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Abstract

We propose an atom-superposition-based method for simulating spin-polarized scanning tun-

neling microscopy (SP-STM) from first principles. Our approach provides bias dependent STM

images in high spatial resolution, with the capability of using either constant current or constant

height modes of STM. In addition, topographic and magnetic contributions can clearly be dis-

tinguished, which are directly comparable to results of SP-STM experiments in the differential

magnetic mode. Advantages of the proposed method are that it is computationally cheap, it is

easy to parallelize, and it can employ the results of any ab initio electronic structure code. Its

capabilities are illustrated for the prototype frustrated hexagonal antiferromagnetic system, Cr

monolayer on Ag(111) in a noncollinear magnetic 120◦ Néel state. We show evidence that the

magnetic contrast is sensitive to the tip electronic structure, and this contrast can be reversed

depending on the bias voltage.
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I. INTRODUCTION

Research on magnetic systems has intensified in the last decade with the ultimate aim

to produce magnetic data storage devices with ultrahigh information density [1, 2]. This

can be achieved by reducing the size of the information storage units going down to the

nanoscale or even to single atoms [3]. Detecting and manipulating spins [4] with high

accuracy on the atomic scale is, thus, essential for future technological applications. Spin-

polarized scanning tunneling microscopy (SP-STM) [5] is one of the main tools for studying

magnetism at the atomic scale. Recent experimental advances using this technique allow the

investigation of complex magnetic structures (frustrated antiferromagnets, spin spirals, etc.)

[6–11]. Considering such structures in reduced dimensions, their magnetic ground state can

be determined [7, 11] and the nature of magnetic interactions can be studied by theoretical

means, e.g. from first principles [12], or applying a multiscale approach [13]. However, a

proper validation of the proposed ground state spin structures demands a method, which

is capable to directly compare them to experimental observations. This can be done by

SP-STM simulations.

Our motivation was to construct a computationally cheap and user-friendly, yet reliable

model for simulating SP-STM. Here, we propose an efficient method based on the spin-

polarized Tersoff-Hamann model [14] and the atom superposition approach [15–17]. Our

model goes beyond the work of Heinze [15], and considers in particular,

(1) bias voltage, for simulating bias dependent physical properties,

(2) energy dependence of the vacuum decay of electron states, and

(3) energy dependence of atomic local spin quantization axes.

The main advance of our tunneling model is the inclusion of the tip electronic structure,

which is neglected in Refs. [14, 15], and it enables to study tip effects on the SP-STM images.

First, we determine energy dependent virtual differential conductance (dI/dU) quantities

on a three-dimensional fine real space grid from electron local density of states (LDOS).

Integrating the differential current (dI) contributions in an energy window in accordance

with the applied bias voltage, we obtain a three-dimensional current map on the same

grid, from which constant current or constant height images can be extracted. Calculating

differential current first and then tunneling current by integration over energies proved to

be numerically more stable than the opposite (numerical differentiation of tunneling current
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with respect to energy) [18]. Furthermore, bias dependent apparent barrier height can be

included in our approach.

The paper is organized as follows: The theoretical model of SP-STM is presented in

section II, where we explicitly point out extensions to the Heinze model [15] and other

atom-superposition-based approaches [16, 17]. As an application, we investigate the frus-

trated hexagonal antiferromagnet, one monolayer (ML) Cr on Ag(111) in section III. We

study two magnetic chiralities for its noncollinear Néel state and determine the energetically

favored magnetic structure. Moreover, we compare electronic structures of Cr obtained

from collinear and noncollinear calculations. By simulating SP-STM images we are able to

investigate magnetic contrast depending on tip electronic structure and bias voltage. Our

conclusions are found in section IV.

II. THEORETICAL MODEL OF SP-STM

In SP-STM the total tunneling current can be written as a sum of a non-spin-polarized,

I0, and a spin-polarized part, IP [14, 15, 17, 19],

I = I0 + IP . (1)

This formula is generally valid for either collinear or noncollinear surface and tip spin struc-

tures. I0 and IP can be calculated at different levels of approximation for the tunneling

current. It could, in principle, be implemented within the multiple scattering framework

[20]. While the perturbation approach has been used by Hofer and Fisher [19] for collinear

surface and tip spin structures with an arbitrary angle between their spin quantization axes,

the most commonly used method is based on the Tersoff-Hamann model [21, 22]. Wortmann

et al. [14] introduced its spin-polarized version applicable to complex noncollinear surface

spin structures. Heinze [15] combined this with the atom superposition method [16, 17].

Note that in the following we denote I0 and IP by ITOPO (topographic current) and IMAGN

(magnetic current), respectively.

Here, based on the work of Heinze [15], we propose a hybrid model, which uses essentially

the Tersoff-Hamann formalism but we do not restrict the tip electron density of states (DOS)

to be constant in energy. This means that different tip models [23] and their effect on

tunneling properties can be investigated. The only requirement for our present formalism is
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that we assume that electrons tunnel through one tip apex atom. Since the tip electronic

structure is explicitly included in our method via the projected DOS onto this apex atom,

Eq.(2) of Ref. [15] needs to be reconsidered. Our strategy is to determine differential currents

first and then perform an energy integral in a window according to the applied bias voltage

(V ) in order to arrive at the tunneling current.

Let us define the following position- and energy-dependent density matrices in spin space

for tip (T) and sample (S), respectively,

ρ
T,S

(r, E) = nT,S(r, E)I +mT,S(r, E)σ (2)

=





nT,S(r, E) +mz
T,S(r, E) mx

T,S(r, E)− imy
T,S(r, E)

mx
T,S(r, E) + imy

T,S(r, E) nT,S(r, E)−mz
T,S(r, E)



 .

