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We review the recently developed three-dimensional (3D) atom-superposition approach for simulat-
ing scanning tunneling microscopy (STM) and spectroscopy (STS) based on ab initio electronic struc-
ture data. In the method, contributions from individual electron tunneling transitions between the
tip apex atom and each of the sample surface atoms are summed up assuming the one-dimensional
(1D) Wentzel–Kramers–Brillouin (WKB) approximation in all these transitions. This 3D WKB tun-
neling model is extremely suitable to simulate spin-polarized STM and STS on surfaces exhibiting
a complex noncollinear magnetic structure, i.e., without a global spin quantization axis, at very
low computational cost. The tip electronic structure from first principles can also be incorporated
into the model, that is often assumed to be constant in energy in the vast majority of the related
literature, which could lead to a misinterpretation of experimental findings. Using this approach,
we highlight some of the electron tunneling features on a prototype frustrated hexagonal antiferro-
magnetic Cr monolayer on Ag(111) surface. We obtain useful theoretical insights into the simulated
quantities that is expected to help the correct evaluation of experimental results. By extending the
method to incorporate a simple orbital dependent electron tunneling transmission, we reinvestigate
the bias voltage- and tip-dependent contrast inversion effect on the W(110) surface. STM images cal-
culated using this orbital dependent model agree reasonably well with Tersoff-Hamann and Bardeen
results. The computational efficiency of the model is remarkable as the k-point samplings of the
surface and tip Brillouin zones do not affect the computational time, in contrast to the Bardeen
method. In a certain case we obtain a relative computational time gain of 8500 compared to the
Bardeen calculation, without the loss of quality. We discuss the advantages and limitations of the
3D WKB method, and show further ways to improve and extend it.
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1 Introduction

The scanning tunneling microscopy (STM) and spec-
troscopy (STS) techniques become routine and extremely
useful high resolution surface science tools for the inves-
tigation of local physical and chemical phenomena on
surfaces of materials since the invention of the STM 31
years ago [1, 2]. The experimental success in the con-
tinuous development of these techniques and the unrav-
eling of the physics of a mass of new technologically
relevant phenomena calls for the development of theo-
retical and simulation tools that are inevitable for the
correct interpretation of STM and STS measurements
[3, 4]. Beside highly accurate but computationally very
demanding models that are routinely available to the-
orist experts only, there is a need for simulation tools

that could be easy to use for experimental groups, and
give results within minutes with reasonable accuracy. For
this reason, we propose a three-dimensional (3D) atom-
superposition approach for simulating STM and STS.
We review the formalism of this method and the ob-
tained results so far, that give important insights into
the structure of the measured tunneling current, differ-
ential conductance and related quantities. Moreover, the
results provide useful instructions for the correct inter-
pretation of spin-polarized STM (SP-STM) and spin-
polarized STS (SP-STS) measurements, and facilitate
a new route to understand the bias voltage- and tip-
dependent atomic contrast inversion phenomenon ob-
served on metallic surfaces by highlighting the role of the
real space shape of the orbitals involved in the tunneling.
The key input for the tunneling model is the projected
electron density of states (PDOS) of the tip apex atom
and of the sample surface atoms obtained from ab ini-
tio electronic structure calculations. These can be calcu-
lated using any suitable computational code. The basic
idea of the model is that contributions from individual
electron tunneling transitions between the tip apex atom
and each of the sample surface atoms are summed up
assuming the one-dimensional (1D) Wentzel–Kramers–
Brillouin (WKB) approximation in all these transitions.
Therefore, this tunneling model is a 3D WKB approach.

First, we briefly review the experimental and theoret-
ical motivations that led to the construction of this 3D
WKB model.

One direction of recent theoretical research is focused
on extracting surface local electronic properties from ex-
perimental STS data [5–9], which is the convolution of
tip and sample electronic structures. Applying STS in
the spin-polarized setup, this research line could be ex-
tended to the possible extraction of local spin polariza-
tion information of surfaces. Here, special attention has
to be taken to the composition of the differential con-
ductance (dI/dV ), and it has been suggested that the
magnetic asymmetry defined from experimentally mea-
sured spectra does not correspond to the effective spin
polarization [10].

Another research direction is concerned with the simu-
lation of STM and STS by using different models mostly
based on electronic structure data obtained from first
principles. A computationally demanding but very accu-
rate method is based on nonequilibrium Green functions
[11] that has been mostly applied for ballistic electron
transport. More traditional approaches are based on the
work of Tersoff and Hamann [12, 13], and Bardeen [14].
Wortmann et al. [15] introduced the spin-polarized ver-
sion of the Tersoff–Hamann model.

Much work has been devoted to analyze the electron
tunneling properties depending on the scanning tip. In
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Ref. [16] a theoretical method has been presented to sep-
arate the tip and sample contributions to STS. A related
study has been performed experimentally [17]. Ness and
Gautier studied different metal tips and their interac-
tion with metal surfaces in a tight-binding framework
[18–20]. Chen and Sacks investigated the effect of the tip
orbitals on the corrugation of constant current STM im-
ages theoretically [21, 22]. While Chen pointed out that
corrugation enhancement is expected for tip orbitals lo-
calized along the surface normal (z) direction (pz and
d3z2−r2), Sacks argued that m �= 0 tip states (dxz, dyz,
dxy, dx2−y2) are responsible for this effect. Another work
of Chen explained the corrugation inversion found on
low Miller index metal surfaces by m �= 0 tip states
[23]. Atomic contrast reversal has also been found above
Xe atomic adsorbates [24] and oxygen overlayers [25] on
metal surfaces. It was established that the character of
the contrast depends on the tip-sample distance and on
the tip geometry and electronic structure. The quality of
the tip also plays a crucial role in the inelastic tunneling
spectroscopy (IETS). Studying the CO molecule on Cu
surfaces it has been found that the IETS intensity is close
to the experiment including the full electronic structure
of the tip [26], and the tip position and orbital symmetry
can change the selection rules for the active vibrational
modes in IETS [27]. Moreover, it was proposed that IETS
could be a useful tool to get information about the tip
apex structure [28].

The role of the electron orbitals has been considered
in different electron transport models. Sirvent et al. de-
veloped a tight-binding model based on the Keldysh for-
malism for calculating the conductance in atomic point
contacts and analyzed the effect of the d orbitals [29].
The same methodology has been applied to STM junc-
tions by Mingo et al. [24]. Cerdá et al. presented an STM
simulation method based on the Landauer–Büttiker for-
mula [30] and the surface Green function matching tech-
nique [31]. In these methods the decomposition of the
conductance and/or current with respect to electron or-
bitals has been given. The conductance can also be de-
composed in terms of transmission eigenchannels. There
are many examples for atomic point contacts, see, e.g.,
Refs. [32–35], and such decomposition is also possible in
STM junctions [36].

An emerging research field in surface science is the in-
vestigation of magnetism at the nanoscale and atomic
scale with the aim of achieving ultrahigh information
density for data storage purposes [37, 38]. This can be
achieved by reducing the size of the information storage
units going down to the nanoscale or even to single atoms
[39]. Detecting and manipulating spins [40] with high ac-
curacy on the atomic scale is essential for future techno-
logical applications. Recent experimental advances using

the SP-STM technique allow the investigation of com-
plex magnetic structures (frustrated antiferromagnets,
spin spirals, skyrmion lattices, etc.) [39, 41–48]. Consid-
ering such structures in reduced dimensions, their mag-
netic ground state can be determined [46, 49–52], and the
nature of magnetic interactions can be studied by theo-
retical means, e.g., from first principles [53], or applying
a multiscale approach [54]. Using the theoretically calcu-
lated electronic structure in the magnetic ground state,
electron tunneling transport properties can be investi-
gated.

