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Abstract 

Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora 
is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Cas-
tanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It 
was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although 
its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia 
and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, 
those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are par-
tially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, 
dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, 
Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, 
Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, 
which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic 
diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in 
unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre 
of diversity.
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Introduction
Exotic plant pathogens have repeatedly invaded forests 
and agricultural ecosystems worldwide. Increased human 
activity, including both increases in travel and plant 
trade, have been implicated in their accelerated global 
spread (Brasier 2008; Fisher et  al. 2012; Santini et  al. 
2013; Wingfield et al. 2015). Prominent examples result-
ing in the deaths of tens of millions of trees include the 
spread of chestnut blight in the US; Dutch elm disease 
across Central Asia, Europe and North America; Phy-
tophthora cinnamomi worldwide; the sudden oak death 
and sudden larch death pathogen in the US and Europe; 
and ash dieback in Europe (Brasier and Webber 2010; 
Grünwald et  al. 2012; Landolt et  al. 2016; Rigling and 
Prospero 2018; Shakya et  al. 2021; Brasier et  al. 2021). 
These invasions often eliminate foundation species sub-
stantially changing the plant community structure and 
function of ecosystems, which in turn can obliterate a 
forest’s ability to mitigate climate change (Seidl et  al. 
2018). Thus, understanding the evolutionary history, 
sources of potential migrants, and geographic origin of 
invasive pathogens will inform forest management and 
control strategies.

Phytophthora × cambivora (Petri) Buisman, originally 
named Blepharospora cambivora by Petri (1917), later 
transferred into Phytophthora by Buisman (1927), and 
classified as a hybrid by Jung et al. (2017a, b) is an inva-
sive pathogen of broad concern. It is the principal causal 
agent of ink disease of sweet chestnut (Castanea sativa 
Mill.), together with P. cinnamomi Rands. The pathogen 
primarily infects the root system causing bark necroses 
which can spread to the collar and lower trunk result-
ing in extensive cortical lesions with black phloem exu-
dates which also often stain the surrounding soil, giving 
rise to the common name of the disease (Vettraino 
et  al. 2005; Jung et  al. 2018b). Above-ground symptoms 
include wilting, chlorosis and microphylly (Vettraino 
et  al. 2005; Jung et  al. 2018b). Whilst most damaging 
and well known from sweet chestnut, P. × cambivora 
causes root and collar rots, aerial stem cankers, crown 
rots and severe mortality of a wide range of hosts, par-
ticularly members of the Fagaceae and many fruit trees in 
the Rosaceae and other horticultural species (Erwin and 
Ribeiro 1996; Jung et  al. 1996, 2000, 2013, 2016, 2018b; 
Jung 2009). It has been found on over 40 host species 
across Europe, North America, Australia, parts of South 
America, Asia, as well as in numerous African countries 
(Erwin and Ribeiro 1996; CABI 2017). Severe damage 
to sweet chestnut was caused by P. × cambivora in the 
nineteenth and early twentieth centuries and since the 
1990s a dramatic resurgence of ink disease has occurred, 
mainly in southern Europe, in some cases limiting the 
establishment of new groves of sweet chestnut (Vannini 

and Vettraino 2001; Vettraino et  al. 2001, 2005; Fleisch 
2002; Robin et  al. 2006; Jung et  al. 2018b). The involve-
ment of P. × cambivora, particularly since c. 2000, in the 
widespread declines of beech (Fagus sylvatica) and oak 
(Quercus spp.) stands in central and northern Europe, 
the unexpected detection of the pathogen causing aerial 
cankers and xylem and shoot infections on beech (Brown 
and Brasier 2007; Černý et  al. 2006; Corcobado et  al. 
2020; Jankowiak et al. 2013; Jung 2009; Jung et al. 2000, 
2005, 2006, 2018a, b; Nechwatal et al. 2011; Telfer et al. 
2015), reports on chinquapin (Chrysolepis chrysophylla) 
in North America (Saavedra et  al. 2007), and persistent 
root and crown rot problems on fruit trees (Prunus spp. 
and Malus spp.) (Wilcox and Mircetich 1985; Erwin and 
Ribeiro 1996), illustrate the longstanding and serious 
economic and ecological impacts of the taxon.

Phytophthora × cambivora was probably among the 
first damaging invasive Phytophthora species to be intro-
duced to Europe and North America, assumed to have 
arrived in Europe in the eighteenth century, yet almost 
nothing is known about its origin and mode of arrival 
(Crandall 1950; Peace 1962). In a rare population study 
of the species Oudemans and Coffey (1991) found all 
isolates from Europe to have a single multilocus isozyme 
genotype, whilst those from Australia were more vari-
able, possibly suggesting an Australasian origin of the 
pathogen. Importations of plant pathogens are often 
limited in number of individuals and genetic variability 
when compared to populations in their centre of origin 
as a result of genetic bottlenecks (Goodwin 1997) and the 
rapid emergence of asexual clones of higher fitness in the 
new environment (Brasier 1995). For heterothallic spe-
cies only one mating type may be introduced or survive, 
prohibiting sexual recombination and resulting in asexu-
ally reproducing clonal lineages (Goodwin 1997). Alter-
natively, certain clones may dominate due to particularly 
high fitness, even in the context of frequent sexual repro-
duction after introduction, giving the impression of a 
stronger introductory genetic bottleneck than may have 
truly occurred (Brasier and Kirk 2000). In contrast, native 
populations in their centre of origin often contain both 
mating types, reproduce sexually, and have high levels 
of genetic diversity. Some of the world’s most damag-
ing Phytophthora pathogens such as P. infestans, P. cin-
namomi, and P. ramorum exhibit this pattern (Goss et al. 
2014; Jung et al. 2021; Shakya et al. 2021). For example, 
the potato late blight pathogen P. infestans, cause of the 
Irish potato famine, occurs as a diverse sexually recom-
bining population in one of its hypothesized centres of 
origin in Mexico while clonal lineages cause devastating 
disease epidemics in Europe and North America (Cooke 
et al. 2012; Goss et al. 2014). However, other species do 
not strictly comply with this pattern, having populations 
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with both mating types and high levels of genetic diver-
sity, presumably from sexual reproduction, even in 
regions where they have been introduced, for example 
P. capsicii in the USA and South Africa (Lamour et  al. 
2012). Although the existence of the two mating types in 
Phytophthora has been known for 100 years, their exact 
functioning and molecular basis was unclear (Ashby 
1922; Haasis and Nelson 1963). Sexual reproduction 
in the genus is under hormonal control and each mat-
ing type responds to the hormones, acyclic oxygenated 
diterpenes termed α1 and α2, produced by the opposite 
mating type to produce oospores (Tomura et  al. 2017). 
Nonetheless, in several heterothallic Phytophthora spe-
cies pure single isolate cultures have been found to self 
and produce oospores in response to a range of stimuli 
such as fungicides, long-term culture, compounds pro-
duced by root exudates, bacteria, and fungi (Mukerjee 
and Roy 1962; Brasier 1971, 1972; Ko 1981; Groves and 
Ristaino 2000; Jayasekera et  al. 2007), including A2s of 
P. × cambivora (Brasier 1975). In addition, a change in 
mating type has been recorded in some heterothallic spe-
cies, usually from A2 to A1 (Ko 1981; Ann and Ko 1989; 
Chandelier et  al. 2014), and several self-fertile P. × cam-
bivora isolates have changed to A2 after longterm storage 
(T. Jung, unpublished results). Recently, the first oomy-
cete mating type locus was identified, with one mating 
type homozygous and the other heterozygous (Dussert 
et  al. 2020). This is consistent with the Sansome (1980) 
model that one Phytophthora mating type (A2) is het-
erozygous and the other (A1) is homozygous; and that 
somatic segregation of the homozygote from the het-
erozygote type is restricted by chromosomal recipro-
cal translocation. Sansome (1980) also showed that the 
translocation was present in P. × cambivora. These find-
ings help further explain the potential to change from the 
A2 to the A1 mating type, and indicate that even if a sin-
gle mating type of an exotic heterothallic Phytophthora 
species is introduced to a region, sexual reproduction 
may still occur, either via stimuli that promote selfing or 
transformation to the other mating type. All considered, 
limited information is available on the behaviour, popu-
lation structure and origin of the heterothallic P. × cam-
bivora across its distribution range.