Here, I is the 2 × 2 unit matrix, σ is the Pauli matrix vector, while nT (RTIP , E) and

mT (RTIP , E) are the charge and magnetization DOS projected to the tip apex atom. On

the other hand, nS(r, E) and mS(r, E) are the charge and magnetization DOS of the sample

surface at position r. They can be obtained from the corresponding density matrix as

nT,S(r, E) =
1

2
Tr

(

ρ
T,S

(r, E)

)

, (3)

mT,S(r, E) =
1

2
Tr

(

ρ
T,S

(r, E)σ

)

, (4)

where the Trace is performed in the spin space. At the tip position RTIP above the surface

we obtain the charge and magnetization electron local density of states (LDOS) of the

surface in vacuum, nS(RTIP , E) and mS(RTIP , E), respectively. Combining the sample and

tip density matrices at RTIP , a modified LDOS can be defined as

LDOS(RTIP , E) = ∆E
1

2
Tr

(

ρ
S
(RTIP , E)ρ

T
(RTIP , E)

)

(5)

= ∆E
(

nS(RTIP , E)nT (RTIP , E) +mS(RTIP , E)mT (RTIP , E)
)

,

which, in fact, combines the vacuum LDOS of the surface and the projected DOS of the tip

apex atom. This formula is consistent with the spin-polarized Tersoff-Hamann model [14],

except the fact that it explicitly includes the electronic structure of the tip apex. Here, ∆E

ensures that the LDOS is correctly measured in units of (eV )−1. Note that in Ref. [15] the

tunneling current was proportional to a dimensionless LDOS at the Fermi level.

The vacuum LDOS of the surface can be approximated by a superposition of decaying

atomic electron states. Following this, we consider the position dependence of the sample
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density matrices as ρ
S
(Rα, E) with Rα the position vector of the αth sample surface atom, in

order to allow different chemical or magnetic properties for these atoms. nα
S(E) = nS(Rα, E)

and mα
S(E) = mS(Rα, E) now denote charge and magnetization DOS projected to the αth

surface atom, respectively. It has to be noted that chemical differences between surface

atoms were not taken into account in Ref. [15]. A tunneling transition between the tip apex

and the αth surface atom at energy E can be represented as the Trace of the multiplied

density matrices, similarly to Eq.(5). This is the energetic ingredient for the tunneling

transition. Apart from this, the transmission coefficient through a potential barrier between

the αth surface atom and the tip apex has to be included in the tunneling model, in general

we denote it by T (E, V, dα). It has energy and bias dependence, and contains geometry

information of the three-dimensional tunnel junction via the distance between the tip apex

and the αth surface atom,

dα(x, y, z) =
∣

∣RTIP (x, y, z)− Rα

∣

∣ . (6)

Thus, the modified LDOS at the tip apex position RTIP (x, y, z) and at energy E can

be approximated as the superposition of individual atomic contributions from the sample

surface as

LDOS(x, y, z, E, V ) = ∆E
∑

α

T (E, V, dα(x, y, z))
1

2
Tr

(

ρ
S
(Rα, E)ρ

T
(RTIP , E)

)

. (7)

The main advantage of using the density matrix formalism is that electronic and spin struc-

tures calculated either nonrelativistically or relativistically can be treated within the same

theoretical framework.

We calculate the above LDOS values at (x, y, z) grid points of a three-dimensional fine

grid in a finite box above the surface. The image resolution is determined by the density of

(x, y) grid points. The motivation for using the atomic superposition approximation is, on

one hand, computational efficiency, since calculating and storing the projected DOS onto

surface atoms in the magnetic unit cell is computationally much cheaper compared to the

vacuum LDOS of the surface on a great number of grid points. On the other hand, such

atom-projected DOS functions are routinely obtained in all ab initio electronic structure

codes, whereas vacuum LDOS is not always routinely accessible for the average user.

According to above, the LDOS can be decomposed, similarly to Eq.(1), as

LDOS(x, y, z, E, V ) = LDOSTOPO(x, y, z, E, V ) + LDOSMAGN(x, y, z, E, V ), (8)
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and assuming an exponential decay of the electron wavefunctions, the TOPO and MAGN

terms can be written as

LDOSTOPO(x, y, z, E, V ) = ∆E
∑

α

e−2κ(E,V )dα(x,y,z)nT (E)n
α
S(E) (9)

LDOSMAGN(x, y, z, E, V ) = ∆E
∑

α

e−2κ(E,V )dα(x,y,z)mT (E)m
α
S(E)cosϕα(E). (10)

Here the sum over α has to be carried out, in principle, over all the surface atoms. Con-

vergence tests, however, showed that including a relatively small number of atoms in the

sum provides converged LDOS values [24]. Each surface atom is characterized by a local

spin quantization axis, eαS(E), which can be defined from the sample magnetization DOS

vector as eαS(E) = mα
S(E)/|mα

S(E)|. In the most general case, these local axes can be energy

dependent, see Eqs.(19) and (20), and Table I. This also holds for the spin quantization axis

of the tip apex, eT (E). The exponential factor is the transmission probability for electrons

tunneling between states of atom α on the surface and the tip apex, where κ is the vacuum

decay. κ is treated within the independent-orbital approximation [15, 21, 22], which means

that the same (spherical) decay is used for all type of orbitals, but its energy dependence is

explicitly considered essentially in the same fashion as in Ref. [25]. Extension of our model

to take into account orbital dependent vacuum decay following Chen’s work [26] is planned

in the future, which is relevant for a more advanced description of tunneling from/to direc-

tional orbitals. In the present paper we consider two different ways of calculating κ. One is

inspired by the Tersoff-Hamann model, taking only surface properties into account,

κ(E) =
1

~

√

2m(φS − |E −ES
F |), (11)

where the electron’s mass is m, ~ is the reduced Planck constant, while φS and ES
F are

the average electron workfunction and the Fermi energy of the sample surface, respectively.

The absolute value ensures that the transmission probability is symmetric in the positive

and negative bias range with the minimum at zero bias [27, 28]. This way we circumvent

the problem of the bias-asymmetric contribution from the sample LDOS to the differential

conductance [29]. We use this energy dependent vacuum decay for an ideal, electronically

featureless and maximally spin-polarized tip model. Note that this formula does not have an

explicit bias dependence. Taking into account the tip apex electronic structure obtained from

first principles, the more general expression for κ is based on the one-dimensional Wentzel-

Kramers-Brillouin (WKB) approximation assuming an effective rectangular potential barrier
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between the tip and the surface,

κ(E, V ) =
1

~

√

2m

(

φS + φT + eV

2
− |E − ES

F |
)

, (12)

with φT being the local electron workfunction of the tip apex, e the elementary charge and

V the applied bias voltage. This vacuum decay formula is considered for our magnetic Ni tip

model. The quantity (φS+φT +eV )/2−|E−ES
F | is the energy- and bias dependent apparent

barrier height for tunneling electrons, φa(E, V ). Empirical or model nonlinear variations of

φa(E, V ) with respect to bias voltage [27, 28] can also be included in our approach. Note

that in the case of φT +eV = φS, the first expression of κ, Eq.(11) is recovered. The average

workfunction of the sample surface is calculated from the local electrostatic potential on a

three-dimensional fine grid, Φ(x, y, z), as

φS = max
z

{

1

NxNy

∑

x,y

Φ(x, y, z)

}

−ES
F , (13)

with Nx and Ny the corresponding number of grid points, and the local workfunction of the

tip apex is obtained as

φT = max
z

{Φ(x0, y0, z)} − ET
F , (14)

with x0 and y0 lateral coordinates of the tip apex atom, and ET
F the Fermi energy of the tip

material.

