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Abstract

We introduce an orbital dependent electron tunneling model and implement it within the atom

superposition approach for simulating scanning tunneling microscopy (STM) and spectroscopy

(STS). Applying our method, we analyze the convergence and the orbital contributions to the

tunneling current and the corrugation of constant current STM images above the W(110) surface.

In accordance with a previous study [Heinze et al., Phys. Rev. B 58, 16432 (1998)], we find atomic

contrast reversal depending on the bias voltage. Additionally, we analyze this effect depending on

the tip-sample distance using different tip models, and find two qualitatively different behaviors

based on the tip orbital composition. As an explanation, we highlight the role of the real space

shape of the orbitals involved in the tunneling. STM images calculated by our model agree well

with Tersoff-Hamann and Bardeen results. The computational efficiency of our model is remarkable

as the k-point samplings of the surface and tip Brillouin zones do not affect the computation time,

in contrast to the Bardeen method.
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I. INTRODUCTION

The experimental use of scanning tunneling microscopy (STM) and spectroscopy (STS)

has recently gained a boost. The explanation of experimentally observed effects is not

straightforward without a proper theoretical support [1, 2]. One direction of recent theoret-

ical research is focused on extracting surface local electronic properties from experimental

STS data [3–7], which is the convolution of tip and sample electronic structures. Another re-

search direction is concerned with the simulation of STM and STS by using different models

mostly based on electronic structure data obtained from first principles.

Much work has been devoted to analyze the electron tunneling properties depending

on the scanning tip. In Ref. [8] a theoretical method has been presented to separate the

tip and sample contributions to STS. Ness and Gautier studied different metal tips and

their interaction with metal surfaces in a tight-binding framework [9–11]. Chen and Sacks

investigated the effect of the tip orbitals on the corrugation of constant current STM images

theoretically [12, 13]. While Chen pointed out that corrugation enhancement is expected for

tip orbitals localized along the surface normal (z) direction (pz and d3z2−r2), Sacks argued

that m 6= 0 tip states (dxz, dyz, dxy, dx2−y2) are responsible for this effect. Another work

of Chen explained the corrugation inversion found on low Miller index metal surfaces by

m 6= 0 tip states [14]. Atomic contrast reversal has also been found above Xe atomic

adsorbates [15] and oxygen overlayers [16] on metal surfaces. It was established that the

character of the contrast depends on the tip-sample distance and on the tip geometry and

electronic structure. The quality of the tip also plays a crucial role in the inelastic tunneling

spectroscopy (IETS). Studying the CO molecule on Cu surfaces it has been found that the

IETS intensity is close to the experiment including the full electronic structure of the tip

[17], and the tip position and orbital symmetry can change the selection rules for the active

vibrational modes in IETS [18].

The role of the electron orbitals has been considered in different electron transport models.

Sirvent et al. developed a tight-binding model based on the Keldysh formalism for calculating

the conductance in atomic point contacts and analyzed the effect of the d orbitals [19]. The

same methodology has been applied to STM junctions by Mingo et al. [15]. Cerdá et al.

presented an STM simulation method based on the Landauer-Büttiker formula [20] and the

surface Green function matching technique [21]. In these methods the decomposition of the
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conductance/current with respect to electron orbitals has been provided.

In the present work we consider a simple model for orbital dependent tunneling within

the atom superposition approach for simulating STM [22] and STS [23]. The main idea of

the paper is the introduction of a geometrical factor to account for a modified transmission

due to electron orbital orientational overlap effects within a three-dimensional (3D) Wentzel-

Kramers-Brillouin (WKB)-based theory. The reliability of this new method is demonstrated

by the analysis of the tip-sample distance and bias voltage dependent corrugation reversal

effect observed on the W(110) surface, where we find excellent agreement with a previous

work [24]. The computational efficiency of our method, which is justified in section III E,

enables us to study this effect in much more detail. We particularly focus on tip effects, and

consider ideal tip models with different orbital symmetries and a more realistic W(110) tip.

We find two qualitatively different corrugation inversion behaviors based on the tip orbital

composition. Our results indicate that anticorrugation on the W(110) surface can not only

be observed at negative bias voltages but also at positive bias at reasonably short tip-sample

distances.

The paper is organized as follows: The theoretical model of the orbital dependent tunnel-

ing within the atom superposition approach is presented in section II. Applying this method

we investigate the convergence and the orbital contributions of the tunneling current as well

as the corrugation reversal of the W(110) surface depending on the applied bias voltage and

the tip-sample distance in section III. We also report a comparison of STM images calculated

by our model to Tersoff-Hamann [25, 26] and Bardeen [27] results in section III E. Summary

of our findings is found in section IV.

II. ORBITAL DEPENDENT TUNNELING MODEL WITHIN 3D WKB THEORY

Recently, Palotás et al. developed a 3D atom superposition approach for simulating spin-

polarized STM (SP-STM) [22] and spin-polarized STS (SP-STS) [23] based on previous

theories [5, 28–31]. In the model it is assumed that electrons tunnel through one tip apex

atom, and contributions from individual transitions between this apex atom and each of the

surface atoms are summed up assuming the one-dimensional (1D) WKB approximation for

electron tunneling processes in all these transitions. The key input is the projected electron

density of states (PDOS) of the tip apex atom and of the sample surface atoms obtained
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from ab initio electronic structure calculations. In the present paper first we review the

tunneling current and the differential conductance expressions based on the independent

orbital approximation for the vacuum decay of electron states, and then we extend this

model to include a simple orbital dependent tunneling transmission. We consider the non-

spin-polarized part of the tunneling only, however, this theory can be applied to SP-STM

and SP-STS in the future.