In the most routinely used constant current mode of
the SP-STM the apparent height difference between dif-
ferently magnetized surface atoms allows the discrimi-
nation of the individual atomic magnetic properties and
the mapping of the magnetic structure. This apparent
height difference is called the magnetic contrast. Find-
ing the maximal magnetic contrast for a given surface-
tip combination is crucial for a more efficient magnetic
mapping. This can be done by using magnetic tips with
large spin polarization [42], and/or by choosing an ap-
propriate bias voltage that selects highly spin-polarized
tunneling states. A very few works focused on the in-
vestigation of the bias dependent magnetic contrast so
far. Among those, a magnetic contrast reversal was re-
ported in two different magnetic systems [55, 56], and
the effect was related to the surface electronic structure
rather than to the effect of the tip. In another study,
such contrast reversals were observed during the scan-
ning with the STM tip at fixed bias, and this was identi-
fied to be due to the magnetic switching of the tip [46].
An extensive work on the prediction of the bias depen-
dent magnetic contrast based on a set of single point
measurements is presented in Ref. [57]. Moreover, un-
der certain circumstances, a giant magnetic contrast can
be obtained, and this effect was explained by chemically
modified STM tips [58]. Small contrast variations owing
to the tunneling anisotropic magnetoresistance (TAMR)
effect have also been reported [59, 60]. This effect is due
to the spin–orbit interaction that modifies the local elec-
tronic structure of the surface, and it can be used as a
nonmagnetic probe for magnetic properties.

The spectroscopic operating mode of STM, the STS
can be applied to investigate many-body effects on
substrate-supported adatoms [61–68], and molecules [69–
71], where Fano resonances [72] contain characteristic in-
formation about the Kondo physics. SP-STS has recently
been used to find inversion of spin polarization above
magnetic adatoms [73–75], and the effect has been ex-
plained theoretically [76]. Furthermore, SP-STS is useful
to study atomic magnetism [77], magnetic interactions
between adatoms [78], and magnetic nanostructures on
surfaces, see, e.g., Refs. [79–83]. This technique has re-
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cently been used to read out information from an atomic
scale all-spin-based logic device [84]. The effect of dif-
ferently magnetized surface regions on SP-STS has also
been reported [79, 85], and the role of tip effects on STS
[7, 86, 87] and SP-STS [10, 88, 89] have been highlighted.

Let us now continue with the description of the 3D
WKB model.

2 Theory

Based on the work of Heinze [90], a hybrid model has
been proposed [56], that uses essentially the Tersoff–
Hamann formalism but the tip electron density of states
(DOS) is not restricted to be constant in energy. This
means that different tip models [76] and their effect on
the tunneling properties can be investigated. The only
requirement for the presented formalism is that it is as-
sumed that electrons tunnel through one tip apex atom.
Since the tip electronic structure is explicitly included in
this method via the projected DOS onto the apex atom,
Eq. (2) of Ref. [90] needs to be reconsidered. The strat-
egy is to determine differential currents first, and then
perform an energy integral in a window according to the
applied bias voltage (V ) in order to arrive at the tun-
neling current. The differential conductance can then be
obtained by the bias-derivative of the current, containing
three characteristic terms [10].

First, we review the tunneling current and the differ-
ential conductance expressions based on the independent
orbital approximation for the vacuum decay of electron
states, and then we extend this model to include a simple
orbital dependent tunneling transmission [91]. Evalua-
tion of the simulated tunneling properties from a data set
on a 3D fine grid above the studied surface is presented

thereafter. This includes the extraction of SP-STM im-
ages [56], magnetic contrasts [57], differential conduc-
tance and effective spin polarization maps [10], as well
as magnetic asymmetries [10].

2.1 Theoretical model of SP-STM within the 3D WKB
approach

In SP-STM the total tunneling current can be decom-
posed into a non-spin-polarized (topographic), ITOPO,
and a spin-polarized (magnetic) part, IMAGN [15, 90, 92,
93],

ITOTAL = ITOPO + IMAGN (1)

This formula is generally valid for either collinear or
noncollinear surface and tip spin structures. ITOPO and
IMAGN can be calculated at different levels of transport
theories. While the perturbation approach has been used
by Hofer and Fisher [92] for collinear surface and tip spin
structures with an arbitrary angle between their spin
quantization axes, the most commonly used method is
based on the Tersoff–Hamann model [12, 13]. Wortmann
et al. [15] introduced its spin-polarized version applicable
to complex noncollinear surface spin structures. Heinze
[90] combined it with the atom superposition method
[93, 94]. Note that the SP-STM method of Heinze does
not consider bias voltage dependence of the tunneling
current and related quantities.

2.1.1 Density matrix formalism

Let us define the following position- and energy-
dependent density matrices in spin space for the tip (T)
and sample (S), respectively,

ρ
T,S

(r, E) = nT,S(r, E)I + mT,S(r, E)σ =
[
nT,S(r, E) +mz

T,S(r, E) mx
T,S(r, E) − imy

T,S(r, E)
mx

T,S(r, E) + imy
T,S(r, E) nT,S(r, E) −mz

T,S(r, E)

]
(2)

Here, I is the 2×2 unit matrix and σ is the Pauli matrix
vector. The charge and magnetization DOS at position r

and energy E, nT,S(r, E) and mT,S(r, E), respectively,
can be obtained from the corresponding density matrix
as

nT,S(r, E) =
1
2
Tr(ρ

T,S
(r, E)I) (3)

mT,S(r, E) =
1
2
Tr(ρ

T,S
(r, E)σ) (4)

where the trace is performed in the spin space. In the
absence of the tip material, the charge and magnetiza-
tion electron local density of states (LDOS) of the sam-
ple surface at the tip position RTIP in the vacuum, re-
spectively nS(RTIP, E) and mS(RTIP, E), are obtained.

nT(RTIP, E) and mT(RTIP, E) are the charge and mag-
netization DOS projected to the tip apex atom. Com-
bining the sample and tip density matrices at RTIP, a
modified LDOS, denoted by MLDOS, can be defined as

MLDOS(RTIP, E)

= ε
1
2
Tr(ρ

S
(RTIP, E)ρ

T
(RTIP, E))

= ε[nS(RTIP, E)nT(RTIP, E)

+mS(RTIP, E)mT(RTIP, E)] (5)

that, in fact, combines the vacuum LDOS of the sur-
face and the projected DOS of the tip apex atom. This
formula is consistent with the spin-polarized Tersoff–
Hamann model [15], except the fact that it explicitly
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includes the energy-dependent electronic structure of
the tip apex. Here, ε ensures that the MLDOS is cor-
rectly measured in the units of (eV)−1. In the follow-
ing, the notations nT(E) = nT(RTIP, E) and mT(E) =
mT(RTIP, E) are used.