In the LDOS formula Eq.(10), ϕα(E) is the angle between the spin quantization axes of

the tip apex and the αth surface atom at energy E. Previously, only the case of energy inde-

pendent ϕα has been considered [15], which corresponds to the angle between the directions

of local magnetic moments of surface atoms and the tip magnetic moment. However, there

are more possibilities to combine electronic structure data of sample and tip, which may re-

sult in an energy dependent ϕα(E), see Table I. All listed combinations can be investigated

within our formalism. The combinations framed by black solid lines are considered in the

present work, while the one with the gray dashed line corresponds to the studied system in

Ref. [24]. In Eq.(10), mT (E) and m
α
S(E) denote electron magnetization DOS projected to

the tip apex and the αth surface atom, respectively, in the collinear case,

mT,S(E) = n↑
T,S(E)− n↓

T,S(E), (15)
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↑ and ↓ relative to their local spin quantization axes. Similarly, in Eq.(9), nT (E) and n
α
S(E)

are electron charge DOS projected to the tip apex and the αth surface atom, respectively,

nT,S(E) = n↑
T,S(E) + n↓

T,S(E). (16)

The spin-resolved atom-projected DOS (PDOS) quantities, n↑,↓
T,S(E), are obtained from first

principles collinear magnetic calculations. For this task any available ab initio electronic

structure code can be used. This flexibility of the present SP-STM approach is expected

to be highly advantageous. Spin-resolved PDOS is considered by assuming a Gaussian

broadening of the peaks at the k-resolved spin-dependent electron energy (Kohn-Sham)

eigenvalues, εj↑,↓T,S (k), obtained at zero temperature, as

n↑,↓
T,S(E) =

∑

k

∑

j

1

G
√
π
e−(E−εj↑,↓

T,S
(k))

2

/G2

∫

atomic volume

d3rψjk↑,↓†
T,S (r)ψjk↑,↓

T,S (r), (17)

with ψjk↑,↓
T,S (r) the spin-dependent electron wavefunctions corresponding to εj↑,↓T,S (k) for tip

(T) and surface (S), respectively, and j the energy band index. The integral over the atomic

volumes can be performed either in the atomic sphere or within the Bader volume [30]. In

the present study we use integral over atomic spheres. The Gaussian parameter G could, in

general, be temperature dependent. In our calculations, we fixed it to a relatively high value

of 0.1 eV in order to provide smooth n↑,↓
T,S(E) functions. Concerning smoothness of PDOS,

a high G value counteracts the effect of eventually underrepresented bulk states due to a

slab geometry, and it is useful if the number of k-points in the Brillouin zone is restricted

due to computational reasons.

As Heinze pointed out [15], in case of having chemically equivalent surface atoms, the spin

structure plays a much more dominant role compared to the detailed electronic structure in

determining the main features of an SP-STM image. This means that SP-STM simulation of

a known noncollinear spin structure can reasonably be approximated based on the collinear

electronic structure. We would like to check this statement, therefore, in this paragraph we

show how to incorporate the fully noncollinear electronic structure into our model. In this

case the atom-projected charge DOS at energy E is obtained in the following way,

nT,S(E) =
∑

k

∑

j

1

G
√
π
e−(E−εj

T,S
(k))

2

/G2

∫

atomic volume

d3rΨjk†
T,S(r)Ψ

jk
T,S(r), (18)

where εjT,S(k) is the set of electron energy (Kohn-Sham) eigenvalues at zero temperature, and

Ψjk
T,S(r) the corresponding spinor electron wavefunctions. The atom-projected magnetization
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DOS vector at energy E reads

mT,S(E) =
∑

k

∑

j

1

G
√
π
e−(E−εj

T,S
(k))

2

/G2

∫

atomic volume

d3rΨjk†
T,S(r)σΨ

jk
T,S(r), (19)

with σ being the Pauli spin operator vector. Unit vectors determining the local spin quan-

tization axis of the tip apex, eT (E), and the αth surface atom, eαS(E), at a given energy can

be calculated as

eT,S(E) =
mT,S(E)

mT,S(E)
=

mT,S(E)
√

mx
T,S(E)

2 +my
T,S(E)

2 +mz
T,S(E)

2
, (20)

thus, the atom-projected magnetization DOS vector can be rewritten as

mT,S(E) = mT,S(E)eT,S(E) =
√

mx
T,S(E)

2 +my
T,S(E)

2 +mz
T,S(E)

2eT,S(E). (21)

Using this expression and the scalar product of the local spin quantization axes,

eT (E)e
α
S(E) = cosϕα(E), the following holds,

mT (E)m
α
S(E) = mT (E)eT (E)m

α
S(E)e

α
S(E) = mT (E)m

α
S(E)cosϕα(E). (22)

The LDOS can also be written in terms of energy dependent spin polarizations. The

spin polarization is defined as

PT,S(E) =
mT,S(E)

nT,S(E)
=
n↑
T,S(E)− n↓

T,S(E)

n↑
T,S(E) + n↓

T,S(E)
, (23)

assuming collinear electronic structure. From noncollinear electronic structure the energy

dependent spin polarization vectors are obtained by using Eq.(21) as

P T,S(E) =
mT,S(E)

nT,S(E)
=

√

mx
T,S(E)

2 +my
T,S(E)

2 +mz
T,S(E)

2

nT,S(E)
eT,S(E) = PT,S(E)eT,S(E).

(24)

The relation between spin polarization vectors and scalars is similar to Eq.(22),

P T (E)P
α

S(E) = PT (E)eT (E)P
α
S (E)e

α
S(E) = PT (E)P

α
S (E)cosϕα(E), (25)

with the same energy dependent unit vectors, which define the local spin quantization axes,

see Eq.(20). Thus, the LDOS at the tip apex position and at energy E can alternatively be

written using the above defined spin polarizations as

LDOS(x, y, z, E, V ) = ∆E
∑

α

e−2κ(E,V )dα(x,y,z)nT (E)n
α
S(E)[1 + PT (E)P

α
S (E)cosϕα(E)].

