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In order to explain the anisotropic Rashba-Bychkov effect observed in several metallic surface-
state systems, we use k ·p perturbation theory with a simple group-theoretical analysis and construct
effective Rashba Hamiltonians for different point groups up to third order in the wavenumber. We
perform relativistic ab initio calculations for the (

√
3×

√
3)R30◦ Bi/Ag(111) surface alloy and from

the calculated splitting of the band dispersion we find evidence of the predicted third-order terms.
Furthermore, we derive expressions for the corresponding third-order Rashba parameters to provide
a simple explanation to the qualitative difference concerning the Rashba-Bychkov splitting of the
surface states at Au(111) and Bi/Ag(111).

PACS numbers: 71.15.Rf 73.20.At 75.70.Tj

I. INTRODUCTION

Since the first experimental verification by LaShell et
al.

1 the spin–orbit induced splitting of Shockley states on
metallic surfaces called the Rashba-Bychkov (RB) effect2

became into the focus of experimental and theoretical
research. These investigations range from the prototypi-
cal L-gap surface states at Au(111) and Ag(111)3–7 and
also at Au(110),8–10 through Li/W(110) and Li/Mo(110)
overlayers,11 and the Gd(0001) surface,12 to a large num-
ber of metallic surfaces and surface alloys related to Bi,
Pb or Sb where the 5p and 6p orbitals show a pronounced
spin-orbit splitting.13–28 This huge interest is mainly trig-
gered by potential spintronics applications in relation to
the Datta-Das transistor,29 the spin Hall effect30 and the
anomalous Hall effect.31

While accurate ab initio calculations satisfactorily ac-
count for most features of the measured dispersion rela-
tions of metallic surface states, there is an obvious need
to explain the RB effect in terms of simple models con-
taining a few, easily identifiable parameters. The sim-
plest effective Hamiltonian of a two-dimensional electron
gas, subject to spin-orbit interaction (SOI), includes in

addition to the kinetic energy, ε0+
~
2k2

2m∗
(k and m∗ being

the wavevector and the effective mass of the electrons,
respectively), a Rashba term,2,32

HR (k) = αR (kxσy − kyσx) , (1)

where αR is the so-called Rashba parameter and σi (i =
x, y, z) denote the Pauli matrices. The corresponding

eigenvalues, ε± (k) = ε0 +
~
2k2

2m∗
±αR k (k = |k|) show an

isotropic splitting for k 6= 0, and, at least for moderate
values of k, they readily can be fit to most experimental
and ab initio dispersion relations.
Although not yet detected experimentally,8 a RB split-

ting that is anisotropic in k-space is obvious for the sur-
face states at Au(110). The C2v point-group symmetry33

of the system not only implies an anisotropy of the effec-
tive mass, m∗

x 6= m∗
y, but, as discussed in terms of k · p

perturbation theory,10,35 it leads to a Rashba Hamilto-
nian containing two independent Rashba parameters, α1

R

and α2
R,

HR (k) = α1
R kxσy + α2

R kyσx . (2)

Fully relativistic ab initio calculations confirmed the exis-
tence of the anisotropic RB splitting at Au(110),9 match-
ing with a high accuracy to the eigenvalues of the effective
Hamiltonian in Eq. (2).10

Even in case of high symmetry surfaces, i.e., having a
point-group of C3v or C4v, several studies

13,15,18,24,26,27

called the attention to an anisotropic RB splitting. In
Ref. 34 the anisotropic RB effect at Bi/Ag(111) and
Pb/Ag(111) surfaces was reproduced by using a nearly-
free electron model and explained due to in-plane struc-
tural inversion asymmetry. From the group-theoretical
analysis in Ref. 35 it is, however, clear that under C3v

and C4v point-group symmetry an effective 2× 2 Hamil-
tonian that is linear in the components of k must be of
the form of Eq. (1), hence, it can not explain the observed
anisotropy of the RB splitting. Thus, we conclude that in
these systems the anisotropic RB effect can be described
by a Hamiltonian containing at least third-order polyno-
mials of kx and ky. It should be noted that the second-
order terms are related to the kinetic energy (effective
mass terms) that are irrelevant to the RB splitting.