Interspecific hybridization is well known as an 
important evolutionary driving force in plants, animals 
and, increasingly, in fungal pathogens (Brasier 2001) 
and the genus Phytophthora, where six of the 12 clades 
are known to include hybrid taxa (Chen et  al. 2022; 
Soltis et  al. 2010; Soltis and Soltis 2000; Van Poucke 
et  al. 2021). Hybridization can be homoploid, where 
the ploidy of the hybrid remains the same as that of 
the parents, or polyploid, where the entire genomes of 

each parent are retained and genome doubling occurs 
in the hybrid (Soltis and Soltis 2009). When polyploid 
hybridization is between different species it is known 
as alloploidy, whereas when it occurs between popula-
tions of the same species it is known as autopolyploidy 
(Soltis and Soltis 2000, 2009). Each of these hybridiza-
tion processes have different genetic consequences for 
the resulting hybrids (Soltis and Soltis 2000, 2009). 
Hybridization is thus often accompanied by polyploidi-
zation, and although still poorly understood, these 
processes can infer a fitness advantage and increase 
adaptability, essential traits influencing the invasiveness 
of a species (Ellstrand and Schierenbeck 2000; Schier-
enbeck and Ellstrand 2008; Soltis et al. 2010). Polyploid 
hybrids can be better suited to specific environments 
and can exhibit an extended host range and enhanced 
vigour compared to their parents (Brasier et  al. 1999; 
Bertier et al. 2013; Burgess 2015; Jung et al. 2017a, b). 
Alder decline, caused by P. × alni, is a recent example 
of a polyploid hybrid Phytophthora wreaking widescale 
ecological destruction (Husson et  al. 2015). Recently 
Jung et al. (2017b) classified P. × cambivora as an inter-
specific hybrid due to multiple heterozygous positions 
in ITS, β-tubulin, and HSP90 gene sequences as well as 
evidence from cloned β-tubulin, and HSP90 sequences. 
Van Poucke et  al. (2021) also considered the species 
to be an alloploid hybrid based on its large genome 
size determined by flow cytometry, comparison of the 
genome size and the number of GBS loci found, and the 
presence of a large number of triallelic loci. However, 
its ploidy level and origins remain unclear.

Overall information on the origins, behaviour, pop-
ulation structure and ploidy levels of P. × cambivora 
worldwide remains limited. Although potentially native 
to East Asia, isolates of P. × cambivora from the region 
have been scarce, a situation improved by our 2017 sur-
vey of Phytophthora diversity in natural ecosystems of 
Japan during which numerous isolates were obtained 
with both morphological and ITS sequence resem-
blance to P. × cambivora. Based on this survey, we 
studied the global population structure of the patho-
gen including isolates from Europe, North and South 
America, Australia, and East Asia. We used genotyp-
ing-by-sequencing (GBS) to obtain genome-wide single 
nucleotide polymorphisms (SNPs) to characterize the 
global population structure of P. × cambivora and its 
reproductive mode across continents and infer a poten-
tial centre of origin. Recent and ancient hybridization 
events, variation in ploidy and the traces these events 
have left in the genome are discussed. This work pro-
vides novel insights into the emergence of pathogens 
through hybridization and migration.
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Materials and methods
Isolate selection and DNA extraction
Phytophthora × cambivora sensu lato isolates were 
selected from across the pathogen’s reported range, cov-
ering North and South America, Australia, Asia, and 
Europe (Additional file 1: Table S1). Isolate selection was 
particularly focused on Europe, where the pathogen is 
widespread and problematic, and Japan, where a 2017 
Phytophthora survey revealed a large number of isolates 
with ITS sequence similarities above 99% and morpho-
logical resemblance to P. × cambivora. Although sam-
pling from certain continents was limited (e.g. only USA 
in North America, Chile in South America, predomi-
nantly Japan in East Asia) the isolates were taken to be 
representative of the region. Nine P. × alni isolates were 
included as an outgroup.

Mycelium for DNA extraction was obtained by growing 
isolates in 17 ml 5% clarified V8 juice broth for one week 
at 20  °C in a shake culture. Mycelium was then rinsed 
thoroughly with sterile distilled water and vacuum-dried 
on a Whatman No 1 filter (Maidstone, UK). DNA was 
extracted using the Nucleospin Plant II kit (Macherey–
Nagel, Düren, Germany) with extraction buffer PL1, 
according to the manufacturer’s protocol, and eluted into 
50 μl.

Genotyping‑by‑sequencing, read processing, SNP calling, 
and data filtering
GBS libraries were prepared following the approach of 
Elshire et al. (2011) and Poland et al. (2012), specifically 
using the detailed method described in Van Poucke et al. 
(2021). Briefly, this consisted of digestion of genomic 
DNA with PstI and HpaII, annealing of adaptors and 
barcodes, and fragment amplification. Sixty-four to 80 
isolates, each with a unique barcode, were pooled and 
paired-end sequenced (2 × 150  bp) using an Illumina 
HiSeq4000 (San Diego, CA, USA).