Assuming elastic tunneling at T = 0 K temperature, the tunneling current at the tip

position RTIP (x, y, z) and at bias voltage V is given by

I(x, y, z, V ) =

∫ V

0

dI

dU
(x, y, z, U, V )dU. (1)

The integrand is the so-called virtual differential conductance,

dI

dU
(x, y, z, U, V ) = ε2

e2

h
(2)

×
∑

a

T (ES
F + eU, V, da(x, y, z))nT (E

T
F + eU − eV )na

S(E
S
F + eU).

Here e is the elementary charge, h is the Planck constant, and ET
F and ES

F are the Fermi

energies of the tip and the sample surface, respectively. ε2e2/h ensures that the dI/dU is

correctly measured in the units of A/V . ε has been chosen to 1 eV but its actual value

has to be determined comparing simulation results to experiments or to calculations using

more sophisticated tunneling models. Note that the exact choice of this scaling factor has

absolutely no qualitative influence on the reported results, and the comparison of current

values to Bardeen results confirms our choice, see section III E. The sum over a corresponds

to the atomic superposition and has to be carried out, in principle, over all surface atoms.

However, convergence tests showed that including a relatively small number of atoms in

the sum provides converged dI/dU values [32]. T (ES
F + eU, V, da(x, y, z)) is the energy

and bias dependent tunneling transmission function, which also depends on the distance

da(x, y, z) = |RTIP (x, y, z)−Ra| between the tip apex and the surface atom labeled by a

with position vector Ra. The tip and sample electronic structures are included into this

model via projected DOS (PDOS) onto the atoms, i.e., nT (E) and na
S(E) denote projected

charge DOS onto the tip apex and the ath surface atom, respectively. They can be obtained

from any suitable electronic structure method.

Taking the derivative of Eq.(1) with respect to the bias voltage the differential conduc-

tance is obtained. It can be written at the tip position RTIP (x, y, z) and at bias voltage V
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as the sum of three terms,

dI

dV
(x, y, z, V ) =

dI

dU
(x, y, z, V, V ) +B(x, y, z, V ) +DT (x, y, z, V ). (3)

Here dI/dU has been defined in Eq.(2), and B and DT are the background and tip-derivative

terms,

B(x, y, z, V ) = ε2
e2

h
(4)

×
∑

a

∫ V

0

∂T

∂V
(ES

F + eU, V, da(x, y, z))nT (E
T
F + eU − eV )na

S(E
S
F + eU)dU,

DT (x, y, z, V ) = −ε2
e2

h
(5)

×
∑

a

∫ V

0

T (ES
F + eU, V, da(x, y, z))

∂nT

∂U
(ET

F + eU − eV )na
S(E

S
F + eU)dU,

respectively [23]. The background term, which contains the bias-derivative of the trans-

mission function, is usually taken into account in recent STS theories [5, 33, 34], while the

tip-derivative term containing the energy derivative of the tip DOS is rarely considered in

the recent literature.

In the spirit of the independent orbital approximation the transmission probability for

electrons tunneling between states of atom a on the surface and the tip apex is of the simple

form,

T (ES
F + eU, V, da) = e−2κ(U,V )da . (6)

This corresponds to a spherical exponential decay of the electron wave functions irrespective

of their orbital symmetry [25, 26, 31]. Assuming the same effective rectangular potential

barrier between the tip apex and each surface atom, the vacuum decay κ can be written as

κ(U, V ) =
1

~

√

2m

(

φS + φT + eV

2
− eU

)

, (7)

where the electron’s mass is m, ~ is the reduced Planck constant, and φS and φT are the

average electron work function of the sample surface and the local electron work function of

the tip apex, respectively. The method of determining the electron work functions from the

calculated local electrostatic potential is reported in Ref. [22].

Next, we extend this tunneling model by taking advantage of the orbital decomposition

of the electronic structure data and the real space shape of the electron orbitals. The
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PDOS of the sample surface atoms and the tip apex can be decomposed according to orbital

symmetry, i.e., real spherical harmonics, β, γ ∈ {s, py, pz, px, dxy, dyz, d3z2−r2 , dxz, dx2−y2}, as

na
S(E) =

∑

β

na
Sβ(E), (8)

nT (E) =
∑

γ

nTγ(E). (9)

Similar decomposition of the Green functions has been employed in the linear combination of

atomic orbitals (LCAO) scheme by Refs. [15, 19]. Assuming such an orbital decomposition,

the virtual differential conductance can be generalized as

dI

dU
(x, y, z, U, V ) = ε2

e2

h
(10)

×
∑

a

∑

β,γ

Tβγ(E
S
F + eU, V, da(x, y, z))nTγ(E

T
F + eU − eV )na

Sβ(E
S
F + eU),

where, additionally to the atomic superposition (sum over a) we sum up each β ↔ γ

transition with an orbital dependent tunneling transmission: Tβγ(E, V, da) gives the electron

tunneling probability at energy E from the tip apex γ orbital to the β orbital of the ath

surface atom at positive bias voltage (V > 0), and from the β orbital of the ath surface

atom to the tip apex γ orbital at negative bias (V < 0). Tβγ can be defined in different ways

based on physical arguments. We consider the following form,

Tβγ(E
S
F + eU, V, da) = e−2κ(U,V )datβγ(ϑa, ϕa) (11)

for each surface atom↔ tip apex 1D electron transition. Here, the energy and bias dependent

part corresponds to the spherical exponential decay considered in Eq.(6), and is independent

of the orbital symmetry. This is multiplied by an orbital dependent expression tβγ , which

depends on the spatial arrangement of the sample atoms relative to the tip apex and all

the orbital shapes involved in the tunneling. The angular dependence on ϑa and ϕa comes

into play in the following way: Let us consider one transition between surface atom a and

the tip apex along the line connecting the two atoms. A particular geometry is shown in