The position dependence of the sample density ma-
trices are considered as ρ

S
(Ra, E) with Ra the position

vector of the ath sample surface atom, in order to allow
different chemical or magnetic properties for these atoms.
na

S(E) = nS(Ra, E) and ma
S(E) = mS(Ra, E) now de-

note charge and magnetization DOS projected to the ath
surface atom, respectively. Following this, the vacuum
LDOS of the surface can be approximated by a superpo-
sition of exponentially decaying atomic electron states.
This way, the electron charge and magnetization LDOS
at energy E and at the RTIP(x, y, z) position in the vac-
uum above the surface, nS(x, y, z, E) and mS(x, y, z, E),
respectively, are given by the following expressions:

nS(x, y, z, E) =
∑

a

e−2κ(E)da(x,y,z)na
S(E) (6)

mS(x, y, z, E) =
∑

a

e−2κ(E)da(x,y,z)ma
S(E) (7)

with

κ(E) =
1
�

√
2m(φS + ES

F − E) (8)

where the electron’s mass is m, � is the reduced Planck
constant, and φS and ES

F are the average electron work
function and the Fermi energy of the sample surface, re-
spectively. Here,

da(x, y, z) = |RTIP(x, y, z) − Ra| (9)

is the distance between the tip apex and the ath surface
atom. Note that the exact vacuum LDOS of the surface
can be obtained, in principle, by explicitly calculating the
decay of the electron states into the vacuum taking their
orbital symmetry into account as well, not just via such
a simple atom-decomposed model. This atom superpo-
sition approach, however, has computational advantages
as will be demonstrated later.

An elastic tunneling transition between the tip apex
and the ath surface atom at energy E can be represented
as the trace of the multiplied density matrices, similarly
to Eq. (5). This is the energetic ingredient for the tunnel-
ing transition. Apart from this, the transmission coeffi-
cient through a potential barrier between the ath surface
atom and the tip apex has to be included in the tunnel-
ing model, in general it is denoted by T (E, V, da). It has
energy (E) and bias (V ) dependence, and contains a tip-
position-dependent geometry information of the three-
dimensional tunnel junction via the set of da(RTIP).

Thus, the modified LDOS at the tip apex position

RTIP(x, y, z) and at energy E can be approximated
as the superposition of individual atomic contributions
from the sample surface as

MLDOS(RTIP, E, V ) = ε
∑

a

T (E, V, da(RTIP))

× 1
2
Tr

(
ρ
S
(Ra, E)ρ

T
(RTIP, E)

)
(10)

The main advantage of using the density matrix formal-
ism is that electronic and spin structures calculated ei-
ther nonrelativistically or relativistically can be treated
within the same theoretical framework. Moreover, the
motivation for using the atomic superposition approxi-
mation is, on one hand, computational efficiency, since
calculating and storing the projected DOS onto surface
atoms in the magnetic unit cell is computationally much
cheaper compared to the exact vacuum LDOS of the sur-
face on a great number of grid points. On the other hand,
such atom-projected PDOS functions are routinely ob-
tained in all ab initio electronic structure codes, whereas
the vacuum LDOS is not always routinely accessible for
the average user.

2.1.2 Transmission

According to above, the MLDOS can be decomposed,
similarly to Eq. (1), as

MLDOS(x, y, z, E, V )

= MLDOSTOPO(x, y, z, E, V )

+MLDOSMAGN(x, y, z, E, V ) (11)

and assuming an exponentially decaying tunneling trans-
mission,

T (E, V, da(x, y, z)) = e−2κ(E,V )da(x,y,z) (12)

the TOPO and MAGN terms can be written as

MLDOSTOPO(x, y, z, E, V )

= ε
∑

a

e−2κ(E,V )da(x,y,z)nT(E)na
S(E) (13)

MLDOSMAGN(x, y, z, E, V )

= ε
∑

a

e−2κ(E,V )da(x,y,z)mT(E)ma
S(E) (14)

Here, the sum over a has to be carried out, in princi-
ple, over all the surface atoms. Convergence tests, how-
ever, showed that including a relatively small number
of atoms in the sum provides converged MLDOS val-
ues [89]. The exponential factor in these equations is the
transmission probability for electrons tunneling between
states of atom a on the surface and the tip apex, where κ
is the vacuum decay. κ is treated within the independent-
orbital approximation [12, 13, 90], that means that the
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same spherical decay is assumed for all electron states
irrespective of their orbital symmetry, but its energy de-
pendence is explicitly considered essentially in the same
fashion as in Ref. [95]. Extension of this model to take
into account orbital dependent tunneling transmission is
reported in Section 2.3. Two different ways of calculating
κ are considered. One is inspired by the Tersoff–Hamann
model, taking only surface properties into account, see
Eq. (8). Note that this formula does not have an explicit
bias dependence. This energy-dependent vacuum decay
can be used for an ideal, electronically featureless and
maximally spin-polarized tip model. Taking into account
the tip apex electronic structure obtained from first prin-
ciples, the more general expression for κ is based on the
1D WKB approximation assuming an effective rectangu-
lar potential barrier between the tip and the surface,

κ(E, V ) =
1
�

√
2m

(
φS + φT + eV

2
+ ES

F − E

)
(15)

with φT the local electron work function of the tip apex,
e the elementary charge, and V the applied bias voltage.
This vacuum decay formula is considered for different
model tip materials. The quantity (φS + φT + eV )/2 +
ES

F −E is the energy- and bias-dependent apparent bar-
rier height for tunneling electrons, φapp(E, V ). Empirical
or model nonlinear variations of φapp(E, V ) with respect
to the bias voltage [96, 97] can also be included in this
approach. Note that in the case of φT + eV = φS, Eq.
(8) is recovered. The average work function of the sample
surface is calculated from the local electrostatic potential
on a three-dimensional fine grid, Φ(x, y, z), as

φS = max
z

{
1

NxNy

∑
x,y

Φ(x, y, z)

}
− ES

F (16)

withNx andNy the corresponding number of grid points,
and the local work function of the tip apex is obtained
as

φT = max
z

{Φ(x0, y0, z)} −ET
F (17)

with x0 and y0 lateral coordinates of the tip apex atom,
and ET

F the Fermi energy of the tip.

2.1.3 Sample and tip electronic properties

The material properties are included into this tunnel-
ing model via the projected electron density of states
(PDOS) of the tip apex and of the sample surface atoms
that can be obtained from collinear or noncollinear elec-
tronic structure calculations. In Eq. (14), mT(E) and
ma

S(E) denote electron magnetization DOS vectors pro-
jected to the tip apex and the ath surface atom, respec-
tively. In the collinear case,

mT,S(E) = mT,S(E)eT,S

mT,S(E) = n↑
T,S(E) − n↓

T,S(E) (18)

↑ and ↓ relative to their energy-independent local spin
quantization axes, denoted by the unit vectors eT,S. Sim-
ilarly, in Eq. (13), nT(E) and na

S(E) are the electron
charge DOS projected to the tip apex and the ath surface
atom, respectively. They can be written in the collinear
case as

nT,S(E) = n↑
T,S(E) + n↓

T,S(E) (19)

The spin-resolved PDOS quantities, n↑,↓
T,S(E), can be ob-

tained from first principles collinear magnetic calcula-
tions. For this task any available ab initio electronic
structure code can be used. Spin-resolved PDOS is cal-
culated by assuming a Gaussian broadening of the peaks
at the k-resolved spin-dependent electron energy (Kohn-
Sham) eigenvalues, εj↑,↓

T,S (k), obtained at zero tempera-
ture, as

n↑,↓
T,S(E) =

∑
k

∑
j

1
G
√
π

e−(E−εj↑,↓
T,S (k))2/G2

×
∫

atomic volume

d3rψjk↑,↓†
T,S (r)ψjk↑,↓

T,S (r) (20)

with ψjk↑,↓
T,S (r) the spin-dependent electron wave func-

tions corresponding to εj↑,↓
T,S (k) for the tip (T) and the

surface (S), respectively, and j the energy band index.
The integral over the corresponding atomic volumes can
be performed either in the atomic sphere or within the
Bader volume [98]. The Gaussian parameter G could,
in general, be temperature dependent. In standard cal-
culations, its value can be fixed to a relatively high
value of 0.1 eV in order to provide smooth n↑,↓

T,S(E) func-
tions. Concerning the smoothness of the PDOS, a high
G value counteracts the effect of eventually underrep-
resented bulk states due to a slab geometry, and it is
useful if the number of k-points in the Brillouin zone is
restricted due to computational reasons.