(26)
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Using Eq.(11) of Ref. [14] and our LDOS expression, a virtual differential conductance

at the tip apex position and at energy E can be defined as

dI

dU
(x, y, z, E, V ) =

e2

h

∑

α

e−2κ(E,V )dα(x,y,z)nT (E)∆En
α
S(E)∆E[1 + PT (E)P

α
S (E)cosϕα(E)].

(27)

This means that by multiplying the LDOS with ∆E results in a dimensionless quantity,

which is multiplied by the conductance quantum e2/h in order to arrive at our dI/dU

expression. Note that nT (E)∆E electron states from tip and nα
S(E)∆E states from each

surface atom contribute to the differential current at energy E, and in our model, dI/dU

is proportional to the LDOS, which contains both surface and tip electronic information.

If the two subsystems are calculated separately, it is possible to combine different levels

of electronic structure for tip and surface, see also Table I, or include simplified model

tip electronic structures into our approach. For example, assuming an electronically flat

maximally spin-polarized (PT (E) = 1) ideal magnetic tip with e.g. nT (E)∆E = 1, the

differential conductance reads

dI

dU
(x, y, z, E) =

e2

h

∑

α

e−2κ(E)dα(x,y,z)nα
S(E)∆E[1 + P α

S (E)cosϕα(E)]. (28)

Here, Eq.(11) has been assumed for the vacuum decay, and there is no V -dependence.

By measuring the energy with respect to the sample Fermi level as E = ES
F + eU , the

energy dependence can be transformed to bias dependence U , as

dI

dU
(x, y, z, U) =

e2

h

∑

α

e−2κ(ES
F
+eU)dα(x,y,z) (29)

× nα
S(E

S
F + eU)∆E[1 + P α

S (E
S
F + eU)cosϕα(E

S
F + eU)].

Similarly, the more general differential conductance, Eq.(27), can be recast as

dI

dU
(x, y, z, U, V ) =

e2

h
(∆E)2

∑

α

e−2κ(ES
F
+eU,V )dα(x,y,z) (30)

× nT (E
T
F + eU − eV )nα

S(E
S
F + eU)[1 + PT (E

T
F + eU − eV )P α

S (E
S
F + eU)cosϕα(E

S
F + eU)],

where we used the fact that the tip Fermi level is shifted by eV with respect to the sample

Fermi level, i.e. ET
F = ES

F + eV , and therefore E = ET
F + eU − eV .

Virtual differential conductances have to be determined at Ei points in a fine energy

grid with ∆E resolution within an energy window [E1(V, T ), E2(V, T )] corresponding to the
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applied bias voltage (V ) and temperature (T ). A value of 10−3 eV has been used for ∆E in

our calculations, while we tested a finer grid (∆E = 10−4 eV) as well, with no improvement

of our results. Finally, the tunneling current can be determined by the following energy

integral,

I(x, y, z, V, T ) =

E2(V,T )
∫

E1(V,T )

dE

e

dI

dU
(x, y, z, E, V ) =

∆E

e

∑

E1<Ei<E2

dI

dU
(x, y, z, Ei, V ) = (31)

e

h
(∆E)3

∑

E1<Ei<E2

∑

α

e−2κ(Ei,V )dα(x,y,z)nT (Ei)n
α
S(Ei)[1 + PT (Ei)P

α
S (Ei)cosϕα(Ei)],

where the energy window is defined as

E1(V, T ) = min
(

ES
F , E

S
F + eV

)

− ln
(

3 +
√
8
)

kBT, (32)

E2(V, T ) = max
(

ES
F , E

S
F + eV

)

+ ln
(

3 +
√
8
)

kBT. (33)

Here, ES
F is the Fermi energy of the sample surface, and V is the applied bias voltage.

Broadening of electron states at finite temperatures is considered according to Eqs.(17),

(18), (19), and the temperature dependent terms in the integral limits are the full width

at half maximum of the energy-derivative of the Fermi distribution function divided by 2,

and kB is the Boltzmann constant. Another, more precise way to include thermal effects

in calculating the tunneling current is given in the Appendix of Ref. [31] based on the

Sommerfeld expansion, which can also be incorporated into our approach. Lattice vibrations

at nonzero temperatures are not taken into account.

From the obtained three-dimensional tunneling current maps, data can be extracted

which are directly comparable to experiments. In particular, current values can be shown

in arbitrary z = ZC = const. planes or constant-value surface contours can be defined. The

first option corresponds to the constant height mode, I(x, y, ZC = const., V, T ), while the

second to the constant current mode of SP-STM, I(x, y, z, V, T ) = IC = const. From the

latter, a two-dimensional tip position map, called the height profile, z(x, y, V, T, IC) can be

extracted using logarithmic interpolation between grid points z1 < z2, if I(x, y, z1, V, T ) >

IC > I(x, y, z2, V, T ), in the following way,

z(x, y, V, T, IC) = z1 +∆z
ln(IC)− ln(I(x, y, z1, V, T ))

ln(I(x, y, z2, V, T ))− ln(I(x, y, z1, V, T ))
, (34)

where ∆z = z2 − z1 = zi+1 − zi = 0.0529177Å (0.1 a.u.) has been used in all calculations.

Alternatively, if IC has such a value which is not contained in the considered finite box above
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the surface, i.e. if IC < I(zmax), then

z(x, y, V, T, IC) = zmax +∆z
ln(IC)− ln(I(x, y, zmax, V, T ))

ln(I(x, y, zmax, V, T ))− ln(I(x, y, zmax−1, V, T ))
. (35)

Surface corrugation can be determined from this z(x, y) map. Note that the total current

contains both topographic and magnetic contributions, therefore z(x, y) will be the simulated

SP-STM image [15], in our model we consider its bias and temperature dependence as well.

In periodic magnetic systems the magnetic unit cell can be identified in the simulated image

[14]. Moreover, two different types of magnetic contrast can be defined. The first one is

the apparent height difference of a particular atom at (xi, yi) lateral position imaged with

a magnetic tip with parallel (P) and antiparallel (AP) relative magnetic orientation, on the

same constant current contour,

∆zi(V, T, IC) = z(xi, yi, V, T, I
P = IC)− z(xi, yi, V, T, I

AP = IC). (36)

The other magnetic contrast is the apparent height difference of two magnetic atoms at

different lateral positions (xi, yi) and (xj , yj) imaged with a fixed tip magnetization direction,

∆zij(V, T, IC) = z(xj , yj, V, T, I = IC)− z(xi, yi, V, T, I = IC). (37)

This means apparent height differences of different surface atoms on the same SP-STM

image, similarly as considered e.g. for oppositely magnetized islands in Ref. [32]. Note that

both magnetic contrasts depend on the bias voltage, temperature and the constant current

value. This latter means, in effect, dependence on the tip-sample distance.