Figure 1. For brevity, we omitted the a notation of the surface atom. For both atoms a

local coordinate system can be set up, and the angular dependence of the atomic orbital

wave functions χ(ϑ, ϕ) are defined in the corresponding coordinate system, as summarized

in Table I. RTIP −Ra defines a vector pointing from the surface atom toward the tip apex,

and it can be represented by the (da, ϑa, ϕa) coordinates in the spherical coordinate system
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centered on the ath surface atom. Taking the opposite connecting vector from the tip apex

toward the surface atom, its coordinates are (da, π− ϑa, π + ϕa) in the spherical coordinate

system centered on the tip apex. According to Figure 1, da, ϑa, and ϕa can be calculated as

da =
√

(x− xa)2 + (y − ya)2 + (z − za)2, (12)

ϑa = arccos

(

z − za
da

)

, (13)

ϕa = arccos

(

x− xa

da sin(ϑa)

)

, (14)

using the global coordinates RTIP = (x, y, z) and Ra = (xa, ya, za). Considering above, tβγ

accounts for the modification of the perfect spherical exponential decay along the connecting

line through the angular dependence of the atomic orbitals as

tβγ(ϑa, ϕa) = [χβ(ϑa, ϕa)]
2 × [χγ(π − ϑa, π + ϕa)]

2 , (15)

where χβ,γ(ϑ, ϕ) are the real spherical harmonics summarized in Table I. They were chosen in

such a way that 0 ≤ tβγ ≤ 1. This factor takes the effect of the directional tunneling between

real space orbitals into account. The physical motivation is the angular dependence of the

electron density of the orbitals in the given tunneling direction, which modifies the tunneling

transmission. The maximum t = 1 is obtained if the angular distributions of the electron

density according to the given orbital symmetries (β, γ) around both the sample surface atom

and the tip apex have maxima along the line of the tunneling direction. This is always the

case for s-s type of tunneling irrespective of the relative position of the tip apex and sample

surface atoms, i.e., we observe perfect spherical exponential decay between tip and sample s

orbitals. In some particular geometries t = 1 can be obtained even for other type of orbitals,

e.g., if the tip apex is precisely above surface atom a, i.e., ϑa = 0, then tβγ(ϑa = 0, ϕa) = 1

for all of the following combinations: β, γ ∈ {s, pz, d3z2−r2}. On the other hand, if the tip

apex is above surface atom a then orbitals with nodal planes orthogonal to the surface have

zero contribution to the tunneling from this particular surface atom, i.e., a reduced effective

tunneling transmission is obtained [13]. Note that the independent orbital approximation

corresponds to tβγ = 1 for all β ↔ γ transitions, i.e., the same tunneling transmission

is assumed between all orbitals. Within our orbital dependent tunneling approach ideal

tip models with particular orbital symmetries can be considered, i.e., γ0 orbital symmetry

corresponds to the choice of nTγ0 = 1(eV )−1 and nT (γ 6=γ0) = 0. More realistic tips can be
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obtained by explicitly calculating the orbital decomposition of the tip apex PDOS in model

tip geometries, e.g., in the present work a model W(110) tip is used.

Our theory is thus an extension of the atom superposition STM/STS approach con-

sidering tunneling between directional orbitals. The tunneling current and the differential

conductance can be calculated at the tip position RTIP (x, y, z) and at bias voltage V as the

sum of all β ↔ γ transitions between real space orbitals,

I(x, y, z, V ) =
∑

β,γ

Iβγ(x, y, z, V ), (16)

dI

dV
(x, y, z, V ) =

∑

β,γ

dIβγ
dV

(x, y, z, V ), (17)

respectively, with

Iβγ(x, y, z, V ) = ε2
e2

h
(18)

×
∑

a

∫ V

0

Tβγ(E
S
F + eU, V, da(x, y, z))nTγ(E

T
F + eU − eV )na

Sβ(E
S
F + eU)dU,

dIβγ
dV

(x, y, z, V ) = ε2
e2

h
(19)

×

{

∑

a

Tβγ(E
S
F + eV, V, da(x, y, z))nTγ(E

T
F )n

a
Sβ(E

S
F + eV )

+
∑

a

∫ V

0

∂Tβγ

∂V
(ES

F + eU, V, da(x, y, z))nTγ(E
T
F + eU − eV )na

Sβ(E
S
F + eU)dU

−
∑

a

∫ V

0

Tβγ(E
S
F + eU, V, da(x, y, z))

∂nTγ

∂U
(ET

F + eU − eV )na
Sβ(E

S
F + eU)dU

}

.

This decomposition enables the analysis of the orbital contributions to the total tunneling

current and to the differential conductance. In relation to Chen’s derivative rule [12] we can

state that while it is formulated inspired by the Tersoff-Hamann model, and calculates the

tunneling transmission as the absolute value square of the tunneling matrix element that is

proportional to the sample wave function derivative with respect to the real space coordinate

corresponding to the given tip orbital symmetry (γ), our transmission function also depends

on the sample surface atoms’ orbital symmetry β. Moreover, the electronic structure of the

tip apex is included in our theory via the PDOS.

Our method does not account for multiple scattering [35] and interference effects [15, 21],

which could be important for certain systems. Therefore, it is expected that our model
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works well on simple metals, possibly on molecular adsorbates on surfaces as well but not on

materials with strong band structure or Fermi surface effects. Other limitation is the uniform

vacuum decay of the electron states for different orbital symmetries in Eq.(11). This could

be improved in the future. Still, the model in its present form provides comparable results

to more sophisticated tunneling models (Tersoff-Hamann, Bardeen) as will be presented in

section III E.

Note that the presented method can also be applied to magnetic systems taking into

account the orbital-decomposed magnetization PDOS of the tip and sample [22, 23] together

with the orbital dependent tunneling transmission in Eq.(11). As it was pointed out by

Ferriani et al. [36] the spin polarization in the vacuum can have an opposite sign than within

the tip apex atom, and this sign change is also accompanied by different dominating orbital

characters. Thus, the consideration of an orbital dependent tunneling transmission might

be a better model for describing electron transport through a magnetic tunnel junction. We

return to the related spin-polarized STM/STS model in the future.