To construct Rashba Hamiltonians up to third order in
k, in the present work we use k·p perturbation theory and
group-theoretical methods different from Ref. 35. Our
analysis of the effective Hamiltonian is closely related to
that of Ref. 36, where, for the case of C3v symmetry, the
correct form of H(k) is derived up to third order in k
and the corresponding band dispersion was used to ex-
plain the hexagonal warping of the surface states’ Fermi

http://arxiv.org/abs/1110.3953v1
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contour observed experimentally in the topological insu-
lator Bi2Te3.

37

We also perform relativistic ab initio calculation for
the Bi/Ag(111) ordered alloy in (

√
3 ×

√
3)R30◦ super-

structure and confirm that for higher values of k, but still
in the measured range, third-order terms of the Rashba
Hamiltonian are needed to reproduce the RB splitting
and that these terms are of the predicted form. More-
over, using explicit expressions of the third-order Rashba
parameters within k · p perturbation theory and calcu-
lated spectral densities at the Brillouin zone center we
are able to give a simple explanation why the Au(111)
and the Bi/Ag(111) surface states exhibit isotropic and
anisotropic RB splitting, respectively.

II. PERTURBATION THEORY AND
SYMMETRY ANALYSIS

Let Q be a high symmetry point of the surface Bril-
louin zone (SBZ), for which a pair of spin-degenerate
eigenstates exists on a nonmagnetic surface. Due to time
reversal symmetry, this is always the case if Q = −Q+K

is satisfied where K is a two-dimensional (2D) reciprocal-
lattice vector. Such points are the center of the SBZ (Γ)
and some special points at the boundary of SBZ such as
the X, Y and S points for a primitive rectangular lat-
tice, the M and X points for a square lattice and the M
point for a hexagonal lattice. As what follows, our in-
vestigations will concern solely this case termed as the
proper Rashba effect.9 As pointed out in Ref. 9, due to
double-group symmetry there can happen degeneracy at
points of the SBZ that doesn’t meet the above condition,
like the K point for a hexagonal lattice (improper Rashba
effect).
To describe the surface band around Q it is worth to

label the corresponding Bloch states by the wavenumber
with respect to Q, ψQ+k, and introduce a new wavefunc-
tion, φk as

ψQ+k (r) = eikrφk (r) , (3)

with the boundary condition, φk(r+T) = eiQTφk(r),
where T is a 2D real-lattice vector. Considering the

Hamilton operator, H = p2

2m
+V +HSO, with the crystal

potential, V , and HSO denoting the spin-orbit interac-
tion,

HSO =
~

4m2c2
(∇V × p) · σ , (4)

the wavefunctions φk satisfy the eigenvalue equation,

(H0(k) +HSO(k))φk = ε(k)φk , (5)

with

H0(k) =
(~k+ p)

2

2m
+ V , (6)

and

HSO(k) =
~

4m2c2
(∇V × (~k+ p)) · σ . (7)

Following the recipe used in Ref. 10, in the first step
we look for the solution of the Schrödinger equation,

H0(k)φ
0
k = ε0(k)φ

0
k , (8)

which can be elucidated, e.g. in terms of k · p perturba-
tion theory. Although such a calculation provides with
a deeper insight into the problem,10 in this section we
just make use of the symmetry properties of the solu-
tions, ε0(k) and φ0k. First we note that since H0(k)
is independent of the spin, the solutions of Eq. (8) re-
main degenerate in spin-space. Time reversal symmetry,
TH0(k)T

−1 = H0(−k) with Tψ = ψ∗, then immediately
implies

ε0(−k) = ε0(k) , (9)

φ0−k =
(

φ0k
)∗
, (10)

where the phase of φ0k has been fixed without loss of gen-
erality. Clearly from Eq. (9), a polynomial form of ε0(k)
contains just even powers: the first non-trivial (second-
order) terms are obviously related to the effective masses.
We can draw further relations from point-group sym-

metry. Let GQ be the small group of Q, i.e. gQ =
Q + K for any g ∈ GQ and K denoting an appropri-
ate reciprocal-lattice vector. Using the standard defini-
tion for the action of a symmetry operation, (g ◦ f)(r) =
f(g−1r), from the symmetry of the Hamilton operator,
g ◦ H0(k) = H0(gk), one easily can derive