The obtained tunneling current can also be decomposed into a non-spin-polarized

(TOPO) and a spin-polarized (MAGN) part,

ITOTAL(x, y, z, V, T ) = ITOPO(x, y, z, V, T ) + IMAGN(x, y, z, V, T ), (38)

with

ITOPO(x, y, z, V, T ) =
e

h
(∆E)3

∑

E1<Ei<E2

∑

α

e−2κ(Ei,V )dα(x,y,z)nT (Ei)n
α
S(Ei), (39)

IMAGN(x, y, z, V, T ) =
e

h
(∆E)3

∑

E1<Ei<E2

∑

α

e−2κ(Ei,V )dα(x,y,z)mT (Ei)m
α
S(Ei)cosϕα(Ei).(40)

ITOPO and IMAGN can be analyzed separately using the same way as described for the total

current and they can be related to SP-STM experiments using the differential magnetic
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mode [9]. From the non-magnetic height profile, z(x, y, V, T, ITOPO = const.), the surface

topography can be calculated, and in periodic systems the chemical unit cell is revealed in

the simulated image.

It has to be noted that the presented method can also be applied to study nonmag-

netic systems, where all magnetic contributions are equal to zero and the corresponding

topographic STM images can be simulated.

Finally, it is important to note that following Ref. [31], the real physical differential

conductance measured in experiments can be obtained as the derivative of the tunneling

current, Eq.(31), with respect to the bias voltage. It can be related to our virtual differential

conductance dI/dU defined in Eq.(30) in the following way,

dI

dV
(x, y, z, V ′, T = 0) =

dI

dU
(x, y, z, V ′, V ′) +

∫ V ′

0

dU
∂

∂V

dI

dU
(x, y, z, U, V )

∣

∣

∣

∣

V=V ′

. (41)

Here, T = 0 K temperature is considered for the reason of simplicity in the integral limits.

In the case of assuming an ideal magnetic tip, i.e. if nT (E) = const., mT (E) = const.,

and κ(E) has no V -dependence as defined in Eq.(11), then dI/dU has no V -dependence

as in Eq.(29), and consequently, the integral term is zero. In that highly idealized setup,

dI/dV (V ′) = dI/dU(V ′), such that Eq.(29) is the real differential conductance with U =

V = V ′. Moreover, dI/dU can also be written as a sum of TOPO and MAGN parts,

dITOTAL

dU
(x, y, z, U) =

dITOPO

dU
(x, y, z, U) +

dIMAGN

dU
(x, y, z, U), (42)

with

dITOPO

dU
(x, y, z, U) =

e2

h
∆E

∑

α

e−2κ(ES
F
+eU)dα(x,y,z)nα

S(E
S
F + eU), (43)

dIMAGN

dU
(x, y, z, U) =

e2

h
∆E

∑

α

e−2κ(ES
F
+eU)dα(x,y,z)mα

S(E
S
F + eU)cosϕα(E

S
F + eU)],(44)

and they can be analyzed separately. We return to the simulation of spin-polarized scanning

tunneling spectroscopy (SP-STS) based on the atom superposition method in the future.

III. RESULTS AND DISCUSSION

In order to demonstrate the capabilities of our model for simulating SP-STM on complex

magnetic surfaces, we consider a sample surface with noncollinear magnetic order. One
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ML Cr on Ag(111) is a prototype of frustrated hexagonal antiferromagnets [15]. Due to

the geometrical frustration of the antiferromagnetic exchange interactions between Cr spin

moments, its magnetic ground state has been determined to be a noncollinear 120◦ Néel state

[14]. We consider two possible Néel states with opposite chiralities, which are energetically

equivalent only in the absence of spin-orbit coupling.

We performed geometry relaxation and electronic structure calculations based on Density

Functional Theory (DFT) within the Generalized Gradient Approximation (GGA) imple-

mented in the Vienna Ab-initio Simulation Package (VASP) [34–36]. A plane wave basis set

for electronic wavefunction expansion together with the projector augmented wave (PAW)

method [37] has been applied, while the exchange-correlation functional is parametrized ac-

cording to Perdew and Wang (PW91) [38]. For calculating the fully noncollinear electronic

structure we used the VASP code as well [39, 40], with spin-orbit coupling considered. This

allows us to determine the Néel state with the energetically favored chirality.

We model the Cr/Ag(111) system by a slab of a five-layer Ag substrate and one-one

monolayer Cr films on each side, where the surface Cr layers and the first Ag layers under-

neath have been fully relaxed. After relaxation the Cr-Ag interlayer distance is reduced by

9.5%, while the underneath Ag-Ag increased by 0.5% compared to bulk Ag. A separating

vacuum region of 14.6 Å width in the surface normal (z) direction has been set up between

neighboring supercell slabs. The average electron workfunction above the Cr is calculated to

be φS = 4.47 eV using Eq.(13). We used an 11× 11× 1 Monkhorst-Pack (MP) [41] k-point

grid for calculating the projected electron DOS onto the surface Cr atoms in our (
√
3×

√
3)

magnetic surface unit cell.

Performing fully noncollinear electronic structure calculations we obtained convergence

to two different magnetic Néel states. The magnetic surface unit cell with the converged

magnetic moment directions are shown in the left part of Figure 1. Each of the two Néel

states can be characterized by a chirality vector, defined as [12]

K =
2

3
√
3

(

e1S × e2S + e2S × e3S + e3S × e1S
)

. (45)

Here eαS denotes the local spin quantization unit vector of the αth Cr atom. It is defined

from the local magnetic moment, M
α

S =
∫ ES

F

−∞
dEmα

S(E), similarly as in Eq.(20), i.e. eαS =

M
α

S/|M
α

S|. The magnitude of the magnetic moments of the Cr surface atoms are 3.73 µB,

with a very small out-of-plane component, which is neglected when defining the chirality
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vectors. Thus, in the first row of Figure 1, e1S = (1/2,
√
3/2, 0), e2S = (1/2,−

√
3/2, 0), and

e3S = (−1, 0, 0). This corresponds to the chirality vector K = (0, 0,−1) or simply Kz = −1.