The sequences were pre-processed using the custom 
made pipeline of Van Poucke et  al. (2021), available at 
https://​gitlab.​com/​ahaeg​eman/​GBS_​Phyto​phtho​ra and 
at Zenodo with https://​doi.​org/​10.​5281/​zenodo.​33632​
87. This pipeline consisted of (1) demultiplexing of reads 
using GBSX v1.1.5 (Herten et al. 2015), (2) trimming of 
adapters using cutadapt v1.16 (Martin 2011) and FastX 
toolkit v0.0.14, (3) merging of forward and reverse reads 
with PEAR v0.9.8 (Zhang et al. 2014), and (4) quality fil-
tering using FastX toolkit, prinseq-lite (Schmieder and 
Edwards 2011), OBITOOLS v1.2.5 (Boyer et al. 2016) and 
pairfq 0.14. A custom database of prokaryotes, fungi, the 
human genome (build 38), and all available Phytophthora 
genomes was created (Van Poucke et al. 2021) and used 
in a local BLAST search of the GBS loci. Isolates with 
more than 450 GBS tags with significant BLASTn hits 

(E < 1e−4) to non-Phytophthora sequences were con-
sidered potentially contaminated and removed from the 
dataset.

Subsequently a reference-based locus identification 
approach used BWA-MEM 0.7.15 (Li 2013) to map the 
pre-processed GBS reads to the P. × cambivora genome 
(isolate TJ0032, GCA_000443045.1) (Feau et  al. 2016). 
The resulting sam file was converted to bam format, 
sorted, and indexed using samtools 1.9 (Li et  al. 2009). 
As the P. × cambivora genome is large and consists of 
over 70,000 contigs it was divided into 20 blocks of con-
tigs using seqtk-1.0 (https://​github.​com/​lh3/​seqtk). The 
GBS reads matching the contigs in each of the 20 genome 
blocks were extracted from the mapped bam file using 
GATK Reorder and variants called using GATK Hap-
lotypeCaller v4.0.12.0 on each of the blocks (McKenna 
et  al. 2010). The 20 individual gvcf files for each isolate 
were then combined into a single file using GATK Com-
bineGVCFs. VCFR 1.10.0 (Knaus and Grünwald 2017) 
was used to remove loci with a read depth of < 5 and > 70 
and loci with > 80% missing data, after which all individ-
ual isolate vcf files were combined using vcftools-0.1.15 
(Danecek et al. 2011). Indels and non-polymorphic sites 
were removed and only bi-allelic SNPs retained using 
VCFR.

Analysis of genetic structure
Alleles in linkage disequilibrium can adversely affect 
many population clustering approaches and at best are 
redundant (Abdellaoui et al. 2013; Malomane et al. 2018; 
Calus and Vandenplas 2018; Privé et al. 2020). Therefore, 
for population structure analyses, linkage disequilibrium 
(LD) based SNP pruning and minor allele frequency 
(MAF) filtering were conducted in plink 1.9 (Chang et al. 
2015; www.​cog-​genom​ics.​org/​plink/1.​9/) using a 50 SNP 
window size, a 5 SNP step size, and a variance inflation 
factor [(1/(1 − r2)] of 1.5 (setting –indep 50 5 1.5) and 
a MAF of 5%. Additionally, only SNPs with < 5% miss-
ing data were retained. Four complementary population 
analysis methods were implemented: (1) STRU​CTU​RE, 
(2) principal components analysis (PCA), (3) discrimi-
nant analysis of principal components (DAPC), and (4) 
maximum likelihood (ML) trees.

STRU​CTU​RE 2.3.4 (Falush et al. 2003) implements a 
Bayesian, model-based clustering algorithm to assign 
individuals to a specified number of clusters (K), maxi-
mizing Hardy–Weinberg equilibrium and minimizing 
linkage disequilibrium within the clusters (Pritchard 
et  al. 2000). To estimate the optimal number of clus-
ters, 10 independent runs of K = 1–15 were carried 
out in STRU​CTU​RE using no priors (i.e. no informa-
tion on geographical location or host was provided). 
The Python utility StrAuto was used to parallelize the 

https://gitlab.com/ahaegeman/GBS_Phytophthora
https://doi.org/10.5281/zenodo.3363287
https://doi.org/10.5281/zenodo.3363287
https://github.com/lh3/seqtk
http://www.cog-genomics.org/plink/1.9/
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analysis (Chhatre and Emerson 2017). Each run had a 
burn-in of 100,000 iterations followed by 500,000 data-
collecting iterations, used a model of correlated allele 
frequencies and with admixture among populations 
allowed. The optimal value of K was assessed using 
the ΔK method of (Evanno et  al. 2005) in CLUMPAK 
(Kopelman et  al. 2015), which was also used to align 
all optimum K STRU​CTU​RE runs to the permutation 
with the highest H-value. The DISTRUCT version 1.1 
program (Rosenberg 2004) was used to visualize the 
CLUMPP output.

To complement the Bayesian approach implemented 
in STRU​CTU​RE, PCA, a method that makes no genetic 
assumptions (e.g. population model or data structure), 
was conducted in the R package adegenet 2.1.3 (Jom-
bart and Ahmed 2011). To extend the PCA, a DAPC 
was also conducted in adegenet 2.1.3 (Jombart et  al. 
2010; Jombart and Ahmed 2011). The method is par-
ticularly suited to identifying clusters (K) of genetically 
related individuals as it minimizes variation within 
groups and maximizes variation between groups (Jom-
bart et  al. 2010). A sequential K-means procedure fol-
lowed by an assessment of the Bayesian information 
criterion (BIC) to assess the optimal number of clus-
ters precedes the DAPC analysis itself. Cross-validation 
was used to determine the optimal number of principal 
components retained in the analysis (Jombart and Col-
lins 2015).

Phylogenetic trees are known to be inadequate at plac-
ing reticulate taxa, i.e. those derived from hybridization, 
introgression, or lateral gene transfer between two inde-
pendent lineages (Dowling and Secor 1997; Gauthier 
and Lapointe 2007). Nevertheless, in some cases reticu-
late phylogenies can be partially revealed by traditional 
phylogenetic inference methods which can offer insights 
into the clustering of hybrid individuals if interpreted 
with caution (Posada and Crandall 2002). To this end 
RAxML v8.2.12 (Stamatakis 2014) was used to produce a 
maximum likelihood (ML) phylogenetic tree with the full 
dataset (i.e. prior to LD pruning and MAF filtering), with 
P. × alni used as an outgroup. All invariant SNPs were 
removed from the dataset using ascbias (https://​github.​
com/​btmar​tin721/​raxml_​ascbi​as). The GTR​CAT​ model 
without rate heterogeneity with a correction for ascer-
tainment bias (ASC_GTR​CAT​), together with the Lewis 
correction for ascertainment bias (asc-corr = lewis) were 
used and 1000 bootstrap replicates were performed. 
Figtree 1.4.4 was used to visualize the output (Rambaut 
2018). For comparison a dendrogram was constructed 
using the Unweighted Pair Group Method with Arithme-
tic Mean (UPGMA), bitwise distance, and 100 bootstraps 
using poppr 2.9.3 (Kamvar et al. 2014) and ape 5.4-1 (Par-
adis and Schliep 2019).