ε0(gk) = ε0(k) , (11)

g ◦ φ0k = φ0gk . (12)

In the second step, using HSO(k) as perturbation and
φ0k χs with χs being spinor eigenfunctions

(

s = ± 1
2

)

as
unperturbed wavefunctions, first-order degenerate per-
turbation theory is applied. The Rashba Hamiltonian,
HR(k), is defined as the corresponding 2× 2 matrix,

HR(k) = α(k) · σ , (13)

where

α(k) =
〈

φ0k
∣

∣

~

4m2c2
(∇V × (~k+ p))

∣

∣φ0k
〉

. (14)

Our present goal is to derive the polynomial form of
α(k). To this end we note two symmetry properties that
can be obtained from Eqs. (10) and (12):

α(−k) = −α(k) , (15)

stating that αi(kx, ky) can be expanded in terms of poly-
nomials of odd power and

α(g k) = det(g) gα(k) , (16)
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where det(g) = 1 for proper rotations and det(g) = −1
for improper rotations. Eq. (16) is then used to set
up linear equations for the coefficients, cli, of the nth-
order polynomials of αi(kx, ky) =

∑

l=1,...,n c
l
ik

l
xk

n−l
y

(i = x, y, z). Solving this set of linear equations serves to
search for the vanishing coefficients, in principle, for any
power n, hence, to determine the form of HR(k).
Another systematic way to obtain HR(k) relies on the

observation that Eq. (16) can be used to formulate the
invariance of the Rashba Hamiltonian as

HR(k) = α(g k) · (det(g) gσ) , (17)

also implying that σ transforms as an axial vector. Sort-

ing out the components of k and σ according to irre-
ducible representations of GQ, their direct products can
again be decomposed into irreducible representations.
Eq. (17) states that only the total symmetric irreducible
representations from this decomposition can contribute
to HR(k). From the corresponding tables of the point
groups33 one can easily construct the possible terms en-
tering HR(k) according to increasing powers of kx and
ky. In the Appendix this procedure is illustrated for the
simple case of point group C2v. As one of the main result
of this work, in Table I we list the possible terms up to
third order in k that can enter HR(k) for different point
groups relevant to surfaces of crystals.

Chx C2 C3 C4 C2v C3v C4v

kxσy , kxσx , kxσx + kyσy , kxσx + kyσy , kxσy , kxσy − kyσx kxσy − kyσx

kyσx , kxσy , kxσy − kyσx kxσy − kyσx kyσx

kyσz kyσx ,

kyσy

k3
xσy , k3

xσx ,
(

k3
x + kxk

2
y

)

σx+ k3
xσx + k3

yσy , k3
xσy ,

(

k3
x + kxk

2
y

)

σy− k3
xσy − k3

yσx ,

k2
xkyσx , k3

xσy ,
(

k2
xky + k3

y

)

σy , k3
xσy − k3

yσx , k2
xkyσx ,

(

k2
xky + k3

y

)

σx , k2
xkyσx − kxk

2
yσy

k2
xkyσz , k2

xkyσx ,
(

k3
x + kxk

2
y

)

σy− k2
xkyσx − kxk

2
yσy , kxk

2
yσy ,

(

k3
x − 3kxk

2
y

)

σz

kxk
2
yσy , k2

xkyσy ,
(

k2
xky + k3

y

)

σx , kxk
2
yσx + k2

xkyσy k3
yσx

k3
yσx , kxk

2
yσx ,

(

k3
x − 3kxk

2
y

)

σz ,

k3
yσz kxk

2
yσy ,

(

k3
y − 3k2

xky
)

σz

k3
yσx ,

k3
yσy

TABLE I. Possible terms of the Rashba Hamiltonian for different point groups (first row) containing first-order (second row)
and third-order (third row) polynomials of kx and ky.