Taking the fully noncollinear electronic structure, the
atom-projected charge DOS at energy E can be obtained
as

nT,S(E) =
∑

k

∑
j

1
G
√
π

e−(E−εj
T,S(k))2/G2

×
∫

atomic volume

d3rΨ jk†
T,S (r)Ψ jk

T,S(r) (21)

where εj
T,S(k) is the set of electron energy (Kohn–Sham)

eigenvalues at zero temperature, and Ψ jk
T,S(r) the cor-

responding spinor electron wave functions. The atom-
projected magnetization DOS vector at energy E reads
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mT,S(E) =
∑

k

∑
j

1
G
√
π

e−(E−εj
T,S(k))2

/G2

×
∫

atomic volume

d3rΨ jk†
T,S (r)σΨ jk

T,S(r) (22)

with σ being the Pauli spin operator vector. Unit vec-
tors determining the local spin quantization axis of the
tip apex, eT(E), and the ath surface atom, ea

S(E), at a
given energy can be determined from these magnetiza-
tion DOS vectors as

eT,S(E) =
mT,S(E)
mT,S(E)

=
mT,S(E)√

mx
T,S(E)2 +my

T,S(E)2 +mz
T,S(E)2

(23)

thus, the atom-projected magnetization DOS vector has
the following form:

mT,S(E) = mT,S(E)eT,S(E)

=
√
mx

T,S(E)2 +my
T,S(E)2 +mz

T,S(E)2eT,S(E) (24)

In general, the scalar product of the magnetization
DOS of the tip apex and sample surface atoms in Eq.
(14) can be rewritten as

mT(E)ma
S(E) = mT(E)eT(E)ma

S(E)ea
S(E)

= mT(E)ma
S(E) cos ξa(E) (25)

Here, ξa(E) is the angle between the spin quantization
axes of the tip apex and the ath surface atom at energy
E defined by

cos ξa(E) = eT(E)ea
S(E) (26)

Previously, only the case of energy-independent ξa has
been considered [90], that corresponds to the fixed angle
between the unit vectors of local spin quantization axes
of surface atoms and the tip apex, ea

S and eT, respec-
tively. However, there are more possibilities to combine
electronic structure data of the sample and the tip, that
may result in an energy-dependent ξa(E), see Table 1. All
listed combinations can be investigated within the pre-
sented formalism. The combination in the column with
underlined values corresponds to the studied system in
Ref. [89], and the combinations in columns in boldface
are considered in Ref. [56].

The MLDOS can be rewritten in terms of energy de-
pendent spin polarizations. The spin polarization is de-
fined as

PT,S(E) =
mT,S(E)
nT,S(E)

=
n↑

T,S(E) − n↓
T,S(E)

n↑
T,S(E) + n↓

T,S(E)
(27)

assuming collinear electronic structure. From the non-
collinear electronic structure the energy dependent spin
polarization vectors are obtained by using Eq. (24) as

PT,S(E) =
mT,S(E)
nT,S(E)

=

√
mx

T,S(E)2 +my
T,S(E)2 +mz

T,S(E)2

nT,S(E)
eT,S(E)

= PT,S(E)eT,S(E) (28)

Thus, the MLDOS at the tip apex position and at energy
E can alternatively be written using the above defined
spin polarizations as

MLDOS(x, y, z, E, V )

= ε
∑

a

e−2κ(E,V )da(x,y,z)

× nT(E)na
S(E)[1 + PT(E)P a

S (E)] (29)

where in the collinear case eT,S has no energy-
dependence:

PT,S(E) = PT,S(E)eT,S (30)

Table 1 Combinations of taking into account energy dependence
(Y) or independence (N) of the local spin quantization axes of sur-
face atoms (ea

S) and the tip apex (eT), and consequence for the
energy dependence of the angle ξa between the surface local (ath
atom) and the tip quantization axes, where cos ξa = eTea

S. The
combination in the column with underlined values corresponds to
the studied system in Ref. [89], and the combinations in columns
in boldface are considered in Ref. [56]. This Table is taken from
Ref. [56].

No. of atoms per Surface Energy

surface unit cell magnetic order dependence

1 N N Y Y

ea
S(E) >1 Collinear N N

>1 Noncollinear N N Y Y

eT(E) N Y N Y N Y N Y N Y

ξa(E) N Y Y Y N Y N Y Y Y

2.1.4 Tunneling current

Using Eq. (11) of Ref. [15] and the MLDOS expressions
in Eqs. (13) and (14), a virtual differential conductance
at the tip apex position and at energy E = ES

F + eU can
be defined for both the TOPO and MAGN contributions
as

dITOPO

dU
(x, y, z, U, V )

= ε2
e2

h

∑
a

e−2κ(ES
F+eU,V )da(x,y,z)

× nT(ET
F + eU − eV )na

S(ES
F + eU) (31)
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dIMAGN

dU
(x, y, z, U, V )

= ε2
e2

h

∑
a

e−2κ(ES
F+eU,V )da(x,y,z)

× mT(ET
F + eU − eV )ma

S(ES
F + eU) (32)

where the fact is used that the tip Fermi level is shifted
by eV with respect to the sample Fermi level, i.e., ET

F =
ES

F + eV , and therefore E = ES
F + eU = ET

F + eU − eV ,
where V is the bias voltage. Above formulas mean that
multiplying the MLDOS by ε results in a dimensionless
quantity, that is multiplied by the conductance quantum
e2/h in order to arrive at the dI/dU expressions mea-
sured in the units of A/V . This means that both TOPO
and MAGN parts of the dI/dU is proportional to the cor-
responding MLDOS that contains both surface and tip
electronic information. If the two subsystems are calcu-
lated separately, it is possible to combine different levels
of electronic structure for the tip and the surface, see
also Table 1, or include simplified model tip electronic
structures into this approach.

The tunneling current can be determined from the
dI/dU quantities by integration in an energy window
[U1(V, T ), U2(V, T )] corresponding to the applied bias
voltage (V ) and temperature (T ):

ITOPO(x, y, z, V )

=
∫ U2(V,T )

U1(V,T )

dITOPO

dU
(x, y, z, U, V )dU (33)

IMAGN(x, y, z, V )

=
∫ U2(V,T )

U1(V,T )

dIMAGN

dU
(x, y, z, U, V )dU (34)

where the energy window is defined as

U1(V, T ) = min(0, V ) − ln(3 +
√

8)kBT/e (35)
U2(V, T ) = max(0, V ) + ln(3 +

√
8)kBT/e (36)

Here, U = 0 corresponds to the Fermi energy of the
sample surface, and U = V to the Fermi energy of the
tip. Broadening of electron states at finite temperatures
is considered according to Eqs. (20)–(22), and the tem-
perature dependent terms in the integral limits are the
full width at half maximum of the energy-derivative of
the Fermi distribution function divided by two, and kB

is the Boltzmann constant. Another, more precise way
to include thermal effects in calculating the tunneling
current is given in the Appendix of Ref. [86] based on
the Sommerfeld expansion, which can also be incorpo-
rated into this approach. Lattice vibrations at nonzero
temperatures are not taken into account. Assuming zero
temperature, the corresponding tunneling currents can
be obtained as

ITOPO(x, y, z, V ) =
∫ V

0

dITOPO

dU
(x, y, z, U, V )dU (37)

IMAGN(x, y, z, V ) =
∫ V

0

dIMAGN

dU
(x, y, z, U, V )dU (38)

Note that fixing the integral limits as given here results
in a sign change of the current components if V < 0. One
can calculate these current contributions at (x, y, z) grid
points of a 3D fine grid in a finite box above the surface,
for a sketch see Fig. 1. The image resolution is deter-
mined by the density of (x, y) grid points. More details
about extracting constant height or constant current con-
tours from the simulated data, i.e., generating SP-STM
images, can be found in Section 2.4.1, and information
on the image contrast is given in Section 2.4.2.