III. RESULTS AND DISCUSSION

In order to demonstrate the reliability of our orbital dependent tunneling model we

consider a W(110) surface. This surface has technological importance as it is widely used as

substrate for thin film growth, see e.g., Refs. [24, 37]. As it was pointed out by Heinze et al.

[24] the determination of the position of surface atomic sites is not straightforward as atomic

resolution is lost at negative bias voltages, and a bias-dependent corrugation reversal has

been predicted. This means that normal and anticorrugated constant current STM images

can be obtained in certain bias voltage ranges, and the W atoms do not always appear as

protrusions in the images. It was shown that a competition between states from different

parts of the surface Brillouin zone is responsible for this effect [24, 38]. We reinvestigate

this corrugation reversal effect as it provides a challenge for our orbital dependent tunneling

model. We find excellent agreement with the results of Ref. [24], where an s-wave tip has

been used, and we study this effect in more detail. We particularly focus on tip effects, and

consider ideal tip models with different orbital symmetries, and a more realistic W(110) tip.

We find two qualitatively different corrugation inversion behaviors based on the tip orbital

composition. Explaining our findings we highlight the role of real space orbital orientational
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overlaps between the surface and the tip rather than considering electron states in the

reciprocal space, thus a different kind of understanding is provided. Finally, by comparing

STM images to results of more sophisticated tunneling models we find good agreement.

A. Computational details

We performed geometry relaxation and electronic structure calculations based on the den-

sity functional theory (DFT) within the generalized gradient approximation (GGA) imple-

mented in the Vienna Ab-initio Simulation Package (VASP) [39–41]. A plane wave basis set

for electronic wave function expansion together with the projector augmented wave (PAW)

method [42] has been applied, and the exchange-correlation functional is parametrized ac-

cording to Perdew and Wang (PW91) [43]. The electronic structures of the sample surface

and the tip have been calculated separately.

We model the W(110) surface by a slab of nine layers, where the two topmost W layers

have been fully relaxed. After relaxation the W-W interlayer distance between the two

topmost layers is reduced by 3.3%, while the underneath W-W interlayer distance increased

by 1.1% compared to bulk W. A separating vacuum region of 18 Å width in the surface

normal (z) direction has been set up between neighboring supercell slabs. The average

electron work function above the surface is calculated to be φS = 4.8 eV. We used a 41 ×

41×5 Monkhorst-Pack (MP) [44] k-point grid for obtaining the orbital-decomposed projected

electron DOS onto the surface W atom, na
Sβ(E). The same k-set has been used for calculating

the sample electron wave functions for the Tersoff-Hamann and Bardeen simulations. The

unit cell of the W(110) surface (shaded area) and the rectangular scan area for the tunneling

current simulation are shown in Figure 2. In our calculations we used the experimental

lattice constant aW = 316.52 pm. Moreover, the surface top (T) and hollow (H) positions

are explicitly shown.

We considered different tip models. The orbital-independent ideal tip is characterized

by tβγ = 1 and nTγ(E) = 1/9(eV )−1, so that nT (E) =
∑

γ nTγ(E) = 1(eV )−1. This ideal

electronically flat tip represents the limiting case of the independent orbital approximation

used in previous atom superposition tunneling models [22, 23, 31, 32]. In order to study the

effect of the orbital dependent tunneling other tip models are needed. First, we consider

ideal tip models having a particular orbital symmetry γ0. In this case tβγ is calculated
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following Eq.(15), and for the energy dependence of the tip PDOS, nTγ0 = 1(eV )−1 and

nT (γ 6=γ0) = 0 are assumed. More realistic tips can also be employed by calculating the

orbital decomposition of the tip apex PDOS in model tip geometries, and using Eq.(15) for

the orbital dependent transmission factor. We used a blunt W(110) tip. Motivated by a

previous simulation [45], it has been modeled by a slab consisting of three atomic layers

having one W apex atom on both surfaces, i.e., with a double vacuum boundary. In this

system the apex atoms have been relaxed on both sides. The adatom-topmost layer vertical

distance decreased by 19.3% compared to bulk W. The interaction between apex atoms in

neighboring supercells in the lateral direction is minimized by choosing a 3× 3 surface cell,

and a 17.9 Å wide separating vacuum region in the z direction. The local electron work

function above the tip apex was assumed to be φT = 4.8 eV. Moreover, an 11× 15× 5 MP

k-point grid has been chosen for calculating the orbital-decomposed projected DOS onto the

apex atom, nTγ(E). The same k-point sampling has been used for obtaining the tip electron

wave functions for the Bardeen calculation.

STM images were simulated employing our model, and the Tersoff-Hamann [25, 26] and

Bardeen [27] methods implemented in the BSKAN code [2, 35]. Scattering up to first order

[35] did not affect the quality of the images. Using our model the tunneling current has

been calculated in a box above the rectangular scan area shown in Figure 2 containing

99000 (30×22×150) grid points with a 0.149 Å lateral and 0.053 Å vertical resolution. The

electron local density of states (LDOS) was calculated above the same scan area in a box of

31×21×101 grid points using the Tersoff-Hamann method with the same spatial resolution

as above. For the calculation of the tunneling current employing the Bardeen method a box

of 31 × 10 × 100 grid points above the half of the rectangular scan area has been chosen

in order to speed up the simulation. In this case the lateral resolution remains 0.149 Å,

and the vertical resolution is 0.106 Å. The constant current contours are extracted following

the method described in Ref. [22]. All of the STM images will be presented above the full

rectangular scan area.