Finally in this section, we comment on the method
used in Ref. 35. In this work a Hamiltonian including SOI
but excluding all k-dependent terms was considered as
the unperturbed system and the twofold degenerate solu-
tions, φ1 and φ2, corresponding to the wavenumber Q as
the unperturbed solutions. The perturbation was there-

fore taken as H′(k) = ~

m
kp + ~

2

4m2c2
(∇V × k) · σ and,

similar to our strategy, first-order degenerate perturba-
tion theory was applied. The form of the effective Rashba
Hamiltonian, H ′

ij(k) = 〈φi | H′(k) | φj〉 (i, j = 1, 2), is
then determined via the invariance conditions,

H ′(gk) = D (g) H ′(k)D (g)
−1
, (18)

where D (g) is a 2 × 2 unitary double-point group rep-
resentation of g. In case of Abelian point groups (Chx,
C2, C3 and C4), the degenerate states form time-reversed
pairs and D(g) can simply be set up from the characters
of the corresponding one-dimensional irreducible repre-
sentations. Following from the definition of H ′(k), in
Ref. 35 the first-order Rashba Hamiltonians were ob-
tained for the groups Chx, C2v, C3v and C4v. It is, how-

ever, straightforward to show that, when applied to the
Hamiltonian (13), Eq. (18) is equivalent with condition
(17),38 hence, using double-group representations leads
to the same results as listed in Table I.

III. THIRD-ORDER RASHBA SPLITTING AT
BI/AG(111)

By using the relativistic Screened Korringa-Kohn-
Rostoker (KKR) method39 we performed calculations for

the (
√
3×

√
3)R30◦ ordered surface alloy Bi/Ag(111) to

obtain a quantitative verification of our prediction of
a third-order Rashba Hamiltonian. A 2D lattice con-
stant of 2.892 Å related to fcc Ag bulk and, accord-
ing to geometry optimization we performed in terms of
the VASP method40 and also in agreement to previ-
ous LAPW calculations,19 an outward buckling of 36 %
(0.85 Å) for the Bi atoms were considered. The local
spin-density approximation as parametrized by Vosko et

al.
41 was applied, the effective potentials and fields were
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treated within the atomic sphere approximation with an
angular momentum cut–off of ℓmax = 2. The energy in-
tegrations were performed by sampling 12 points on a
semi-circular path in the upper complex semi-plane and
for the necessary k-integrations we selected 36 k-points
in the irreducible segment of the surface Brillouin zone.
The calculated dispersion relation of the Bi surface

states below the Fermi level is shown in Fig. 1 along
the Γ − M direction of the SBZ. The maxima of the
Rashba-split Bi spz band are shifted from the Γ point by
k0 = 0.1 Å−1 and, using a parabolic fit around the max-
ima, we obtained an effective mass of m⋆ = −0.36me.
These values are in good agreement with experimental
data, k0 = 0.13 Å−1 and m⋆ = −0.35me.

18 It should,
however, be mentioned that the calculated surface bands
are shifted downwards by about 0.5 eV as compared to
experiment, most probably, due to the angular momen-
tum cutoff and to the atomic sphere approximation used
in the calculations. The Bi pxpy surface bands, shifted
upwards due to crystal field splitting and to spin-orbit
coupling, can also be clearly seen in Fig. 1.

ε−
ε F

 (
eV

)

k (1/Å)

−0.4 −0.2 0.0 0.2 0.4

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

FIG. 1. Calculated dispersion relations of the occupied sur-
face states of Bi/Ag(111) along the Γ − M direction of the
SBZ.

In case of C3v symmetry the effective Rashba Hamil-
tonian can be written up to third order in k as (see Table
I),

HR(k) =
(

α1 + α1
3 k

2
)

(kxσy − kyσx) + a23k
3 cos 3ϕσz ,

(19)
with the polar coordinate ϕ = arccos(kx/k). Note that
the x axis was chosen along the Γ − K direction of the
SBZ. Obviously, there are two kinds of third-order con-
tributions to the Hamiltonian (19): an isotropic one with
coefficient α1

3 and an anisotropic one with the coeffi-
cient α2

3. The square of the splitting of the eigenvalues,
∆ε(k) = (ε+(k)− ε−(k))/2, can then be expressed as

∆ε(k)2 =
(

α1k + α1
3 k

3
)2

+
(

α2
3

)2
k6 cos2 3ϕ . (20)

In Fig. 2 we plotted ∆ε(k)2 along the Γ− K and the
Γ−M directions, together with different fitting functions
related to Eq. (20). It can be seen that a parabolic fit
(dots), α1k