Fig. 1 Sketch of a finite box for data collection above a surface,
and a constant current contour at about 3.5 Å.

2.2 Theoretical model of SP-STS within the 3D WKB
approach

The differential conductance can be obtained as the
derivative of the current with respect to the bias volt-
age. Assuming T = 0 K temperature,

dI
dV

(x, y, z, V ) =
dI
dU

(x, y, z, V, V )

+
∫ V

0

∂

∂V ′
dI
dU

(x, y, z, U, V ′)
∣∣∣∣
V ′=V

dU (39)

Similarly to the tunneling current, the differential con-
ductance can be decomposed into non-spin-polarized
(TOPO) and spin-polarized (MAGN) parts and it can
be written at the tip position RTIP(x, y, z) and at bias
voltage V as

dITOTAL

dV
(x, y, z, V ) =

dITOPO

dV
(x, y, z, V )

+
dIMAGN

dV
(x, y, z, V ) (40)
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In Eq. (39), the first term is the virtual differential con-
ductance, the sum of Eqs. (31) and (32) at U = V . The
second term can be reexpressed following the literature
[5, 10, 86], and the differential conductance at bias volt-
age V can be written as the sum of three terms,

dI
dV

(x, y, z, V ) =
dI
dU

(x, y, z, V, V ) +B(x, y, z, V )

+DT(x, y, z, V ) (41)

Here, B is the background term containing the bias-
derivative of the transmission function, and DT is the
tip-derivative term, containing the bias-derivative of the
tip electronic structure. B is usually taken into account
in recent STS theories [7, 86, 87], while DT is rarely con-
sidered in the recent literature.

The contributions of Eq. (40) are given as

dITOPO

dV
(x, y, z, V ) =

dITOPO

dU
(x, y, z, V, V )

+BTOPO(x, y, z, V ) +DTOPO
T (x, y, z, V ) (42)

dIMAGN

dV
(x, y, z, V ) =

dIMAGN

dU
(x, y, z, V, V )

+BMAGN(x, y, z, V ) +DMAGN
T (x, y, z, V ) (43)

and all terms in Eq. (41) can be written as the sum of
TOPO and MAGN parts:

dI
dU

(x, y, z, V, V ) =
dITOPO

dU
(x, y, z, V, V )

+
dIMAGN

dU
(x, y, z, V, V ) (44)

B(x, y, z, V ) = BTOPO(x, y, z, V )

+BMAGN(x, y, z, V ) (45)

DT(x, y, z, V ) = DTOPO
T (x, y, z, V )

+DMAGN
T (x, y, z, V ) (46)

In order to calculate the background term, one needs
the bias-derivative of the transmission function. Using
Eq. (12) and the given form of the vacuum decay in Eq.
(15), one obtains

∂T

∂V
(ES

F + eU, V, da(x, y, z))

= −me
�2
da(x, y, z)

T (ES
F + eU, V, da(x, y, z))
κ(ES

F + eU, V )
(47)

Considering this, the background and the tip-derivative
contributions can be written as

BTOPO(x, y, z, V ) = −ε2 me
3

2π�3

∑
a

da(x, y, z)

×
∫ V

0

e−2κ(ES
F+eU,V )da(x,y,z)

κ(ES
F + eU, V )

×nT(ET
F + eU − eV )na

S(E
S
F + eU)dU (48)

BMAGN(x, y, z, V ) = −ε2 me
3

2π�3

∑
a

da(x, y, z)

×
∫ V

0

e−2κ(ES
F+eU,V )da(x,y,z)

κ(ES
F + eU, V )

×mT(ET
F + eU − eV )ma

S(ES
F + eU)dU (49)

DTOPO
T (x, y, z, V )

= −ε2 e
2

h

∑
a

∫ V

0

e−2κ(ES
F+eU,V )da(x,y,z)

×∂nT

∂U
(ET

F + eU − eV )na
S(ES

F + eU)dU (50)

DMAGN
T (x, y, z, V )

= −ε2 e
2

h

∑
a

∫ V

0

e−2κ(ES
F+eU,V )da(x,y,z)

×∂mT

∂U
(ET

F + eU − eV )ma
S(ES

F + eU)dU (51)

Thus, all components of the differential conductance
are formulated in spin-polarized tunnel junctions within
the 3D WKB framework using first principles electronic
structure of the sample and the tip. One can calculate
these differential conductance contributions and related
quantities at (x, y, z) grid points of a 3D fine grid in a
finite box above the surface, for a sketch see Fig. 1. More
details about extracting spectroscopic information from
the simulated data can be found in Sections 2.4.3 and
2.4.4.

2.3 Orbital dependent tunneling within the 3D WKB
approach

In this section the topographic part of the tunneling
properties are considered only, but the described pro-
cedure can be extended to magnetic systems as well. So
far the independent orbital approximation [12, 13, 90]
has been used for describing the tunneling transmis-
sion, see Eq. (12). Next, this tunneling model is ex-
tended by taking advantage of the orbital decomposition
of the electronic structure data and the real space shape
of the electron orbitals. The PDOS of the sample sur-
face atoms and the tip apex can be decomposed accord-
ing to orbital symmetry, i.e., real spherical harmonics,
α, β ∈ {s, py, pz, px, dxy, dyz, d3z2−r2 , dxz, dx2−y2}, as

na
S(E) =

∑
α

na
Sα(E) (52)

nT(E) =
∑

β

nTβ(E) (53)

Similar decomposition of the Green functions has been
employed in the linear combination of atomic orbitals
(LCAO) scheme by Refs. [24, 29]. Assuming such an or-
bital decomposition, the virtual differential conductance
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can be generalized as

dI
dU

(x, y, z, U, V )

= ε2
e2

h

∑
a

∑
α,β

Tαβ(ES
F + eU, V, da(x, y, z))

×nTβ(ET
F + eU − eV )na

Sα(ES
F + eU) (54)

where, in addition to the atomic superposition (sum over
a), each α↔ β transition with an orbital dependent tun-
neling transmission is summed up: Tαβ(E, V, da) gives
the electron tunneling probability at energy E from the
tip apex β orbital to the α orbital of the ath surface
atom at positive bias voltage (V > 0), and from the α
orbital of the ath surface atom to the tip apex β orbital
at negative bias (V < 0). Tαβ can be defined in different
ways based on physical arguments. Ref. [91] considers
the following form,

Tαβ(ES
F + eU, V, da) = e−2κ(ES

F+eU,V )datαβ(ϑa, ϕa)