Similarly, in the second row of Figure 1, e1S = (1/2,−
√
3/2, 0), e2S = (1/2,

√
3/2, 0), and

e3S = (−1, 0, 0) correspond to Kz = +1. Comparing total energies of the two states we find

that Kz = −1 is energetically favored by 1.1 meV compared to Kz = +1. This finding

is consistent with the magnetic ground state found for a Cr trimer island on the Au(111)

substrate in Ref. [12], where it was also shown that the Dzyaloshinskii-Moriya interaction

is responsible for determining the ground state magnetic chirality. Performing a collinear

calculation with spin-orbit coupling considered, we obtain a ferromagnetic (FM) state with

in-plane Cr atomic magnetic moments of 3.76 µB. It turns out that this FM state is 1.04 eV

higher in energy than the Kz = −1 Néel state. The energy difference of 346 meV/(magnetic

atom) in favor of the Néel state is in good agreement with results of Ref. [14]. The out-

of-plane FM state is 1 meV higher in energy than the in-plane FM state with the same

magnitude of magnetic moments.

Simulation of SP-STM images can be performed using Eqs.(27) and (31) in two ways:

(1) According to Heinze [15], having chemically equivalent surface atoms the spin structure

plays a more dominant role compared to the detailed electronic structure in determining

the main features of an SP-STM image. Following this, we can take the collinear electronic

structure (COLL) obtained from the in-plane ferromagnetic calculation, and set the spin

structure to the corresponding Néel state.

(2) As a more precise way, we can take the noncollinear electronic structure (NONCOLL),

and there is no need to prescribe the spin structure as it is naturally included in the elec-

tronic structure data.

The first approach is computationally cheaper, and can be applied to simulate larger scale

images [15]. On the other hand, calculation of the noncollinear electronic structure is com-

putationally more demanding but more realistic.

In our Cr/Ag(111) system we calculated the tunneling current in a box above the magnetic

unit cell containing 153000 (34x30x150) grid points with a 0.15Å lateral and 0.0529177Å

horizontal resolution. Figure 1 shows simulated constant current SP-STM images for the

two Néel states at zero bias voltage, assuming an ideal electronically flat maximally spin-

polarized tip based on Eq.(28) with various magnetization directions following the first

method. These are in qualitatively good agreement with previous simulations [14, 15].
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Using a nonmagnetic tip, all surface Cr atoms appear to be of equal height (one height

level), i.e. the surface topography is seen. As the spin polarization of the Cr atoms at

the Fermi energy is positive (see Figure 2), and the tip spin polarization is set to +1, the

Cr atom with parallel/antiparallel magnetization direction relative to the tip appears to

be higher/lower than the other two Cr atoms, which have the same apparent height due

to symmetry (two height levels). Comparing the images, it is clear that a contrast reversal

occurs when turning the tip magnetization to opposite direction. This magnetic contrast can

be quantified according to Eq.(36). By setting the tip magnetization direction perpendicular

to a Cr magnetic moment, a structure with three height levels occurs. This means that all Cr

atoms in the magnetic unit cell have different apparent heights. This is due to the variation

of the angles between the local Cr magnetic moments and the tip magnetization, e.g. for

Kz = −1, ϕ1 = 90◦, ϕ2 = 30◦, and ϕ3 = 150◦. Determining the chirality of the magnetic

structure from experimental SP-STM images is only possible in such a scenario if the tip

magnetization direction is not parallel with the magnetic moment of any of the surface atoms.

In our example of the Cr/Ag(111) system the three apparent height levels follow a different

order in the magnetic unit cell corresponding to the different chiralities. The decreasing

levels of Cr apparent heights are indicated by circular arrows in the last column of Figure 1.

Apparent height differences of individual atoms on the same image define another kind of

magnetic contrast, see Eq.(37). Generally, the determining factor for the apparent height of

magnetic atoms in zero bias (V=0 V) measurements is the effective spin polarization (ESP)

at the common Fermi level, PT (E
S
F )P

α
S (E

S
F )cosϕα(E

S
F ), similarly as it was identified as the

governing factor for the height of differential tunneling spectra at particular energies [24]. A

positive ESP results in higher tunneling current at a fixed distance above a magnetic surface

atom, while the opposite holds for negative ESP. Considering a constant current contour,

thus, results in a higher apparent height for the atom with positive, while a lower height

with negative ESP, compared to the topographic heights.

Let us analyze the consequences of the choice of the collinear (COLL) or noncollinear

(NONCOLL) electronic structure for the SP-STM images in more detail. Taking the non-

collinear electronic structure we obtained qualitatively similar images at zero bias as shown

in Figure 1, thus, Heinze is right [15] with the quality of the SP-STM images calculated at the

sample Fermi energy using either COLL or NONCOLL electronic structure. The different

spin polarization value of the Cr atoms at the Fermi level, however, results in different mag-
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netic contrasts. According to Figure 2, the spin polarization of the Cr atoms is 0.20 and 0.51

considering the COLL and NONCOLL electronic structure, respectively. Consequently, we

expect that the magnetic contrast is higher in the NONCOLL SP-STM image. Indeed, e.g.

taking a constant current contour of 10−4 nA at parallel tip magnetization direction to the

surface Cr atom labeled by ”1” (Cr1), we find ∆zCOLL
12 (V = 0V, T = 4.2K, IC = 10−4nA) =

0.07 Å and ∆zNONCOLL
12 (V = 0V, T = 4.2K, IC = 10−4nA) = 0.21 Å magnetic contrasts

for COLL and NONCOLL images, respectively. Moreover, the 10−4 nA contour is closer

to the sample surface in the NONCOLL case. It is worth to compare magnetic contrasts

of COLL and NONCOLL images on constant current contours having the same apparent

height for Cr1. For example, the Cr1 apparent height of 3.35 Å is obtained at 10−4 nA in the

COLL and 5×10−5 nA in the NONCOLL image. The magnetic contrast in the new contour

of the NONCOLL image is ∆zNONCOLL
12 (V = 0V, T = 4.2K, IC = 5 × 10−5nA) = 0.18 Å.

Thus, we find that the magnetic contrast ratio of NONCOLL and COLL images at the same

Cr1 apparent height of 3.35 Å, 0.18Å/0.07Å equals to the spin polarization ratio of Cr1

NONCOLL and COLL electronic structures at the Fermi level, i.e. 0.51/0.20.