2 with α1 = 1.74 eV Å, applies well to the two
curves only for about k < 0.07 Å−1. Up to k ∼ 0.13 Å−1

the two curves still coincide, however, the isotropic third-
order contribution is needed for a good fit: here we used

a fitting function
(

α1k + α1
3 k

3
)2

with the same value for

α1 as before and α1
3 = −14.2 eV Å

3
. For wavenumbers

k > 0.13 Å−1, the anisotropy of the RB splitting be-
comes apparent: along Γ−M (φ = π/2) the previous fit
applies, while along Γ − K (φ = 0) the fitting function

had to be extended by the anisotropic term,
(

α2
3

)2
k6

with α2
3 = 9.4 eV Å

3
. Our numerical results thus clearly

support the appearance of third-order terms for the sur-
face states of Bi/Ag(111) consistent with the functional
form as derived from group-theoretical methods.

-0.2 -0.1 0.0 0.1 0.2
0.00

0.02

0.04

0.06

o

(
)2    

(e
V

 2 )

k  (1/A)

K

M

FIG. 2. Square of the calculated splitting, ∆ε(k) = (ε+(k)−
ε−(k))/2, of the occupied surface states of Bi/Ag(111).
Squares: Γ − K direction, circles: Γ − M direction, see the
sketch of the SBZ in the inset. Dotted and solid lines display
first-order and third-order fits as described in the text.

IV. COMPARISON OF THE RASHBA EFFECT
AT AU(111) AND BI/AG(111)

It is well-known from experiments and ab inito
calculations,1,3–6 that the Au(111) L-gap surface states
show a highly isotropic (first-order) Rashba splitting.
Since both systems, Au(111) and Bi/Ag(111), exhibit
C3v symmetry, the question naturally arises why there is
a remarkable difference concerning third-order RB split-
ting. In order to find, at least, a qualitative understand-
ing of the problem we extended the k · p perturbation
calculations presented in Ref. 10 for the case of C2v sym-
metry to C3v symmetry and found the following expres-
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sions for the third-order coefficients in Eq. (19),

α1
3 =

~
4

4m4c2
∑

n,m

〈φ0| px |φ+n 〉〈φ+n |∂zV |φ+m〉〈φ+m|px|φ0〉
(ε0 − εEn )(ε0 − εEm)

,

(21)
and

α2
3 =

~
4

4m4c2
∑

n,m

〈φ0| px |φ+n 〉〈φ+n |∂xV |φ−m〉〈φ−m|px|φ0〉
(ε0 − εEn )(ε0 − εEm)

.

(22)
From the above formulas it turns out that third-order
corrections to the effective Hamiltonian arise from an
admixture between the surface state, φ0 of spz orbital
character at energy ε0, and those corresponding to the
two-dimensional irreducible representation, E, φ±n with
px ± ipy character, at energy εEn . Note that all these

states are eigenstates of the Hamiltonian, H = p2

2m
+ V ,

at the center of the surface band Q. It is remarkable that,
similar to the isotropic first-order Rashba parameter, the
strength of the isotropic contribution, α1

3, depends on
the partial derivative of the crystal potential normal to
the surface, ∂zV , while the coefficient for the anisotropic
term, α2

3, is related to the in-plane gradient of the poten-
tial, ∂xV .
In Fig. 3 we plotted the scalar-relativistic, orbital pro-

jected partial densities of states (Bloch spectral func-
tions) at the Γ point in an appropriate energy window
around the surface states of Au(111) and Bi/Ag(111).
From the upper panel it can be seen that in case of
Au(111) the edge of the bulk subband of E symmetry
closest to the surface state is by ∆ε = 1.77 eV below ε0.
The situation is entirely different for Bi/Ag(111), since
the Bi pxpy states of E symmetry are separated from the
spz state by only ∆ε = 0.27 eV. Since these are the char-
acteristic energy differences that enter the denominators
in Eqs. (21) and (22), a difference of at least two orders in
magnitude can indeed be estimated concerning the third-
order RB effect. Most probably, the actual values of the
matrixelements of px and ∂x,zV even further strengthen
this difference.