B. Convergence properties

Previously, the convergence of the dI/dU part of the differential conductance has been

investigated with respect to the number of surface atoms involved in the summation of the
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orbital-independent atomic superposition formula [32]. Due to the spherical exponential

decay assumed for the electron wave functions a rapid convergence was found. We report a

similar convergence test for the orbital-dependent tunneling approach comparing different

tip models. In order to take into account a wide energy range around the Fermi level we

calculated the tunneling current at -2.5 V and +2.5 V bias voltages at z = 4.5 Å above

a surface W atom, and averaged these current values. We considered ideal tips of the

orbital-independent model, and with s, pz, and d3z2−r2 symmetry, as well as the W(110)

tip. In order to obtain comparable results we normalized the averaged current for each tip

calculation. The convergences of the normalized averaged current with respect to the lateral

distance on the surface, d‖, characteristic for the number of atoms involved in the atomic

superposition, are shown in Figure 3. By calculating the current, contributions from surface

atoms within a radius of d‖ measured from the W atom below the tip apex are summed up

(sum over a). We find that the orbital-independent, the s-type, and the W(110) tips behave

quite similarly concerning the current convergence, while for the pz- and d3z2−r2-type tips a

faster convergence is found. This rapid convergence can be explained by the more localized

character of the latter tip orbitals in the direction normal to the sample surface (z). On the

other hand, the orbital-independent tip with T = e−2κd is a good approximation for the s-

type tip (with index γ = 1), where the spherically decaying transmission function part is still

dominant, i.e., Tβ,1 = e−2κdχ2
β because χ2

1 = 1. In case of the W(110) tip, electronic states

of all considered symmetries have a contribution, and their relative importance is not only

determined by the transmission function via the orbital shapes but also by the product of

the symmetry-decomposed electron PDOS of the surface and the tip. In general, the orbitals

localized in different than the z direction can show a slower current convergence than the

s orbitals. However, the partial PDOS of such states is relatively low, and interestingly

we obtain a similar current convergence in the studied energy range as for the s-type tip.

Choosing different bias voltages for the W(110) tip, thus different electron states involved

in the tunneling, we found current convergences dissimilar to the s-type tip behavior. The

convergence can be slower or faster than obtained for the s-type tip depending on the partial

PDOS of each directional orbital in the given energy range.

Based on the convergence tests, atom contributions within at least d‖ = 3a ≈ 9.5

Å distance from the surface-projected tip position shall be considered. In case of calcu-

lating STM images, d‖ = 3a ≈ 9.5 Å has to be measured from the edge of the scan area in
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all directions in order to avoid distortion of the image, thus involving 67 surface atoms in

the atomic superposition. For brevity, in the following we use the same surface atoms to

calculate single point tunneling properties as well.

C. Orbital Contributions

Let us analyze the relative importance of all β ↔ γ transitions in determining the total

tunneling current at different tip positions. From this analysis we obtain a qualitative

picture about the role of the different atomic orbitals in the construction of the tunneling

current. The Iβγ current contributions can be calculated according to Eq.(18). These can be

represented by a current histogram that gives the percentual contributions of the individual

transitions to the total current. Figure 4 shows such histograms using the W(110) tip at

V= -0.1 V bias voltage z = 4.5 Å above two different tip positions: part a) corresponds to

the tip apex above the surface top position, and part b) to the tip apex above the surface

hollow position, T and H in Figure 2, respectively. We obtain a 9 × 9 matrix from the

considered orbitals, which are denoted by numbers 1 to 9 following the indices reported in

Table I. We find that most contributions are due to the s (1), pz (3), dyz (6), d3z2−r2 (7), and

dxz (8) orbitals and their combinations. The largest contribution to the current is given by

the d3z2−r2 −d3z2−r2 (7-7) transition, 31 and 20 per cent above the top and hollow positions,

respectively. Concomitantly, above the hollow position, the relative importance of both tip

and sample dyz (6) and dxz (8) orbitals is increased as it is expected from the geometrical

setup, i.e., the dyz − dyz (6-6), dyz − d3z2−r2 (6-7 and 7-6), dxz − dxz (8-8), and dxz − d3z2−r2

(7-8 and 8-7) contributions correspond to larger orientational overlap of the mentioned tip

and sample orbitals if the tip is above the hollow position rather than above the top position

as suggested by the geometry in Figure 2 and Eq.(15). Thus, our simple orbital dependent

tunneling model captures the effect of the localized orbitals and goes beyond the spherical

Tersoff-Hamann model. Note that if a larger bias voltage is considered, i.e., the electronic

states are somewhat averaged, then the independent orbital approach might turn out to be

a good approximation [31].
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D. Atomic contrast reversal

The role of the localized orbitals can best be demonstrated by reinvestigating the cor-

rugation inversion phenomenon found, e.g., on (100) [15], (110) [24], and (111) [46] metal

surfaces. Chen explained this effect as a consequence of m 6= 0 tip states [14]. According to

Heinze et al. [24] under certain circumstances the apparent height of W atoms at the surface

top position (zT ) can be larger or smaller than the apparent height of the surface hollow

position (zH) at constant current (I = const) condition. (For the surface top (T) and hollow

(H) positions, see Figure 2.) Thus, the sign change of ∆z(I) = zT (I)− zH(I) is indicative

for the corrugation inversion. Obviously, ∆z(I) > 0 corresponds to a normal STM image,

where the W atoms appear as protrusions, and ∆z(I) < 0 to an anticorrugated image. Since

the tunneling current is monotonically decreasing with the increasing tip-sample distance,

we can obtain information about the occurrence of the corrugation inversion simply by cal-

culating the current difference between tip positions above the top and hollow sites of the

W(110) surface. The current difference at tip-sample distance z and at bias voltage V is

defined as

∆I(z, V ) = IT (z, V )− IH(z, V ). (20)

This quantity can be calculated for specific tips, and we call the ∆I(z, V ) = 0 contour as

the corrugation inversion map. This gives the (z, V ) combinations where the corrugation

inversion occurs. The sign of ∆I(z, V ) provides the corrugation character of an STM image

in the given (z, V ) regime. Due to the monotonically decreasing character of the tunneling

current, ∆I(z, V ) > 0 corresponds to ∆z(I(V )) > 0, i.e., normal corrugation, and similarly

∆I(z, V ) < 0 corresponds to ∆z(I(V )) < 0 and anticorrugation.