Mating type and inferring the mode of reproduction
Isolates were paired with known tester strains of 
P. × cambivora TJ0029 (A2 mating type) and TJ0030 (A1) 
to determine their mating type. Plugs (5 mm diam.) were 
cut from actively growing V8-juice agar (V8A) cultures 
and placed on opposite sides of 45 mm Petri dishes con-
taining clarified V8A and incubated at 20 °C in the dark. 
Oogonia formation was assessed after four weeks under 
a light microscope at ×80 magnification (Jung et al. 2011, 
2017b).

The predominant mode of reproduction was inferred 
using the Index of Association (IA), a measure of linkage 
disequilibrium (Brown et al. 1980; Milgroom 1996). The 
IA was first calculated on 1000 simulated datasets with 0, 
50, or 100% linkage representing sexual, semiclonal, and 
clonal populations. The simulated dataset contained 6767 
loci (analogous to the P. × cambivora-related dataset) 
and was constructed using adegenet 2.1.3 (Jombart and 
Ahmed 2011); the IA was calculated in poppr 2.9.3 (Kam-
var et al. 2014) on one third of the loci (i.e. 2256 loci). As 
a single SNP is unlikely to produce a new multilocus gen-
otype, particularly as genotyping error and missing data 
are common in high throughput sequencing data, indi-
vidual genotypes were collapsed into multilocus lineages 
using the average neighbour algorithm (genetic distance 
cutoff of 0.02900025) (Kamvar et al. 2015) implemented 
in poppr. The IA was calculated on the mulitilocus line-
age dataset for each regional population (Australia, East 
Asia, Europe, and North America) and compared to that 
of the simulated datasets (Tabima et al. 2018). The South 
American population was excluded due to its small sam-
ple size. After testing the data for normality using the 
Shapiro–Wilk’s test a Kruskal–Wallis rank sum test and 
a posthoc rank comparison was conducted in R (R Devel-
opment Core Team 2020).

Hybridization analysis
Phylogenetic networks are more appropriate than phylo-
genetic trees for revealing relationships between reticu-
late taxa when recombination is suspected (Posada and 
Crandall 2001). SplitsTree v4.16.2 (Huson and Bryant 
2006) was used to construct a phylogenetic network 
using the LD pruned and MAF filtered P. × cambivora-
related only dataset implementing the neighbour-net and 
equal angle algorithms using uncorrected p-distances 
with heterozygous ambiguities averaged and normalized.

Nodes in implicit networks, such as those generated 
by Splitstree, do not represent ancestral taxa, whereas 
those in explicit networks do (Solís-Lemus and Ané 
2016). For explicit network generation under the mul-
tispecies network coalescent (MSNC) Phylonetworks 
(Solís-Lemus and Ané 2016; Solís-Lemus et  al. 2017) 
was used. Two representative isolates were chosen from 

https://github.com/btmartin721/raxml_ascbias
https://github.com/btmartin721/raxml_ascbias
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each group (Additional file  1: Table  S1), together with 
P. × alni as an outgroup, and concordance factors (CF) 
generated from the LD pruned and MAF filtered SNP 
dataset using the novel approach of Olave and Meyer 
(2020). A species tree was reconstructed under the 
multispecies coalescent (MSC) using the SVDquartets 
program (Chifman and Kubatko 2014) implemented in 
PAUP* version 4a168 (Swofford 2021). This species tree 
was used as the starting point for SNaQ (Solís-Lemus 
and Ané 2016), implemented in Phylonetworks, which 
was used to estimate the best network with a range of 
possible hybrid nodes allowed (from 0 to 6). Ten inde-
pendent SNaQ searches were performed for each num-
ber of hybrid nodes tested, retaining those with the 
highest pseudolikelihood value.

To complement the estimates of ancestry coeffi-
cients provided by the population clustering methods 
and the results of the phylogenetic networks, a formal 
test of hybridization based on site pattern frequencies 
was implemented in HyDe (Blischak et  al. 2018). HyDe 
considers a rooted, four-taxon network including an 
outgroup, in this case P. × alni, and a triplet of ingroup 
populations to detect hybridization based on phylo-
genetic invariants arising under the coalescent model 
(Blischak et  al. 2018). An advantage over Patterson’s 
D-statistic (Patterson et  al. 2012), popularly known as 
the ABBA-BABA test, is that it intrinsically accommo-
dates multiple individuals per population while at the 
same time estimating the inheritance parameter, γ, that 
quantifies the genomic contributions of the parents to 
the hybrid (Kong and Kubatko 2020). All possible triplet 
combinations (i.e. using all 12 population groups) were 
tested and hypotheses considered significant at α < 0.05 
after a Bonferonni correction with γ between 0 and 1 and 
Z-scores > 3.

Ploidy investigation
Ploidy was inferred from GBS data using a number of 
methods. Gbs2ploidy 1.0 (Gompert and Mock 2017) was 
used to infer ploidy based on allelic ratios of heterozygous 
SNPs and to group isolates by ploidy level. The ratios of 
allele depths at heterozygous positions were also plotted 
to infer ploidy using vcfR 1.12.0 (Knaus and Grünwald 
2017, 2018). The full dataset (i.e. prior to LD pruning 
and MAF filtering) was used with indels removed but 
with non-bi-allelic alleles retained. Diploids are expected 
to have alleles in a ratio of 1:2, triploids in a ratio of 1:3 
(or 2:3) and tetraploids in a ratio of 1:4. The plots were 
organized by population group. Chromosome specific 
ploidy levels were not investigated due to the unassem-
bled nature of the P. × cambivora reference genome and 
very high number of scaffolds (Feau et al. 2016).