V. CONCLUSIONS

Based on k ·p perturbation theory including spin-orbit
interaction we gave a suitable definition to an effective
Hamiltonian, Eqs. (13) and (14), describing the Rashba-
Bychkov splitting on metallic surfaces. Due to time rever-
sal and point-group symmetry we showed how to obtain
the most general forms for the effective Hamiltonian, and
derived them up to third order in k for point groups com-
patible with surfaces of real crystals. Since the effective
Hamiltonan (13) applies to a couple of non-interacting
two-band models, the expressions listed in Table I can
be used in quite a general sense.
Using the relativistic Screened Korringa-Kohn-

Rostoker method, we demonstrated that the Rashba
splitting of the Bi spz surface band of the ordered surface

-4 -3 -2 -1 0 1 2
0

100

200

300

400

500

600

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

 = 1.77 eV

 s
 p

z

 d
x2-y2,dxy

 d
xz
,d

yz

 d
z2

D
O

S
 (s

ta
te
s/
eV

) 

 = 0.27 eV

 s
 p

z

 p
x
 , p

y

D
O

S
 (s

ta
te
s/
eV

) 

- F  (eV)

FIG. 3. Calculated orbital projected partial densities of states
at the Γ point around the surface states of Au(111) (upper
panel) and Bi/Ag(111) (lower panel).

alloy Bi/Ag(111) can not be satisfactorily described
in terms of a first-order isotropic Rashba Hamiltonian.
Moreover, we showed that the strong third-order contri-
bution is subject to an anisotropy consistent with the
dispersion relation deduced from our symmetry analysis.
We also derived explicit formulas for the third-order

anisotropy parameters and established that the isotropic
and anisotropic contributions are related to the normal-
to-plane and the in-plane gradients of the crystal po-
tential, respectively. Comparing the energy separation
of relevant orbital projected bands for Au(111) and
Bi/Ag(111), the derived expressions were useful to give
a qualitative understanding of the different nature of
Rashba-Bychkov splitting in these two systems.

ACKNOWLEDGMENTS

The authors appreciate stimulating discussions with
Gergely Zarand. Financial support was provided
by the Hungarian Research Foundation (contract no.
OTKA K77771, K84078 and PD83353) and by the
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Appendix: Rashba Hamiltonians for point group C2v

By using the direct products of irreducible represen-
tations, in this Appendix we give an example for the
polynomial forms of a 2× 2 effective Hamiltonian for the
point-group C2v. Let us denote the elements of the group
by E : {x, y, z}, C2 : {−x,−y,−z}, Sx : {−x, y, z} and
Sy : {x,−y, z}. The group has four one-dimensional ir-
reducible representations: A1, A2, B1, B2 with the char-
acter table,33

E C2 Sx Sy

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1

.

Making use that the k and σ transform as polar and
axial vectors, respectively, a comparison with the char-
acter table lets us to sort out the components of this vec-
tors according to irreducible representations: B1 : kx, σy,
B2 : ky , σx and A2 : σz .

From the table of direct products,

A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A1 B2 B1

B1 A1 A2

B2 A1

,

it is easy to find that the only combinations that are first
order in kx and ky and correspond to the A1 irreducible
representations are kxσy and kyσx, therefore, the first-
order Rashba Hamiltonian can be written in the form of
Eq. (2).
The second-order polynomials of kx and ky can be

sorted according to irreducible representations as follows:
A1 : k2x, k

2
y and A2 : kxky. It should be noted that this

implies the form of ~
2

2m∗

x

k2x+
~
2

2m∗

y

k2y for the effective mass

term. The third-order polynomials of kx and ky can then
be classified as B1 : k3x, kxk

2
y and B2 : k3y, kyk

2
x. Tak-

ing direct products with σi of A1 symmetry leads to the
possible third-order contributions to the Rashba Hamil-
tonian: k3xσy , k

2
xkyσx, kxk

2
yσy and k3yσx, i.e.

H3
R(k) = α1

3 k
3
xσy + α2

3 k
2
xkyσx + α3

3 kxk
2
yσy + α4

3 k
3
yσx.
(A.1)
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D. Pacilé, P. Bruno, Kl. Kern, and M. Grioni, Phys. Rev.
Lett. 98, 186807 (2007).
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