. Problems with brain development can in some cases also
be used as diagnostic markers30 and although studies focus more
on the formation of neurons, our results suggest that the

Fig. 8 Graphical illustration of the omnigenic theory-inspired clustering. Background colors represent clusters of the entire graph, referred
in the text as full clusters. Highlighted nodes are core genes with direct effect. Colors of highlighted nodes indicate cluster assignments on the
core subgraph. On an irrelevant tissue, core genes are more scattered with weaker connections to each other. On relevant tissues, core
clusters are stronger and overlap with the full clusters.
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formation of blood vessels in the brain could be also important
since they play a crucial role in brain development and function31.
Further processes have also emerged, such as learning, specific

post-translational modification of proteins such as ubiquitination, or
blood vessel formation, which have so far only been linked to the
genetic background of autism in a targeted immunocytochemical
study and in syndromic form of ASD32,33. Regulation of lymphocyte
activation and regulation of lymphocyte proliferation are also two
interesting functions since perturbed gene networks of leukocytes
have been connected to ASD34. Lymphocytes are key factors in
immune function, inflammatory responses to infections, and
cross-reactions between the fetal and maternal immune systems,
which also arise as possible causes of autism35.
Based on these analyses, clustering putative core genes of

autism on brain networks results in functionally more distinct
groups than on other tissues. The same clusters were detected
both on the subnetwork of SFARI genes and the full brain network
when peripheral interactions were also considered. The functions
of brain clusters are correlated well with previous findings on
autism, but the clusters of other tissues are not. These analyses
also identified the brain subclusters in which the putative core
genes are more probably “real” core genes from an omnigenic
perspective. In five of six functionally interpretable subclusters,
regulation-related or neuronal-specific terms were also enriched
(see Fig. 6). The only exception is the Neuronal Communication II
subcluster, which is formed by intersecting the Neuronal Commu-
nication core cluster (CC3) with the fourth full cluster (FC4). In this
subcluster, only general cell–cell adhesion-related terms were
enriched without any regulatory function. Hence the direct effect
of these genes on autism pathobiology could not be identified,
thus their core gene nature could not be supported. Furthermore,
SFARI genes in the functionally unlabeled subclusters (CC1:FC1-3,
CC2:FC3-4, CC3:FC1-2, CC4:FC2-4) should not be considered core
genes either.
Our research also sheds light on biological processes that may

be points of contact in the joint study of genetic and phenotypic
data. Indeed, ASD subjects with disruptive mutations in the
Neuronal Communication I subcluster have significantly lower IQ
than other disruptive variants carrying ASD individuals. Further-
more, delayed age of walking was associated with mutations in
the Gene Expression Regulation II subcluster.
The altered IQ and Age of Walking values of the SFARI group

correlate well with the original results of Satterstrom et al.4.
Despite they grouped the ASD individuals based on different sets
of ASD genes, we found similar tendencies.
An advantage of our peripheral influence-based clustering is

that it identified a unique subgroup of individuals with lower IQ
and a separate one with delayed age of walking. These results
demonstrate that refinement of core gene clustering could be
beneficial for patient stratification and the design of therapeutical
treatments. By utilizing the patients’ genetic variants, therapies
could be connected to functionally comprehensible and distinct
clusters of genes. This way the patients’ autism-causing genetic
background could be described by their unique combinations of
the autism gene clusters and may open the route to the proper
medication for patients affected by altered single clusters or
cluster combinations.
Besides the benefits of our approach, it also has its limitations.

Despite we could identify functionally different subclusters of the
SFARI genes, the capability of our method to find new ASD
functions is limited. Finding clusters of ASD genes that are
associated with more specific functions would need a finer
resolution clustering. Another limitation of the study is that gene
interaction networks do not capture the dynamic nature of gene
interactions being important for an ideal formulation of the
omnigenic model. Intersecting the core clusters with the full
clusters also ignores the temporal changes in the biological
systems. These limitations may be overcome by collecting data in

longitudinal studies. Considerable amount of information could be
collected from such studies in the case of complex disorders such
as autism.