First, we calculated ∆I(z, V ) using the independent orbital approximation and Eq.(6)

for the tunneling transmission, and found that ∆I(z, V ) is always positive. This means that

the spherical exponential decay itself can not account for the observed corrugation inversion

effect, and the W atoms always appear as protrusions in STM images calculated with this

model. However, considering the orbital dependent tunneling transmission in Eq.(11) we

find evidence for the corrugation inversion effect, thus highlighting the role of the real space

shape of electron orbitals involved in the tunneling. Figure 5 shows ∆I(z, V ) = 0 contours

calculated with different tip models in the [0 Å, 14 Å] tip-sample distance and [-2 V,+2 V]

bias voltage range. Before turning to the analysis of the results obtained with previously
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not considered tip models let us compare our results with those of Heinze et al. [24], where

an s-wave tip model has been used. They found corrugation reversal at around -0.4 V at

z = 4.6 Å tip-sample distance, and above that voltage normal while below anticorrugated

STM images were obtained. Our model with an s-tip provides the same type of corrugation

reversal at -0.21 V at the same distance as can be seen in part a) of Figure 5 (curve with

filled square symbol). These bias values are in reasonable agreement particularly concerning

their negative sign. At this range atomic resolution is difficult to achieve experimentally,

which is an indication for being close to the corrugation inversion regime [24]. On the other

hand a linear dependence of the corrugation reversal voltage and the tip-sample distance

has been reported by Heinze et al. (z = 4.6 Å, V = −0.4 V) to (z = 7.2 Å, V = 0 V). Our

model qualitatively reproduces this linear dependence in the same bias range though the

quantitative values are somewhat different.

Calculating the corrugation inversion maps with more tip models, we find two distinct

behaviors depending on the tip orbital composition. Parts a) and b) of Figure 5 show these.

While the tip models in part a) can show corrugation inversion in the whole studied bias

range, this effect does not occur at positive bias voltages for tips in part b). Moreover,

anticorrugation (∆I(z, V ) < 0) is observed in the large tip-sample distance region (z > 13.5

Å) in both parts. This is in accordance with the prediction of Ref. [38] based on the analysis

of the competing electron states in the surface Brillouin zone of an Fe(001) surface. In

the z < 13.5 Å range, however, the corrugation character in the two parts of Figure 5 is

remarkably different. In part a), normal corrugation is found close to the surface, which

reverts only once with increasing tip-sample distance for the tip models with a single orbital

symmetry in the full studied bias range. The W(110) tip behaves similarly below +1.7

V, while above there is a double reversal of the corrugation character as the tip-sample

distance increases. This indicates that anticorrugation can be expected at short tip-sample

distances (3.5 Å-5 Å) at around +2 V. On the other hand, the tip models in part b) always

show anticorrugation at positive bias voltages, and below -0.05 V they provide corrugation

characters starting from anticorrugation, then normal corrugation, and again anticorrugation

with increasing tip-sample distance. These different behaviors can be attributed to the tip

orbital characters. It is interesting to notice that none of the considered tip orbitals in part b)

are localized in the z-direction, and they have nodal planes either in the yz plane (px and dxz)

or in the xz plane (py and dyz) or in the x = y and x = −y planes (dx2−y2). On the other hand,
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in part a) there are tips which are localized in the z-direction (pz and d3z2−r2) or having nodal

planes in both the xz and yz planes (dxy) as well as the spherical s tip and theW(110) tip that

contains all type of orbitals with energy dependent partial PDOS functions. The particular

tip nodal planes restrict the collection of surface atom contributions to specific regions on

the sample surface. Furthermore, by changing the tip-sample distance, the orientational

overlaps between the tip and sample orbitals change, and according to our model some

localized orbitals gain more importance in the tunneling contribution, see also Figure 4.

Since we calculate the current difference between tip positions above the surface top and

hollow sites, the complex tip-sample and bias voltage dependent effect of the real space

orbitals on the tunneling can be visualized via the corrugation inversion maps.

Concerning tips with pz and d3z2−r2 orbital symmetry, Heinze et al. [24] calculated a cor-

rugation enhancement factor of 2 and 6.25, respectively, based on Chen’s derivative rule [12].

Moreover, they argued that the corrugation inversion map should be practically identical to

the one obtained by using the s-tip model, and the corrugation values just have to be scaled

up by these factors. On the contrary based on our orbital dependent tunneling model we

find that the pz and d3z2−r2 tips provide qualitatively different corrugation inversion maps,

i.e., although their bias dependent shape is similar to the one of the s-tip, their tip-sample

distance is systematically pushed to larger values, see part a) of Figure 5. This is due to the

more localized character of these tip orbitals in the z-direction.

Corrugation inversion with the dxy tip occurs at the largest tip-sample distance. A

possible explanation can be based on its xz and yz nodal planes. While above the top

position only the underlying W atom, above the hollow position all four nearest neighbor

W atoms give zero contribution to the current, thus IT is expected to be higher than IH at

small tip-sample distances. To overcome this effect the tip has to be moved farther from

the surface since then the relative importance of the nearest neighbor contributions decays

rapidly compared to other parts of the surface.