(55)

for each surface atom ↔ tip apex 1D electron transition.
Here, the energy and bias dependent part corresponds to
the spherical exponential decay considered in Eq. (12),
and is independent of the orbital symmetry. This is mul-
tiplied by an orbital dependent expression tαβ , which
depends on the spatial arrangement of the sample atoms
relative to the tip apex and all the orbital shapes involved
in the tunneling. The angular dependence on ϑa and ϕa

comes into play in the following way: Let us consider
one transition between surface atom a and the tip apex
along the line connecting the two atoms. A particular
geometry is shown in Fig. 2. For brevity, the a notation
of the surface atom is omitted. For both atoms a local
coordinate system can be set up, and the angular depen-
dence of the atomic orbital wave functions χ(ϑ, ϕ) are
defined in the corresponding coordinate system, as sum-
marized in Table 2. RTIP − Ra defines a vector point-
ing from the surface atom toward the tip apex, and it
can be represented by the (da, ϑa, ϕa) coordinates in the
spherical coordinate system centered on the ath surface
atom. Taking the opposite connecting vector from the
tip apex toward the surface atom, its coordinates are
(da, π − ϑa, π + ϕa) in the spherical coordinate system
centered on the tip apex. According to Fig. 2, da, ϑa,
and ϕa can be calculated as

da =
√

(x− xa)2 + (y − ya)2 + (z − za)2 (56)

ϑa = arccos
z − za

da
(57)

ϕa = arccos
x− xa

da sinϑa
(58)

using the global coordinates RTIP = (x, y, z) and Ra =

(xa, ya, za). Considering the above expressions, tαβ ac-
counts for the modification of the perfect spherical ex-
ponential decay along the connecting line through the
angular dependence of the atomic orbitals as

tαβ(ϑa, ϕa) = [χα(ϑa, ϕa)]2 × [χβ(π − ϑa, π + ϕa)]2

(59)

where χα,β(ϑ, ϕ) are the real spherical harmonics sum-
marized in Table 2. They were chosen in such a way that
0 � tαβ � 1. This factor takes the effect of the direc-
tional tunneling between real space orbitals into account.
The physical motivation is the angular dependence of the
electron density of the orbitals in the given tunneling di-
rection, which modifies the tunneling transmission. The
maximum t = 1 is obtained if the angular distributions of
the electron density according to the given orbital sym-
metries (α, β) around both the sample surface atom and
the tip apex have maxima along the line of the tunneling
direction. This is always the case for s-s type of tunnel-
ing irrespective of the relative position of the tip apex
and sample surface atoms, i.e., one can observe perfect
spherical exponential decay between tip and sample s

orbitals. In some particular geometries t = 1 can be ob-
tained even for other type of orbitals, e.g., if the tip
apex is precisely above surface atom a, i.e., ϑa = 0, then
tαβ(ϑa = 0, ϕa) = 1 for all of the following combina-
tions: α, β ∈ {s, pz, d3z2−r2}. On the other hand, if the
tip apex is above surface atom a then orbitals with nodal
planes orthogonal to the surface have zero contribution
to the tunneling from this particular surface atom, i.e., a
reduced effective tunneling transmission is obtained [22].
Note that the independent orbital approximation corre-
sponds to tαβ = 1 for all α ↔ β transitions, i.e., the
same tunneling transmission is assumed between all or-
bitals. Within this orbital dependent tunneling approach
ideal tip models with particular orbital symmetries can
be considered, i.e., β0 orbital symmetry corresponds to
the choice of nTβ0 = 1(eV)−1 and nT(β �=β0) = 0. More
realistic tips can be obtained by explicitly calculating the

Fig. 2 Geometry of a general tip apex-sample atom setup. Re-
produced from Ref. [91].
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Table 2 Real space orbitals, their indices used in the present pa-
per, their definition from spherical harmonics Y m

l (ϑ, ϕ), and the
angular dependence of their wave functions χ(ϑ, ϕ). Note that ϑ
and ϕ are the usual polar and azimuthal angles, respectively, in the
spherical coordinate system centered on the corresponding (tip or
sample) atom. This Table is taken from Ref. [91].

Orbital Index Definition χ(ϑ, ϕ)

s 1 Y 0
0 1

py 2 Y 1
1 − Y −1

1 sin ϑ sin ϕ

pz 3 Y 0
1 cos ϑ

px 4 Y 1
1 + Y −1

1 sin ϑ cos ϕ

dxy 5 Y 2
2 − Y −2

2 sin2 ϑ sin(2ϕ)

dyz 6 Y 1
2 − Y −1

2 sin(2ϑ) sin ϕ

d3z2−r2 7 Y 0
2

1
2

(3 cos2 ϑ − 1)

dxz 8 Y 1
2 + Y −1

2 sin(2ϑ) cos ϕ

dx2−y2 9 Y 2
2 + Y −2

2 sin2 ϑ cos(2ϕ)

orbital decomposition of the tip apex PDOS in model tip
geometries.

The presented theory is thus an extension of the
3D WKB STM/STS approach considering tunneling be-
tween directional orbitals. The tunneling current and the
differential conductance can be calculated at the tip po-
sition RTIP(x, y, z) and at bias voltage V as the sum of
all α↔ β transitions between real space orbitals,

I(x, y, z, V ) =
∑
α,β

Iαβ(x, y, z, V ) (60)

dI
dV

(x, y, z, V ) =
∑
α,β

dIαβ

dV
(x, y, z, V ) (61)

respectively, with

Iαβ(x, y, z, V )

= ε2
e2

h

∑
a

∫ V

0

Tαβ(ES
F + eU, V, da(x, y, z))

×nTβ(ET
F + eU − eV )na

Sα(ES
F + eU)dU (62)

dIαβ

dV
(x, y, z, V )

= ε2
e2

h

{∑
a

Tαβ(ES
F + eV, V, da(x, y, z))

×nTβ(ET
F )na

Sα(ES
F + eV )

+
∑

a

∫ V

0

∂Tαβ

∂V
(ES

F + eU, V, da(x, y, z))

×nTβ(ET
F + eU − eV )na

Sα(ES
F + eU)dU

−
∑

a

∫ V

0

Tαβ(ES
F + eU, V, da(x, y, z))

×∂nTβ

∂U
(ET

F + eU − eV )na
Sα(ES

F + eU)dU
}

(63)

This decomposition enables the analysis of the orbital
contributions to the total tunneling current and to the

differential conductance. It is important to note that
while the formulation of Chen’s derivative rule [21] is in-
spired by the Tersoff–Hamann model, and calculates the
tunneling transmission as the absolute value square of
the tunneling matrix element that is proportional to the
sample wave function derivative with respect to the real
space coordinate corresponding to the given tip orbital
symmetry (β), the hereby presented transmission func-
tion also depends on the sample surface atoms’ orbital
symmetry (α). Moreover, the electronic structure of the
tip apex is included in this orbital dependent tunneling
theory via the PDOS.

Note that the presented orbital-dependent method can
also be applied to magnetic systems taking into account
the orbital-decomposed magnetization PDOS of the tip
and sample together with the orbital dependent tunnel-
ing transmission in Eq. (55). As it was pointed out by
Ferriani et al. [76], the spin polarization in the vacuum
can have an opposite sign than within the tip apex atom,
and this sign change is also accompanied by different
dominating orbital characters. Thus, the consideration
of an orbital dependent tunneling transmission might be
a better model for describing electron transport through
a magnetic tunnel junction.