Results
Genotyping‑by‑sequencing
A total of 296 P. × cambivora-related isolates from 26 
countries were included in the study. An additional 
nine isolates of P. × alni were used as an outgroup. After 
removing loci with > 80% missing data and indels, and 
retaining only biallelic polymorphic SNPs, 408,666 SNPs 
remained in the P. × cambivora-related and P. × alni data-
set, with 381,021 in the P. × cambivora-related dataset. 
After LD pruning, MAF filtering and removing loci with 
over 5% missing data 6,767 SNPs were retained in the 
final P. × cambivora-related dataset.

Populations are strongly structured by continent
Global populations of P. × cambivora were highly struc-
tured by geographic region (Fig.  1). Most population 
groups were confined to a single continent, yet three pop-
ulation groups (DAPC1, 4mixed, and 9) were interconti-
nental and together made up the majority of isolates from 
Europe, North America and Australia (Fig. 2). The STRU​
CTU​RE analysis revealed clear, multilevel clustering with 
support for hybrid clusters, probably intraspecific hybrid 
clusters (Fig.  1). Preliminary assessment of delta K sug-
gested only two clusters (Additional file 2: Fig. S1) which 
split a main group of P. × cambivora isolates from non-
Asian regions (Europe, North and South America, and 
Australia), including the neo-type of the species, from a 
group of Asian and non-Asian isolates. However, based 
on the geography and prior knowledge of hybridization 
higher values of K were investigated (Additional file  3: 
Fig. S2, Fig.  1). The most informative number of clus-
ters was five with distinct clusters apparent; increasing 
the number of clusters beyond this led to artificial split-
ting of single individuals into two clusters. Some isolates 
were admixed at all values of K and a number of admixed 
isolates formed fixed groups (e.g. DAPC5, DAPC11) and 
had stable admixture ratios.

The PCA (Additional files 4 and 5: Figs. S3 and S4), 
K-means clustering and assessment of the BIC from the 
DAPC analysis (Additional file  6: Fig. S5), and ML tree 
(Additional file  7: Fig. S6), revealed clear groups of iso-
lates corresponding to those of the STRU​CTU​RE results 
(Fig. 1), yet the DAPC groups split one of the STRU​CTU​
RE clusters into subgroups (DAPC groups 2, 3, 4, 6, 10). 
As all clustering methods produced similar groupings, 
the DAPC group names, which provided the highest level 
of substructuring, were retained for ease of reference. 
The sole exception to this was DAPC4 which in the STRU​
CTU​RE analysis showed consisted of some ‘pure’ isolates 
with a high membership probability to the group and 
some highly admixed isolates with a much lower mem-
bership probability to the group, with a clear gap in mem-
bership probabilities between these subgroups (i.e. no 
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isolates with a membership probability > 0.66 and < 0.76). 
Therefore, the DAPC4 group was split into the more 
‘pure’ DAPC4 (i.e. membership probability to STRU​CTU​
RE cluster 1 ≥ 0.76) and DAPC4mixed (i.e. membership 
probability to structure cluster 1 ≤ 0.66) solely for ease of 
visualization of the groups and results (Fig. 1).

Sexual populations are found in Asia, whereas North 
American, Australian, and European populations are 
predominantly clonal
All isolates were self-sterile and produced oogonia 
with one of the two tester strains (A1 mating type iso-
late TJ0030 from DAPC1 and A2 isolate TJ0029 from 
DAPC9). Many groups consisted of a single mating type 
(Additional file  1: Table  S1). DAPC1, DAPC7, DAPC8, 
and DAPC11 consisted entirely of A1 isolates (except 
for a single isolate in DAPC11 forming oogonia in pair-
ings with both mating types). In contrast, DAPC5 and 
DAPC9 consisted entirely of A2 isolates. Groups DAPC2, 
DAPC3, DAPC4 (both subgroups), DAPC6, and DAPC10 
contained both A1 and A2 isolates; these groups are 
closely related (see Fig. 1, Additional file 7: Fig. S6) and 
have a significant contribution from STRU​CTU​RE clus-
ter 1 (orange in Fig. 1).

The regional tests for linkage disequilibrium 
showed that the European and Australian populations 

reproduced clonally (Fig.  3). The North American pop-
ulation was highly clonal, yet indicated limited sexual 
reproduction occurs, as the IA was lower than that of 
the simulated data for a purely clonal population and 
strongly deviated from the European and Australian pop-
ulations. In contrast the IA of the East Asian population 
was between a semiclonal and purely sexual population, 
i.e. it reproduced partially sexually.

Recent and ancestral sexual hybridization are evident
The Splitstree network analysis (Fig.  4) revealed similar 
patterns to those of the population clustering analyses 
while highlighting gene exchange and the intraspecific 
hybrid nature of some groups (e.g. DAPC5) and isolates 
(represented by boxes in the network).

The SNaQ results indicated a bifuricating tree was 
a poor fit to the data. The pseudolikelihood increased 
sharply from h = 0 to h = 1, while increasing the number 
of hybridization events above two resulted in small (from 
2 to 3 hybridization events) or negligible (> 3 hybridiza-
tion events) increases in pseudolikelihood values (Addi-
tional file  8: Fig. S7). This suggests that the best-fitting 
phylogenetic model involved one hybridization event. 
The hybrid group is DAPC5 with contributions from 
DAPC1 and DAPC9 (Fig. 5). The contribution of DAPC9 
to the hybrid DAPC5, γ = 0.437, in the Phylonetworks 

Fig. 1  Bayesian clustering of P. × cambivora-related isolates using STRU​CTU​RE at K = 5. Each isolate is represented by a vertical line partitioned 
into coloured sections that represent the isolate’s estimated membership fractions in each cluster. Black lines separate isolates from different 
DAPC groups (see main text for details). The horizontal colour bar below the DAPC group name represents the colour used for that group in maps 
and supplementary figures. The mating type (A1 or A2) and ploidy level (diploid = 2n or higher) of each group is given below the plot and the 
geographic distribution of the group is given above the plot
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result is similar to the contribution of DAPC9 to DAPC5 
in the STRU​CTU​RE results (i.e. mean membership coef-
ficient of 0.385).

The HyDe results are striking in the number of signifi-
cant hybrid groups found (Additional file  9: Table  S2). 
The clearest, most supported hybrid (the highest Z-score 
of 39.885) is DAPC5 with parental groups DAPC1 and 9 
with a γ of 0.4. This γ value is similar to the STRU​CTU​
RE ancestral membership probabilities and the Phylo-
networks γ value. Of note is that DAPC9 (P. × cambivora 
neo-type group) was also very often classed as a hybrid 
population (Z-score 15.119–4.879). Noteworthy is that 
groups DAPC2, 6 and 3 were never classed as hybrid 
groups.