METHODS
Gene interaction networks
Full (GIANT) network. The GIANT network was downloaded from
HumanBase (https://hb.flatironinstitute.org) website. ‘Top Edges’ network
type. Network data containing gene ID pairs (entrez) and weights was read
into a pandas dataframe and subsequently used to construct a weighted
NetworkX36 graph.

Core (SFARI) subgraph. Core genes were selected from the SFARI37

database (Q2 2019 release), based on gene scores that represent the
strength of their association with ASD (genes with gene scores 5 and 6
were excluded). ASD subgraphs for each tissue were constructed keeping
only those edges that connect two SFARI genes. As the networks are
tissue-specific, the size of intersection with SFARI genes (therefore the size
of the resulting SFARI subgraph) is also different in each tissue. SFARI
genes are available with HGNC symbol ID, while GIANT17 nodes are with
entrez IDs. To make them compatible, SFARI gene ids were converted to
HGNC using biomart38 queries.

Graph sampling. For each tissue, the number of selected nodes is
proportional to the number of SFARI genes in that tissue. The probability of
node selection is weighted by the node strength values of the original
network. Only those edges were kept that connected the sampled nodes.
Graph sampling was repeated 10 times.

Clustering
Once the network is prepared as a NetworkX weighted graph, Louvain
clustering algorithm19 from python-louvain (https://pypi.org/project/
python-louvain/) package is used.
As the clustering result from the Louvain algorithm is non-deterministic,

the final form of the brain contingency table is created by iterating
through core and full clusters and then reordering the columns to have
larger numbers close to diagonal.

Node strength
Node strengths were calculated by Unix and R scripts and from the
‘degree’ property of the NetworkX graph object, with the weight
parameter specified to sum up adjacent weights (since we worked with
weighted graphs, strength was calculated based on weights instead of
degree, which is based on the number of edges), which returns a
DegreeView object containing the strength values for each node.

Measuring dependence with Cramers’ V
Once a contingency table is obtained, Chi-squared statistics is calculated as
follows:

X2 ¼
X

i;j

ni;j � ni:n:j
n

� �2
ni:n:j
n

To normalize across contingency tables with different sizes, we
calculated Cramer’s V

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ2

min k � 1; r � 1ð Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2=n
min k � 1; r � 1ð Þ

s

where X2 is the result of Chi-squared test, n is the number of observations,
k is the number of columns, r is the number of rows.
These equations are implemented in the NumPy39 python package.

Benchmark network
The benchmark network was generated by the extended version of the
Lancichinetti–Fortunato–Radicchi (LFR) algorithm (https://github.com/
eXascaleInfolab/LFR-Benchmark_UndirWeightOvp)40 with the following
parameters: -N 25000, -k 300, -maxk 3000, -t1 2, -t2 1.5, -muw 0.2, -minc
4000, -maxc 8000.
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Statistical tests
Mann–Whitney U test (for node strength differences) was calculated using
scikit-learn41 python package. T-tests were calculated by t.test R function42.
The 95% Confidence Intervals are given as 95% CI [Lower limit of
confidence interval, Upper limit of confidence interval]. On the figures, *
marks significance with alfa= 0.05.

Gene Ontology analysis
For functional Gene Ontology43 analysis, we used GOrilla (Gene Ontology
enRIchment anaLysis and visuaLizAtion tool)22 webtool, with default
parameters (p < 0.001). All cases, the background was set to all SFARI
genes, while targets were selected as either complete clusters or
subclusters (based on different peripheral intersections). We selected GO
terms with significant FDR-controlled q-values (q < 0.05).
The number of enriched genes was determined by a unique count of

genes from the Gene Ontology Enrichment Analysis output list.

Phenotypic analysis
The relations between disruptive mutations and phenotypic properties of
ASD subjects were studied on the dataset of Satterstrom et al.4. Individuals
with both IQ and Age of walking data were kept. They were assigned to
the subclusters according to their disruptive mutations. Individuals having
multiple mutations, both in the tested subcluster and outside that cluster,
were assigned exclusively to the tested subcluster. Two-sample t-tests
compared phenotypic values with alfa cut-off values of 0.05. Multiple
comparison correction was performed by False discovery rate controlling
method.
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