2.4 Tunneling properties

From the calculated current and differential conduc-
tances, a wide spectrum of information characteristic for
the specific surface-tip combination can be obtained, and
also generally important findings can be derived. It has to
be noted that the presented SP-STM and SP-STS meth-
ods can also be applied to study nonmagnetic systems,
where all magnetic contributions equal zero, and the cor-
responding topographic STM images and STS spectra
can be simulated. In this case, the magnetic asymmetry
is also zero.

2.4.1 Current

From the obtained 3D tunneling current maps,
I(x, y, z, V, T ), data can be extracted that are directly
comparable to experiments. In particular, current values
can be shown in arbitrary z = ZC = const planes or
constant-value contours can be defined. The first option
corresponds to the constant height mode, I(x, y, ZC =
const, V, T ), while the second to the constant current
mode of SP-STM, I(x, y, z, V, T ) = IC = const. From the
latter, a 2D tip position map, called the height profile,
z(x, y, V, T, IC) can be extracted using logarithmic inter-
polation between grid points z1 < z2, if I(x, y, z1, V, T ) >
IC > I(x, y, z2, V, T ), in the following way [56],
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z(x, y, V, T, IC)

= z1 + Δz
ln IC − ln I(x, y, z1, V, T )

ln I(x, y, z2, V, T ) − ln I(x, y, z1, V, T )
(64)

where Δz = z2 − z1 = zi+1 − zi = 0.1 a.u. (≈ 0.053 Å)
gives a fine resolution in the surface normal z-direction.
A constant current contour is demonstrated inside the
finite box above a surface in Fig. 1. Alternatively, if IC
has such a value that is not contained in the considered
finite box above the surface, i.e., if IC < I(zmax), then

z(x, y, V, T, IC) = zmax + Δz

× ln IC − ln I(x, y, zmax, V, T )
ln I(x, y, zmax, V, T ) − ln I(x, y, zmax−1, V, T )

(65)

Surface corrugation can be determined from this z(x, y)
map. Note that the total current contains both topo-
graphic and magnetic contributions, therefore z(x, y)
will be the simulated SP-STM image [56, 90]. In the
presented model its bias and temperature dependence
is considered as well. In periodic magnetic systems the
magnetic unit cell can be identified in the simulated im-
age [15].
ITOPO and IMAGN in Eqs. (37) and (38), respectively,

can be analyzed separately using the same way as de-
scribed above, and they can be related to SP-STM exper-
iments using the differential magnetic mode [43]. From
the non-magnetic height profile, z(x, y, V, T, ITOPO =
const), the surface topography can be calculated, and
in periodic systems the chemical unit cell is revealed in
the simulated image.

2.4.2 Contrast

The contrast between two lateral surface positions is de-
fined as their apparent height difference on a constant
current contour.

On a nonmagnetic constant current STM image the
contrast between atoms A andB on the surface at the av-
erage tip-sample distance z1 and bias voltage V is [90, 99]

ΔzAB
nonmagn(z1, V ) = − ΔIAB(z1, V )

∂Iav/∂z(z1, V )
(66)

where ΔIAB(z1, V ) is the current difference above atoms
A and B at the tip-sample distance z1, and Iav(z, V ) is a
laterally averaged current over the surface chemical unit
cell at a tip-sample distance of z. Since it is a tunneling
current, it decays exponentially as z increases [99].

Next, the above relation between constant current and
constant height STM images is adopted to the SP-STM
scenario. Similarly to Eq. (1), the total contrast can also
be decomposed as the sum of topographic and magnetic

contributions,

ΔzAB(z1, V ) = ΔzAB
TOPO(z1, V ) + ΔzAB

MAGN(z1, V )

= − ΔIAB
TOPO(z1, V )

∂Iav
TOTAL/∂z(z1, V )

− ΔIAB
MAGN(z1, V )

∂Iav
TOTAL/∂z(z1, V )

(67)

Here, ΔIAB
TOPO and ΔIAB

MAGN are the respective topo-
graphic and magnetic current differences above atoms
A and B. Iav

TOTAL has to be calculated by laterally av-
eraging the total current over the surface (chemical and
magnetic) supercell at a constant tip-sample distance,

Iav
TOTAL(z, V ) =

1
NxNy

Nx∑
i=1

Ny∑
j=1

ITOTAL(xi, yj , z, V )

(68)

where Nx and Ny denote the number of grid points
in the lateral x and y directions, respectively. Again,
Iav
TOTAL(z, V ) is expected to decay exponentially as z in-

creases.
In the following, let us focus on the magnetic contrast

only. Therefore, let us assume an atomically flat sample
surface consisting of chemically equivalent but magnet-
ically inequivalent atoms. In this case the topographic
contrast between any two surface atoms disappears since
ΔIAB

TOPO = 0. Hence, the total contrast between sur-
face atoms is the magnetic contrast, ΔzAB(z1, V ) =
ΔzAB

MAGN(z1, V ).
Since the calculation of the contrast requires the z-

derivative of the exponentially decaying laterally aver-
aged total current in Eq. (68), a full scanning of the
surface magnetic unit cell at two constant heights is nec-
essary. The measurement time of this is comparable to
record the constant current contour above the same scan
area, thus there is no advantage of using Eq. (67) for
the contrast estimation. It is advantageous to avoid any
scanning above the surface but still predict the magnetic
contrast between two surface atoms on a constant current
contour. Therefore, the denominator in Eq. (67) needs
to be reconsidered, and it is allowed to contain current
quantities above the two lateral sites A and B only.

A motivation for constructing the magnetic contrast
formula is suggested by the following analogy at con-
stant current condition: In a nonmagnetic STM image
the modulation due to the surface atoms is superimposed
on the average tip-sample distance, whereas in an SP-
STM image of a complex magnetic surface the magnetic
modulation is superimposed on the topographic image.
Therefore, taking Eq. (66) and generalizing to the SP-
STM case, the small lateral variation of the current due
to the magnetic modulation plays the role of the nu-
merator, i.e., ΔIAB → ΔIAB

MAGN, and the topographic
current takes the role of the average current in the de-
nominator, i.e., Iav → ITOPO. This is a fortunate choice
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since the topographic currents above all surface atoms
are the same due to the assumed chemical equivalence,
IA
TOPO(z, V ) = IB

TOPO(z, V ). Following this, a magnetic
contrast between atoms A and B on the surface at the
tip-sample distance z1 and bias voltage V can be defined
as

ΔzAB
I (z1, V ) = − ΔIAB

MAGN(z1, V )
∂IA

TOPO/∂z(z1, V )

=
IA
MAGN(z1, V ) − IB

MAGN(z1, V )
2κA

TOPO(V )IA
TOPO(z1, V )

(69)

where the exponentially decaying character of the topo-
graphic tunneling current is used,

IA
TOPO(z, V ) = IA0

TOPO(V )e−2κA
TOPO(V )z (70)

An even more straightforward idea is to approximate
the lateral average of the total tunneling current over the
magnetic unit cell as the average of the currents mea-
sured above the A and B sites, which is still supposed to
decay exponentially with respect to z [57],

Iav.AB
TOTAL(z, V ) =

IA
TOTAL(z, V ) + IB

TOTAL(z, V )
2

= Iav.AB0
TOTAL(V )e−2κav.AB

TOTAL(V )z (71)

Using this quantity, another magnetic contrast between
atoms A and B on the surface at the tip-sample distance
z1 and bias voltage V can be defined as

ΔzAB
II (z1, V ) = − ΔIAB

MAGN(z1, V )
∂Iav.AB

TOTAL/∂z(z1, V )

=
IA
MAGN(z1, V ) − IB

MAGN(z1, V )
2κav.AB

TOTAL(V )Iav.AB
TOTAL(z1, V )

(72)

Assuming that ΔzAB(z1, V ) and ΔzAB(z2, V ) mag-
netic contrasts are available at z1 �= z2 tip-sample dis-
tances, employing either Eq. (69) or Eq. (72), and fur-
ther assuming an exponentially decaying magnitude of
the contrast with increasing tip-sample distance, the bias
dependent magnetic contrast between atoms A and B

at an arbitrary tip-sample distance z in the tunneling
regime can be estimated as

ΔzAB(z, V ) = sgn(ΔzAB(z1, V ))|ΔzAB(z1, V )| z2−z
z2−z1

×|ΔzAB(z2, V )|
z−z1

z2−z1 (73)

The derivation of this formula is reported in the Ap-
pendix of Ref. [57].