Evidence of variable ploidy levels
Although the inference of ploidy analysis based on 
inferred ratios of minor and major allele frequency 
using read depth data for each isolate was not well 
resolved, there is evidence of variable ploidy. Two ploidy 

levels were apparent from the gbs2ploidy analysis (Fig. 6). 
Groups DAPC2, 3, and 6, together with a few isolates of 
DAPC4 (both subgroups) formed one ploidy group, with 
all other isolates falling into the second ploidy group. The 
plots of allele ratios indicated that the isolates in DAPC 
groups 2, 3 and 6 were diploid, having a clear peak at a 
1:2 allelic ratio (inset Fig. 6). All other groups were poten-
tially polyploid or aneuploid. Most isolates had a broad 
peak with an unclear ploidy level (Additional file 10: Fig. 
S8), although some isolates had peaks close to a 1:3 ratio 
suggesting triploidy (inset Fig. 6).

Discussion
Our work provides novel insights into the global phylo-
geography and evolutionary history of P. × cambivora. 
Populations were highly structured by continent. The 
greatest diversity of groups was found in Japan, where 
both mating types also occurred. A comparison of simu-
lated and observed index of association values suggests 
that reproduction in Japan is partially sexual, albeit with 

Fig. 2  Distribution maps of P. × cambivora isolates and their DAPC groups. a Global overview with pie charts coloured by DAPC group. Size of 
pie chart corresponds to the number of isolates. b European sampling locations with each isolate represented by a dot coloured by its DAPC 
group. c East Asian sampling locations with each isolate represented by a dot coloured by its DAPC group. Multiple isolates from the same site are 
represented as a grid of dots centred on the sampling location
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an important clonal component. Such a pattern would 
be expected in a native oomycete population that repro-
duces both sexually via oospores and asexually via zoo-
spores. Together with the higher diversity of groups, 
it indicates that Japan lies within the centre of origin of 
P. × cambivora. Furthermore, the higher resistance of 
Asian chestnut species (Castanea crenata and C. mollis-
sima) and hybrids between Asian and European chestnut 
to ink disease (Cristinzio and Grassi 1993; Salesses et al. 
1993; Pereira et  al. 1995; Fernández-López et  al. 2001), 
consistent with co-evolution of Asian chestnuts with 
P. × cambivora, also indicates temperate Asia is the origin 
of the pathogen.

In contrast, populations in Europe, Australia, and 
North America were dominated by three clonal lineages 
and reproduced clonally, with apparently no, or only very 
limited, sexual reproduction. A highly diverse, sexually 
reproducing population is often a characteristic of path-
ogen populations at their centre of origin. When intro-
duced elsewhere they often undergo genetic bottlenecks, 
resulting in a small number of clonally reproducing lin-
eages, particularly Phytophthora pathogens (cf. Brasier 
1995; Goodwin 1997), though these patterns may become 
altered by additional introductions and by recombination 
events. The devastating late potato blight pathogen, P. 
infestans, exemplifies this pattern with a diverse, sexual 
population in Mexico, its probable centre of origin, while 

elsewhere clonally reproducing lineages cause consider-
able economic damage (Goss et  al. 2014; Hansen et  al. 
2016; Knaus et  al. 2020). Similar patterns occur in the 
forest dieback pathogens P. cinnamomi and P. ramorum, 
where natural populations at their centre of origin in 
East and Southeast Asia are highly diverse and partially 
sexual, containing both mating types, and the panglobal 
invasive lineages are clonal (Goss et al. 2009; Van Poucke 
et al. 2012; Shakya et al. 2021; Jung et al. 2021).

The North American and Australian populations of 
P. × cambivora were principally composed of a diverse, 
admixed group (DAPC4mixed) also found in Europe 
and East Asia. The occurrence of the group across so 
many continents attests to its success as an invasive 
pathogen. However, isolates of this group were not 
found on chestnut species, but were common on fruit 
trees (Prunus and Malus spp.). Indeed most of the 
reports of P. × cambivora on fruit trees originate from 
the USA and Australia, as well as East Asia, not from 
Europe (Mircetich and Matheron 1976; Suzui and 
Hoshino 1979; Bumbieris and Wicks 1980; Wilcox and 
Mircetich 1985; Oudemans and Coffey 1991; Browne 
et al. 1995; Jee et al. 1997; Wicks et al. 1997). It there-
fore appears plausible that the dieback of fruit trees 
historically attributed to P. × cambivora is not due to 
the P. × cambivora lineages (i.e. DAPC9, DAPC1 and 
DAPC5) traditionally associated with ink disease in 

Fig. 3  Estimation of the degree of linkage disequilibrium by the index of association (IA) in P. × cambivora populations. The first three boxplots 
represent the IA for simulated populations under sexual, semiclonal, and clonal reproduction. All groupings were significantly different based on the 
Kruskal–Wallis rank sum test
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Europe, but to the related group DAPC4mixed (and 
possibly the closely related group DAPC4). Indeed, 
these latter groups could even constitute a separate sis-
ter species of P. × cambivora. A dataset from a larger 
group of P. × cambivora isolates from diseased fruit 
trees would be needed to thoroughly explore whether 
a separate taxon is responsible for the damage, together 
with host range and virulence assessments in compara-
tive inoculation trials. Additionally, simpler identifi-
cation of these groups would be highly desirable, e.g. 
using single or multi-locus barcodes based on Sanger 
sequences and/or morphological attributes.

The majority of isolates causing ink disease on chest-
nut and dieback of fagaceous tree hosts belonged to two 
clonal lineages (DAPC1 and DAPC9), each of an opposite 
mating type, and a clearly distinguishable hybrid group 
(DAPC5) between these two lineages. The two parental 
groups (DAPC1 and DAPC9) are widespread, occurring 
in Europe and Australia (both groups) and in North and 
South America (only DAPC9). They are known to spor-
ulate well and have survived for many years; thus, they 
have proven themselves to be successful and evolutionar-
ily fit entities. The formation of a manifest hybrid group 
between them, with no backcrosses, together with their 

Fig. 4  Splitstree network of the P. × cambivora-related isolates constructed with the equal angle algorithm using uncorrected p-distances. DAPC 
groups are outlined and coloured by their STRU​CTU​RE membership probabilities. In parentheses below the DAPC group label are the mating type 
and ploidy level of the group
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distinctiveness suggests the two parental groups are inde-
pendent lineages separated by substantial evolutionary 
time, although evidently not long enough for barriers to 
sexual reproduction to arise. A similar situation has been 
described for P. ramorum, with each of the twelve known 
lineages comprising a single mating type and separated 
by up to c. 1.6 million years (Goss et al. 2009; Jung et al. 
2021; Van Poucke et  al. 2012). A number of these line-
ages have been independently introduced to Europe and 
North America where they are responsible for two of the 
most devastating recent forest epidemics, sudden larch 
death and sudden oak death, respectively (Brasier and 
Webber 2010; Grünwald et  al. 2012; Van Poucke et  al. 
2012).