In the following we consider the magnetic Néel state with Kz = −1 chirality since it

has been identified as the ground state. Figure 2 compares the energy dependent spin

polarization vectors of Cr1 in Figure 1, calculated from NONCOLL and COLL electronic

structures. The spin polarization vector is defined as P
1

S(E) = P 1
S(E)e

1
S(E), where P

1
S(E)

is calculated using Eq.(23) and Eq.(24) in the COLL and NONCOLL case, respectively.

Taking the collinear electronic structure, the local spin quantization axis of Cr1 is set to

the local magnetic moment direction with neglecting the small out-of-plane component,

e1S = (1/2,
√
3/2, 0), and it is independent of energy. Reversal of the spin polarization

vector occurs at P 1
S(E) values of opposite sign. Note that three sign changes occur in

the [0.0 eV,0.3 eV] energy interval with respect to the Fermi level, using an 11 × 11 × 1

MP k-point grid. We tested a denser 15 × 15 × 3 MP k-point grid as well, resulting in a

qualitatively similar spin polarization. For computational and comparison reasons, we chose

the 11×11×1 MP k-point set for calculating the NONCOLL electronic structure. While, in

the noncollinear case P 1
S(E) is always positive due to Eq.(24), one spin polarization vector

reversal is observed at 0.54 eV above the Fermi level. The indication for this reversal is

the sign change of e1xS (E) and e1yS (E), i.e. going away from the Fermi energy, the local spin

quantization axis changes from e1S ≈ (1/2,
√
3/2, 0) to e1S ≈ (−1/2,−

√
3/2, 0) at 0.54 eV.
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Here, however, the e1zS (E) components are not exactly zero, but they are in the order of

10−6 to 10−2 in the whole energy range with the exception of e1zS (0.54eV ) = −0.21. This

latter value indicates that the rotation direction of the spin polarization vector at 0.54 eV is

through negative e1zS components. Since e1S(E) is a unit vector at all energies, the presence

of small e1zS (E) components also means that the other vector components are |e1xS (E)| ≈ 1/2

and |e1yS (E)| ≈
√
3/2. By comparing the P 1

S(E) spin polarization function of COLL and

NONCOLL electronic structures, we can state qualitative agreement.

Let us compare simulated single point differential conductance spectra based on NON-

COLL and COLL electronic structures. Figure 3 shows such simulated spectra z = 3.5 Å

above the Cr1 atom in Figure 1 with assumed parallel (P) and antiparallel (AP) tip magneti-

zation direction using an ideal magnetic tip. We showed at the end of section II that for the

considered ideal magnetic tip dI/dU (Eq.(29)) is the real differential conductance. Accord-

ing to Eq.(42), the topographic and magnetic contributions can be calculated separately.

Determining dITOPO/dU(z, U) (red dashed line with symbol ”X”) and dIPMAGN/dU(z, U)

(blue dashed line with symbol ”+”) is sufficient to draw dIP/dU(z, U) (black solid line) and

dIAP/dU(z, U) (brown (gray) solid line) since

dIP/dU(z, U) = dITOPO/dU(z, U) + dIPMAGN/dU(z, U)

dIAP/dU(z, U) = dITOPO/dU(z, U)− dIPMAGN/dU(z, U). (46)

Here, we took into account that the magnetic contribution for the AP tip magnetization di-

rection dIAP
MAGN/dU equals to −dIPMAGN/dU , since cosϕ changes sign. The COLL and NON-

COLL spectra have slightly different peak positions due to the details of the electronic struc-

ture. We find that dIP/dU > dITOPO/dU > dIAP/dU below U = 0.54 V, while dIP/dU <

dITOPO/dU < dIAP/dU above U = 0.54 V, calculated by using NONCOLL electronic struc-

ture. The relation of these quantities is determined be the sign of the magnetic contribution

at the given bias, i.e. dIPMAGN/dU(U < 0.54V) > 0, and dIPMAGN/dU(U > 0.54V) < 0. On

the other hand, for the COLL case, there are three sign changes of dIPMAGN/dU at 85 mV,

160 mV, and 300 mV, resulting in dIP/dU > dITOPO/dU > dIAP/dU below U = 85 mV

and dIP/dU < dITOPO/dU < dIAP/dU above U = 300 mV. The magnetic contribution is

small between 85 mV and 300 mV and the difference between spectra is less than 0.02 nA/V

in this bias range.

In the following we use the NONCOLL electronic structure for the Cr/Ag(111) sample
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surface. By including energy dependent electronic structure of sample and tip into our

model, we can study the bias dependent magnetic contrast and its tip dependence as well.

Figure 4 shows simulated SP-STM images for various tip magnetization directions at -1 V,

0 V and +1 V bias voltages assuming an ideal magnetic tip. We find qualitatively similar

images for -1 V and 0 V for the corresponding tip magnetization direction. This means

that the ∆z12 magnetic contrast between Cr1 and Cr2 has the same sign at -1 V and 0 V.

However, ∆z12 at the same Cr1 apparent height increases at -1 V compared to 0 V for all

tip magnetization directions. This can be explained by the integrated dIPMAGN contribution,

which does not change sign in this bias range, see blue dashed line with symbol ”+” in the

left part of Figure 3. On the other hand, the results show that the magnetic contrast is

reversed at +1 V compared to the other two studied bias voltages. This contrast reversal

is observed for all tip magnetization directions. It is interesting to find that on the image

with three height levels the apparent heights change order in such a way that the image at

+1 V looks like that the Néel state would have an opposite chirality compared to 0 V or

-1 V, see the indicated circular arrows in the last row of Figure 4. This finding highlights

the importance of the applied bias voltage and suggests that one has to be careful when

interpreting the magnetic structure from experimentally observed SP-STM images. Based

on our theoretical study we can also conclude that the magnetic contrast reversal occurs

between 0 V and +1 V bias voltages. This contrast reversal is solely due to the sample

electronic structure since the ideal magnetic tip is electronically featureless.