Apart from above findings we obtain corrugation inversion also in the positive bias range

at enlarged tip-sample distances for the s, pz, d3z2−r2, and W(110) tips considered in part

a) of Figure 5. This is most probably due to the surface electronic structure. Note that this

effect is even more difficult to capture in experiments as the corrugation values themselves

decay rapidly with increasing tip-sample distance.
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E. STM images - Comparison to other tunneling models

In order to demonstrate the corrugation inversion more apparently, constant current

STM images can be simulated. As it is clear from Figure 5, any type of crossing of the

∆I(z, V ) = 0 contour results in the occurrence of the corrugation reversal. In experiments

two ways can be considered to record STM images in the normal and anticorrugated regimes:

1) keep the tip-sample distance z constant, and change the bias voltage V ; or 2) keep the

bias voltage V constant, and change the tip-sample distance. Respectively, these modes

correspond to a horizontal and a vertical crossing of the ∆I(z, V ) = 0 contour in the (z, V )

plane in Figure 5. Heinze et al. followed the first method in their simulations [24]. However,

as the second option seems to be experimentally more feasible and needs less calculations

as well, we simulated STM images at a fixed bias voltage of -0.25 V.

In Figure 6 STM images are compared using our model assuming an s-type tip [first row

a)-c)] to those calculated by the Tersoff-Hamann method [second row d)-f)]. We find that the

images are in good qualitative agreement for the a)-d), b)-e), and c)-f) pairs, respectively.

In parts a) and d), at a tip-sample distance of about 3.80 Å, the apparent height of the W

atom is larger than the one of the hollow position, i.e. ∆z = zT − zH > 0. This resembles

normal corrugation. Moving the tip farther from the surface, we obtain the corrugation

inversion and striped images. These are shown in parts b) and e) of Figure 6. We find

that our method reproduces the corrugation inversion effect at almost the same tip-sample

distance (4.15 Å) as the Tersoff-Hamann model predicts (4.21 Å). Increasing the tip-sample

distance further we enter the anticorrugation regime, and the apparent height of the W atom

is smaller than the one of the hollow position, i.e., ∆z = zT − zH < 0. Such images are

shown in parts c) and f). Note that all of the simulated STM images in Figure 6 are in good

qualitative agreement with Ref. [24]. The corrugation of the individual current contours has

also been calculated: a) ∆z′ = 0.23 pm, b) ∆z′ = 0.10 pm, c) ∆z′ = 0.12 pm, d) ∆z′ = 1.63

pm, e) ∆z′ = 1.82 pm, f) ∆z′ = 1.79 pm. We find that our model gives approximately one

order of magnitude less corrugation than the Tersoff-Hamann method. Note, however, that

the small corrugation amplitudes using our method are in good agreement with Ref. [24],

where they report ∆z′ < 1 pm close to the contrast reversal.

As we have seen, the corrugation inversion effect already occurs considering the electronic

structure of the sample only. However, Figure 5 indicates that different tips can modify its
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tip-sample distance and bias voltage dependence quite dramatically. In Figure 7 STM images

are compared using our model [first row a)-c)] to those calculated by the Bardeen method

[second row d)-f)] explicitly taking the electronic structure of the W(110) tip in both cases

into account. We find that the images are in good qualitative agreement for the b)-e) and

c)-f) pairs. In parts a) and d), at a tip-sample distance of about 4.50 Å, the agreement is

weaker, however, the normal corrugation is more pronounced in our model: The corrugation

amplitude of part a) ∆z′ = 0.36 pm is much larger than that of part d) ∆z′ = 0.07 pm.

Moreover, as the current values of 6.3 nA (our model) and 4.4 nA (Bardeen) are comparable

to each other at the given tip-sample separation, the choice of ε = 1 eV in Eq.(2) is confirmed.

Note that employing our model, a better qualitative agreement to the image of part d) has

been found at a larger tip-sample separation, i.e., closer to the corrugation inversion. This

inversion is demonstrated in parts b) and e) of Figure 7. Again, we obtain striped images.

Note, however, that the stripes with larger apparent height correspond to the atomic rows,

in contrast to what has been found in parts b) and e) of Figure 6, where the atomic and

hollow sites appeared as depressions. This difference is definitely due to the effect of the

W tip, which was not considered in Figure 6. On the other hand, we find good agreement

concerning the tip-sample distance of the corrugation inversion: 5.80 Å in our model, and

5.55 Å calculated by the Bardeen method. Parts c) and f) of Figure 7 correspond to

anticorrugated images. In this tip-sample distance regime the extremely small corrugation

amplitudes are in good agreement between our model and the Bardeen method: ∆z′ = 0.02

pm in parts b), c), f), and ∆z′ = 0.03 pm in part e).

Finally, we compared computation times between our model and the Bardeen method,

and found the following:

1) our orbital dependent model, 30× 22× 150 grid points, 1 CPU, time=229 s;

2) Bardeen method in BSKAN code, 31× 10× 100 grid points, 4 CPUs, time=173866 s.

Normalizing to the same real space grid points we obtain that our method is 2425 times faster

using 1 CPU than using 4 CPUs for the Bardeen calculation. As the 4 CPUs calculations are

roughly 3.5 times faster than the 1 CPU ones in our computer cluster, a remarkable 1 CPU

equivalent time boost of about 8500 is obtained for our method compared to the Bardeen

for the given surface-tip combination. While the k-point samplings of the surface and tip

Brillouin zones affect the computation time of the Bardeen method due to the enhanced

number of transitions as the number of k-points increases, the computation time of our
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model is insensitive to the number of k-points as the PDOS of the tip apex and surface

atoms are used. The energy dependent PDOS functions have the same data structure, no

matter of the number of the constituting electron states obtained by the k-summation [22].

This is a great computational advantage of our model. Of course, the quality of the results

depends on the k-point samplings. Moreover, please note the further potential that our

method can be parallelized in the future.

Thus, employing our new computationally efficient orbital dependent tunneling model we

could reproduce and reinvestigate the corrugation inversion effect observed on the W(110)

surface. Although this effect is driven by the surface electronic structure, we showed that

different tips can drastically modify its tip-sample distance and bias voltage dependence.

IV. CONCLUSIONS

We developed an orbital dependent electron tunneling model and implemented it within

the atom superposition approach based on 3D WKB theory, for simulating STM and STS.