Although P. × cambivora reproduces mainly clonally 
in Europe, the occurrence of a hybrid group between 
the two principal clonal lineages on the continent indi-
cates that some sexual outcrossing has occasionally 
occurred. Furthermore, the restriction of the hybrid 
group (DAPC5) to regions where both parental groups 
co-occur, and the fact that all members of the hybrid 
group appear to be first generational hybrids, indicates 
the hybridization event took place in  situ. This situa-
tion suggests that the DAPC5 hybrid group is either 
relatively new, unstable, or has slightly reduced fitness 
when compared to the parental groups. It is unlikely 
for novel hybrids to have the same fitness as their par-
ents, very often they have reduced fitness and perish, 
whilst occasionally they have increased fitness and per-
sist. With plant pathogens in general the host is usually 
the site or niche where fitness differences will be critical 

(Brasier 2001). With Ophiostoma novo-ulmi in North 
America dominant clonal lineages recombine but the 
recombinants are apparently unable to compete in fit-
ness with the clones (Milgroom and Brasier 1997; Brasier 
and Kirk 2000). A prominent example of increased fit-
ness in a hybrid is P. × alni, which is much more aggres-
sive to Alnus and, hence, more widespread and abundant 
than its parent species P. × multiformis and P. uniformis 
(Brasier and Kirk 2001; Husson et  al. 2015; Jung et  al. 
2018b). Increased fitness is a pre-requisite for persistence 
of novel hybrids, otherwise they will be outcompeted by 
their parents unless separated by geography, ecological 
niche, or a genetic barrier. An assessment of the relative 
fitness and virulence of DAPC1, DAPC9, and DAPC5 
on their main tree hosts would allow a more detailed 
appraisal of their threat to forests.

Given that there is prior evidence that P. × cambivora 
is a hybrid (Jung et al. 2017b; Van Poucke et al. 2021) it 
was expected that many isolates in this study would also 
be of hybrid origin. However, the only undisputed hybrid 
group with both parents known was DAPC5; although 
many groups displayed evidence of admixture they were 
not confirmed as hybrids with known parents. Detection 
of hybridization using phylogenetic invariants revealed 
significant results for many of the triplets (non-negli-
gible γ values from 0.3 to 0.6), and such a large number 
of significant triplets often indicates ancestral hybridi-
zation, with the signal of admixture retained in many 
of the groups (Blischak 2021). Ancestral hybridization 
events negatively affect γ estimates and spurious results 
are known to occur if hybrids are included as parents 
(Blischak and Kubatko 2019; Kong and Kubatko 2020). 
Therefore, although it is evident that hybridization, most 
likely in the form of sexual outcrossing, has played a cru-
cial role in the evolutionary history of P. × cambivora, the 
parental taxa were not in this study. They may exist in 
unsampled areas elsewhere in East Asia. Although exten-
sive surveys in Taiwan and Vietnam found no P. × cam-
bivora-related isolates in natural ecosystems (Jung et al. 
2017a, 2020) large areas of temperate China remain to be 
explored for Phytophthora diversity and could harbour 
additional P. × cambivora-related groups.

The high ploidy level of many of the groups is also 
consistent with an ancestral hybrid origin of P. × cam-
bivora, as polyploidy is linked to ancient hybridization 
events (Bertier et al. 2013). Both Jung et al. (2017b) and 
Van Poucke et  al. (2021) found evidence of polyploidy 
in P. × cambivora yet were unable to confirm the ploidy 
level of the species. Although some groups are clearly 
diploid (DAPC2, DAPC3, DAPC6) and never occur as 
hybrid groups in the hybridization analysis, variable 
ploidy is suggested in most of the other groups. Poly-
ploids often exhibit a shift in ecological tolerances and 

Fig. 5  Phylogenetic network of P. × cambivora-related population 
groups estimated with the Species Networks applying Quartets 
(SNaQ) implemented in Phylonetworks with one hybridization event. 
The blue edges denote the identified hybridization event, with 
numbers next to the edges denoting the proportion of loci that were 
transferred from each lineage
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seem to be more frequent in human-disturbed, competi-
tive habitats than their diploid relatives whilst also having 
a greater potential for habitat colonization and expansion 
into novel niches (Baduel et  al. 2018; Ehrendorfer 1980; 
Otto and Whitton 2000; Pandit et  al. 2006; Soltis and 
Soltis 2000). Thus polyploidy can infer a fitness advantage 
and increased adaptability, and, in some environments, 
has been shown to accelerate evolutionary adaptation 
(Ramsey 2011; Selmecki et  al. 2015; Baduel et  al. 2018). 
Aquatic habitats provide conditions for continuous asex-
ual reproduction and spread of oomycetes via zoospores 
and thus decrease the need for long-term survival and 
genetic adaptations to host populations and changing 
environmental conditions via sexually derived oospores 
(Brasier et al. 2003; Jung et al. 2011). Apparently, aquatic 
conditions also facilitate allopolyploid hybridizations and 
confer selective advantages for hybrids, as demonstrated 

by the abundance of allopolyploid hybrids from Phytoph-
thora Clades 6, 7a and 9 in river systems of Chile, South 
Africa, Taiwan, Vietnam and Western Australia (Hüberli 
et al. 2013; Nagel et al. 2013; Oh et al. 2013; Burgess 2015; 
Jung et  al. 2017a, b, 2018a, 2020). In the present study, 
many P. × cambivora-related isolates in Japan, Portugal 
and Chile also were recovered from forest streams.

Nonetheless, whole genome duplication and polyploidy 
can result in developmental disruption, not least in meio-
sis therefore many polyploids are restricted to vegetative 
or other forms of asexual reproduction (Otto and Whit-
ton 2000; Schinkel et al. 2016; Herben et al. 2017; Baduel 
et  al. 2018). This is particularly suitable for a pathogen 
undergoing rapid range expansion, with major disease 
epidemics often associated with prolific asexual repro-
duction (Ashu and Xu 2015; Drenth et al. 2019). This is 
also the case for Phytophthora infestans, with Knaus et al. 