Dependence of the magnetic contrast on the tip electronic structure can be studied by

considering different tip models. As an example we chose a ferromagnetic Ni tip. Such tips

are routinely used in SP-STM and STS experiments [42, 43]. The Ni tip has been modeled

by a seven-layer Ni film slab with (110) orientation, having one-one Ni apex atoms on both

surfaces, i.e. with a double vacuum boundary. Here, the apex atom and the topmost surface

layers have been relaxed on both sides. The interaction between apex atoms in neighboring

supercells is minimized by choosing a 3×3 surface cell, and a 15.4 Å wide separating vacuum

region in z direction. Moreover, an 11×11×1 MP k-point grid has been chosen for obtaining

the projected DOS onto the apex atom. The electronic structure of the apex is given in the

top part of Figure 1 of Ref. [24]. We obtain a spin polarization of PT = −0.91 at the Fermi

level, ET
F , and |PT (E)| > 0.8 between ET

F − 0.3eV and ET
F + 0.3eV. Employing Eq.(14), the

local electron workfunction above the tip apex is φT = 4.52 eV, and Eq.(12) has been used
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to determine the vacuum decay.

Figure 5 shows simulated SP-STM images for various tip magnetization directions at

-1 V, 0 V and +1 V bias voltages including the electronic structure of the Ni tip into

our model. By comparing images to those shown in Figure 4 obtained by using an ideal

magnetic tip, we find that the magnetic contrast is the opposite for each picture. This

is due to the negative spin polarization (-0.91) of the Ni tip apex at its Fermi level [24].

Note that the spin polarization of the ideal magnetic tip was assumed to be +1 in the

whole energy range. Similarly as in Figure 4, we find qualitatively similar images for -1 V

and 0 V for the corresponding tip magnetization directions with higher magnetic contrast

at -1 V compared to 0 V. Again, the magnetic contrast is reversed at +1 V compared to

the other two studied bias voltages. This effect is highlighted in the last row of Figure 5

showing the decreasing levels of Cr apparent heights by circular arrows, thus, indicating

a bias dependent apparent magnetic chirality. The results suggest that different tips can

completely reverse the magnetic contrast. This effect has to be taken into account when

determining the magnetic structure from experimentally observed SP-STM images.

IV. CONCLUSIONS

We extended the atom-superposition-based method of Heinze [15] for simulating spin-

polarized scanning tunneling microscopy by including the tip electronic structure, bias volt-

age, and the capability of incorporating the fully noncollinear electronic structure. Taking

the tip electronic structure into account, the effect of a richer variety of electronic structure

properties can be investigated on the tunneling transport within the indicated approxima-

tions (atom superposition, spherical vacuum decay). The method is computationally cheap

and it can be applied based on results of any ab initio electronic structure code. Taking

the prototype frustrated hexagonal antiferromagnetic system, Cr monolayer on Ag(111) in

a noncollinear magnetic 120◦ Néel state, we determined its ground state magnetic chirality

and simulated SP-STM images at different bias voltages to illustrate the applicability of our

method. We related the magnetic contrast of the zero bias images to the effective spin po-

larization at the sample Fermi level. Moreover, we illustrated the importance of the energy

dependent local spin quantization axes by comparing collinear and noncollinear electronic

structure of a particular surface Cr atom and its effect on single point tunneling spectra.
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Finally, we showed evidence that the magnetic contrast is sensitive to the tip electronic

structure, and this contrast can be reversed depending on the bias voltage.
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FIG. 1: (Color online) Surface geometry of 1 ML Cr on Ag(111) and simulated SP-STM images at

0 V bias voltage depending on the tip magnetization direction (MTIP ) assuming an ideal electron-

ically flat maximally spin-polarized tip. The Cr and Ag atoms are denoted by spheres colored by

green (medium gray) and purple (dark gray), respectively, while the magnetic moments of individ-

ual Cr atoms are indicated by (red) arrows in the left part of the figure. The Cr atoms are explicitly

labeled corresponding to the calculated chirality vector in Eq.(45). In addition, the (
√
3 ×

√
3)

magnetic unit cell is drawn by yellow (light gray) color. In the two rows noncollinear Néel states

with opposite chiralities and corresponding SP-STM images are shown. In the last column, the

decreasing levels of Cr apparent heights are indicated by circular arrows.
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FIG. 2: (Color online) Comparison of energy dependent spin polarization vectors, P
1
S(E) =

P 1
S(E)(e1xS (E), e1yS (E), e1zS (E)), of the surface Cr atom labeled by ”1” in Figure 1 in the Néel

state with Kz = −1 chirality, calculated from noncollinear (NONCOLL) and collinear (COLL)

electronic structure. In the collinear case the local spin quantization axis is e1S = (1/2,
√
3/2, 0)

in the basis of (ex, ey, ez), and is independent of energy. Reversal of the spin polarization vector

occurs at P 1
S(E) values of opposite sign. In the noncollinear case P 1

S(E) is always positive due

to Eq.(24) and the spin polarization vector reversal is observed as the sign change of e1xS (E) and

e1yS (E) at 0.54 V. Here, the rotation direction of the spin polarization vector is through negative

e1zS (E) components.
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FIG. 3: (Color online) Simulated single point differential tunneling spectra dIP /dU and dIAP /dU

3.5 Å above the surface Cr atom labeled by ”1” in Figure 1 in the Néel state with Kz = −1

chirality, assuming parallel (P) and antiparallel (AP) tip magnetization direction with respect

to that of Cr1, applying an ideal electronically flat maximally spin-polarized tip according to

Eq.(29). Left and right parts correspond to spectra obtained from noncollinear (NONCOLL) and

collinear (COLL) electronic structures of the sample, respectively. Topographic (dITOPO/dU)

and magnetic (dIPMAGN/dU = −dIAP
MAGN/dU) contributions are given according to Eq.(43) and

Eq.(44), respectively.
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FIG. 4: (Color online) Simulated SP-STM images depending on the bias voltage and the tip

magnetization direction assuming an ideal electronically flat maximally spin-polarized tip. The

magnetic contrast is reversed between 0.0 V and 1.0 V. In the last row, the decreasing levels of Cr

apparent heights are indicated by circular arrows. The surface geometry of 1 ML Cr on Ag(111),

its magnetic structure with Kz = −1 chirality, and the considered tip magnetization directions are

explicitly shown, similarly as in Figure 1.
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FIG. 5: (Color online) Simulated SP-STM images depending on the bias voltage and the tip

magnetization direction assuming a model Ni tip. The magnetic contrast is reversed compared

to images obtained by using the ideal magnetic tip (compare to Figure 4), and there is a bias

dependent contrast reversal between 0.0 V and 1.0 V. In the last row, the decreasing levels of Cr

apparent heights are indicated by circular arrows. The surface geometry of 1 ML Cr on Ag(111),

its magnetic structure with Kz = −1 chirality, and the considered tip magnetization directions are

explicitly shown, similarly as in Figure 1.
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