Applying our method we analyzed the convergence and the orbital contributions to the tun-

neling current above the W(110) surface. We found that the d3z2−r2 −d3z2−r2 contribution is

the largest, and depending on the tip position other d states can gain importance as well. We

also studied the corrugation inversion effect. Using the independent orbital approximation

no corrugation reversal has been obtained at all. Employing the orbital dependent model

we found corrugation reversals depending on the bias voltage in accordance with the work

of Heinze et al. [24], and also on the tip-sample distance. Explaining this effect we high-

lighted the role of the real space shape of the orbitals involved in the tunneling. Moreover,

we calculated corrugation inversion maps considering different tip models, and found two

qualitatively different behaviors based on the tip orbital composition. Our results indicate

that using a W tip anticorrugation can not only be observed at negative bias voltages but

also at positive bias at reasonably short tip-sample distances. Simulation of STM images

made the corrugation inversion effect more apparent. A good agreement has been found

by comparing STM images calculated by our model to Tersoff-Hamann and Bardeen re-

sults. The computational efficiency of our model is remarkable as the k-point samplings of

the surface and tip Brillouin zones do not affect the computation time, in contrast to the

Bardeen method. Extending this orbital dependent tunneling model to magnetic junctions
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is expected to enable the study of the interplay of real space orbital and spin polarization

effects in SP-STM and SP-STS experiments in the future.
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TABLE I: Real space orbitals, their indices used in the present paper, their definition from spherical

harmonics Y m
l (ϑ,ϕ), and the angular dependence of their wave functions χ(ϑ,ϕ). Note that ϑ and

ϕ are the usual polar and azimuthal angles, respectively, in the spherical coordinate system centered

on the corresponding (tip or sample) atom.

orbital index definition χ(ϑ,ϕ)

s 1 Y 0
0 1

py 2 Y 1
1 − Y −1

1 sin(ϑ)sin(ϕ)

pz 3 Y 0
1 cos(ϑ)

px 4 Y 1
1 + Y −1

1 sin(ϑ)cos(ϕ)

dxy 5 Y 2
2 − Y −2

2 sin2(ϑ)sin(2ϕ)

dyz 6 Y 1
2 − Y −1

2 sin(2ϑ)sin(ϕ)

d3z2−r2 7 Y 0
2

1
2

(

3cos2(ϑ)− 1
)

dxz 8 Y 1
2 + Y −1

2 sin(2ϑ)cos(ϕ)

dx2−y2 9 Y 2
2 + Y −2

2 sin2(ϑ)cos(2ϕ)

FIG. 1: Geometry of a general tip apex-sample atom setup.
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FIG. 2: The surface unit cell of W(110) (shaded area) and the rectangular scan area for the

tunneling current simulations. Circles denote the W atoms. The top (T) and hollow (H) positions

are explicitly shown.

FIG. 3: (Color online) Convergence of the normalized averaged current calculated with different

tip models.
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FIG. 4: (Color online) Histograms of the current contributions (Iβγ) from all tip-sample transitions

with different orbital symmetries using the W(110) tip at V= -0.1 V bias. a) Tip apex z = 4.5

Å above the surface top (T) position (W atom); b) tip apex z = 4.5 Å above the surface hollow (H)

position, see also Figure 2. The indices of the atomic orbitals (1-9) follow the notation reported in

Table I.
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FIG. 5: (Color online) The ∆I(z, V ) = IT (z, V ) − IH(z, V ) = 0 contours indicative for the cor-

rugation inversion [see Eq.(20), and its meaning in the text] calculated with different tip models

above the W(110) surface. Parts a) and b) show two distinct behaviors depending on the tip

orbital composition. The sign of ∆I(z, V ) is explicitly shown: In part a) it is positive (+) below

the curves, and negative (-) above them; in part b) positive inside the loop of a given curve, and

negative (-) outside the loop. Note that positive ∆I(z, V ) corresponds to normal, while negative

to inverted atomic contrast.
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FIG. 6: (Color online) Comparison of simulated STM images of the W(110) surface using our

model with an s-type tip [top, a)-c)] and the Tersoff-Hamann model [bottom, d)-f)] at V= -0.25 V

bias voltage. The scan area corresponds to the rectangle shown in Figure 2. Light and dark areas

denote higher and lower apparent heights, respectively. The apparent heights of the W atom (zT ),

and the corrugation of the contours (∆z′) are as follows: Our model: a) zT = 3.80 Å, ∆z′ = 0.23

pm; b) corrugation inversion, zT = 4.15 Å, ∆z′ = 0.10 pm; c) zT = 4.35 Å, ∆z′ = 0.12 pm.

Tersoff-Hamann model: d) zT = 3.80 Å, ∆z′ = 1.63 pm; e) corrugation inversion, zT = 4.21 Å,

∆z′ = 1.82 pm; f) zT = 4.70 Å, ∆z′ = 1.79 pm.
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FIG. 7: (Color online) Comparison of simulated STM images of the W(110) surface using our

model [top, a)-c)] and the Bardeen method [bottom, d)-f)] with the W(110) tip at V= -0.25 V bias

voltage. The scan area corresponds to the rectangle shown in Figure 2. Light and dark areas denote

higher and lower apparent heights, respectively. The current values (I), the apparent heights of

the W atom (zT ), and the corrugation of the contours (∆z′) are as follows: Our model: a) I = 6.3

nA, zT = 4.50 Å, ∆z′ = 0.36 pm; b) corrugation inversion, I = 0.43 nA, zT = 5.80 Å, ∆z′ = 0.02

pm; c) I = 0.35 nA, zT = 5.90 Å, ∆z′ = 0.02 pm. Bardeen method: d) I = 4.4 nA, zT = 4.50 Å,

∆z′ = 0.07 pm; e) corrugation inversion, I = 0.7 nA, zT = 5.55 Å, ∆z′ = 0.03 pm; f) I = 0.19 nA,

zT = 6.25 Å, ∆z′ = 0.02 pm.
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