Fig. 6  Principal components analysis of allelic ratios of heterozygous SNPs using gbs2ploidy showing two ploidy levels are present in the set of 
P. × cambivora-related isolates. The vertical dashed line separates diploid isolates (on the right) from non-diploid isolates (on the left). Inset plots 
show the distribution (histogram) of allele balance values for two example P. × cambivora isolates. JP0322 (DAPC2) shows a typical diploid plot; P153 
(DAPC4mixed ≤ 0.66) shows a typical triploid plot. The frequency of the most abundant heterozygous allele is displayed in light blue, the frequency 
of the second most abundant heterozygous allele is displayed in dark blue. Expectations of the allele balance are displayed on the x-axis
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(2020) revealing that typically, major late blight epidem-
ics of potato are caused by triploid, clonally reproduc-
ing lineages, as opposed to diploid sexually reproducing 
populations at the pathogen’s centre of origin. Intraspe-
cific variation in ploidy, as well as copy number variation, 
were also reported in other Phytophthora species (Ber-
tier et al. 2013; Barchenger et al. 2017; Knaus et al. 2020). 
Bertier et  al. (2013) believe this increase in P. infestans 
ploidy level was due to hybridization between divergent 
genotypes of the species. Such a pattern may also fit the 
P. × cambivora populations presented in this study, e.g. 
with groups DAPC1 and DAPC9 becoming globally inva-
sive polyploid clonal lineages, and the increased ploidy 
level in many of the groups due to hybridization between 
genotypes. Yet polyploidy is not without its challenges 
and in time many polyploids undergo diploidization 
(Hollister 2015; Baduel et  al. 2018). However, different 
classes of genes and sequences are retained preferentially, 
with others more likely to be returned to diploid status, 
a feature known as ‘biased fractionation’ (Wendel et  al. 
2018). This phenomenon is known to have occurred in 
some Phytophthora species (Martens and Van de Peer 
2010) and may account for the unclear ploidy levels of 
many of the P. × cambivora isolates. Thus, parts of the 
genome may be diploid and other parts triploid or tetra-
ploid. The fact that P. × cambivora has a functional het-
erothallic breeding system and produces ample viable 
oospores, whereas most true triploids are effectively ster-
ile, suggests the genome is not a full triploid. This is in 
keeping with the ancient hybridization events detected in 
most of the groups. Alternatively, heterokaryosis, having 
multiple genetically distinct nuclei in a cell, could be the 
cause of the ambiguous ploidy levels of many of the iso-
lates. Heterokaryosis has been found in a range of oomy-
cete and, specifically, Phytophthora species (Long and 
Keen 1977; Catal et al. 2010; Bertier et al. 2013; Fletcher 
et  al. 2019) and indeed for some P. × cambivora isolates 
using flow cytometry (Jung et al. 2017b).

Conclusions
This study indicates that the highly diverse, sexually 
recombining population of P. × cambivora in Japan is 
most probably endemic and lies within the centre of 
origin of the pathogen. Populations in Europe, Aus-
tralia, and North America are dominated by a num-
ber of introduced clonal lineages. The finding that the 
majority of isolates causing ink disease of Castanea 
comprise a few clonal lineages may simplify manage-
ment of the disease, as radically different genotypes 
are unlikely to arise, even though the direct parents 
of these groups were not found. Conversely, another 
group causing damage to fruit trees found in East Asia, 
North America, Australia and Europe could constitute 

a separate sister species to P. × cambivora. Further 
research is called for to compare the virulence on key 
hosts of the major P. × cambivora groups found, while 
strengthening biosecurity to prevent further global 
movement of these diverse groups. To partially address 
this issue a soil infestation pathogenicity trial including 
Fagus sylvatica and representative isolates from all 11 
DAPC groups is currently underway. This study draws 
attention to the complex ploidy levels of P. × cambivora 
and the formative role ancient hybridization events 
have played in the history of this species. These traits 
have served the species well, enabling it to become a 
globally successful pathogen, and highlight the contin-
ued biosecurity threat this pathogen poses, particularly 
through recombination and hybridization between long 
separated groups.
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Additional file 1: Table S1. Details of P. × cambivora-related isolates used 
in this study including population group, geographic location, mating 
type, isolate codes used in other culture collections, and STRU​CTU​RE 
membership probabilities for each K = 5 cluster.

Additional file 2: Figure S1. Delta K plot of the STRU​CTU​RE analysis, 
showing K = 2 as the best clustering of isolates.

Additional file 3: Figure S2. Bayesian clustering of P. × cambivora-related 
isolates inferred using the programme STRU​CTU​RE at K = 2, K = 3, K = 4, 
and K = 5. Each isolate is represented by a vertical line partitioned into 
coloured sections that represent the isolate’s estimated membership 
fractions in each cluster. Black lines separate isolates from different DAPC 
groups (see main text for details).

Additional file 4: Figure S3. Principal components analysis of P. × cam-
bivora isolates. Only the first two principal components are shown, which 
explain 26.1% and 12.5% of the variance, respectively. Ellipse colours 
represent DAPC groups; the mating type of each group is given in paren-
theses. The barplot inset shows the percentage of variance explained by 
each principal component.

Additional file 5: Figure S4. Principal components analysis of P. × cam-
bivora-related isolates displayed using the second and fourth principal 
components which more easily differentiates groups DAPC2, DAPC-
4mixed ≤ 0.66, DAPC4 ≥ 0.76, and DAPC6. Ellipse colours represent DAPC 
groups.

Additional file 6: Figure S5. Scatterplot of the discriminant analysis of 
principal components (DAPC) of P. × cambivora-related isolates. Individual 
isolates are represented by dots that are coloured by their DAPC group. At 
the bottom right, the PCA eigenvalues are represented, with the number 
of principal components used in the optimized analysis in black. At the 
top right, the Discriminant Analysis (DA) eigenvalues are displayed.

Additional file 7: Figure S6. Maximum likelihood tree of P. × cambivora-
related isolates inferred using RAxML and 1,000 bootstraps. The tree was 
rooted using P. × alni as an outgroup (not shown). Coloured vertical bars 
represent the DAPC group colour used in other figures.

Additional file 8: Figure S7. Pseudolikelihood profile with increasing 
number of hybridization events (hmax) allowed, obtained with the Spe-
cies Networks applying Quartets (SNaQ) pipeline.

Additional file 9: Table S2. Table of results of the population-level 
hybridization detection analyses conducted in HyDe. Only significant 
results are shown, with their p-value, Z-score and Gamma value.

https://doi.org/10.1186/s43008-023-00109-6
https://doi.org/10.1186/s43008-023-00109-6
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Additional file 10: Figure S8. Distribution (histogram) of allele balance 
values for all Phytophthora × cambivora isolates by DAPC groups. The 
frequency of the most abundant heterozygous allele is displayed in light 
blue, the frequency of the second most abundant heterozygous allele is 
displayed in dark blue. Expectations of the allele balance are displayed on 
the x-axis.
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