2.4.3 Differential conductance

From the 3D differential conductance map, data can be
extracted that are directly comparable to experiments.
For example, a single point spectrum corresponds to a

fixed (x0, y0, z0) tip position, and 2D spectra can also be
obtained, where the image resolution is determined by
the density of (x, y) grid points. There are usually two
ways to define a 2D differential conductance map [42].
The first method fixes the tip height at z = Zstab = const

and scans the surface, dI/dV (x, y, Zstab, V ). The sec-
ond option measures dI/dV on a constant current con-
tour, ITOTAL = Istab = const, which is the widely
used method in experiments. Simulation of this can be
done in two steps: First, the 3D current map with the
given bias voltage Vstab is calculated, and at the sec-
ond step the height profile of a constant current contour,
z(x, y, Vstab, Istab), is determined by using logarithmic in-
terpolation, see Eqs. (64) and (65). Vstab and Istab are the
tunneling parameters, and they stabilize the tip position
at the height of z(x, y, Vstab, ITOTAL = Istab) above the
(x, y) sample surface point. The 2D differential conduc-
tance map on the constant current contour is then given
by dI/dV (x, y, z(x, y, Vstab, ITOTAL = Istab), V ), where
the V -dependence is obtained by sweeping the bias volt-
age range using a lock-in technique in experiments [42].

Recently, experimental efforts have been made to ex-
tract the TOPO component of the tunneling current
[100], and measure spectroscopic data on such constant
current contours, i.e., at ITOPO = const [101]. According
to Ref. [42], a constant tunneling transmission enables an
easier interpretation of measured 2D spectroscopic data.
It seems to be straightforward that a constant TOPO
current contour is closer to this constant tunneling trans-
mission criterion than a constant TOTAL current con-
tour due to the appearance of spin dependent effects in
the latter one. On the other hand, the calculation of any
current contour is simple within the presented 3D WKB
approach [56]. Since the ITOPO = const experimental
method is not routinely available at the moment, we re-
strict ourselves to consider the ITOTAL = const contours
when calculating the 2D differential conductance maps,
and examples will be shown in Section 3.8.

The interpretation of 2D dI/dV maps has to be taken
with care even on nonmagnetic surfaces. For example,
very recently Krenner et al. [102] discussed the physical
reasons of the difference between 2D dI/dV maps mea-
sured at constant-current and open-feedback-loop condi-
tions on strongly corrugated surfaces.

2.4.4 Magnetic asymmetry

By simulating differential conductance spectra above a
magnetic surface with parallel (P) and antiparallel (AP)
tip magnetization directions with respect to a pre-defined
direction (usually the magnetization direction of a chosen
surface atom is taken), the so-called magnetic asymme-
try can be defined [75]. In the presented case this quan-
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tity can be calculated at all considered positions of the
tip apex atom, i.e., at all (x, y, z) grid points within the
finite box above the surface:

A(x, y, z, V )

=
dIP /dV (x, y, z, V ) − dIAP /dV (x, y, z, V )
dIP /dV (x, y, z, V ) + dIAP /dV (x, y, z, V )

(74)

From this, the magnetic asymmetry can similarly be
calculated on appropriate constant current contours
as described in the previous section. Using Eq. (40),
and the fact that the magnetic contribution for the
AP tip magnetization direction dIAP

MAGN/dV equals

−dIP
MAGN/dV , since the tip magnetization PDOS vec-

tor mT(E) changes sign at all energies compared to the
P tip magnetization direction, the differential conduc-
tances take the following form:

dIP /dV (x, y, z, V ) = dITOPO/dV (x, y, z, V )

+dIP
MAGN/dV (x, y, z, V )

dIAP /dV (x, y, z, V ) = dITOPO/dV (x, y, z, V )

−dIP
MAGN/dV (x, y, z, V ) (75)

Thus, the magnetic asymmetry can be expressed as the
fraction of the MAGN and TOPO differential conduc-
tances from Eqs. (42) and (43) as

AdI/dV (x, y, z, V ) =
dIP

MAGN/dV (x, y, z, V )
dITOPO/dV (x, y, z, V )

=
dIP

MAGN/dU(x, y, z, V, V ) +BP
MAGN(x, y, z, V ) +DMAGN,P

T (x, y, z, V )
dITOPO/dU(x, y, z, V, V ) +BTOPO(x, y, z, V ) +DTOPO

T (x, y, z, V )
(76)

This is the correct magnetic asymmetry expression based
on the physical differential conductances that can be ob-
tained from experiments. However, a magnetic asymme-
try can similarly be defined taking the virtual differential
conductances from Eqs. (31) and (32):

AdI/dU (x, y, z, V ) =
dIP

MAGN/dU(x, y, z, V, V )
dITOPO/dU(x, y, z, V, V )

(77)

This is an important quantity since it is related to the
vacuum spin polarization of the sample in a simple way
[75]:

AdI/dU (x, y, z, V ) = PT(ET
F )PS(x, y, z, ES

F + eV )

= ESP (x, y, z, V ) (78)

i.e., AdI/dU (x, y, z, V ) is the effective spin polarization
(ESP): the scalar product of the tip spin polarization
vector at its Fermi level, PT(ET

F ), and the vacuum spin
polarization vector of the sample at RTIP(x, y, z), eV
above the sample Fermi level, PS(x, y, z, ES

F + eV ). Fol-
lowing above, it is clear that the determination of the
sample spin polarization from experimentally measured
spectra is not straightforward since the experimentally
accessible magnetic asymmetry according to the equiva-
lent expressions Eq. (74) and Eq. (76) contains the back-
ground and tip-derivative terms as well. On the other
hand, one can easily calculate ESP (x, y, z, V ) within the
3D WKB method, and extract 2D contours on a constant
current contour, see Section 3.8. There are even more
possibilities to define magnetic asymmetries, by adding
the background terms in Eqs. (48) and (49), or the tip-
derivative terms in Eqs. (50) and (51) to the correspond-
ing virtual differential conductance and then performing
the division:

AdI/dU+B(x, y, z, V )

=
dIP

MAGN/dU(x, y, z, V, V ) +BP
MAGN(x, y, z, V )

dITOPO/dU(x, y, z, V, V ) +BTOPO(x, y, z, V )

(79)

AdI/dU+DT(x, y, z, V )

=
dIP

MAGN/dU(x, y, z, V, V ) +DMAGN,P
T (x, y, z, V )

dITOPO/dU(x, y, z, V, V ) +DTOPO
T (x, y, z, V )

(80)

As dI/dU(V, V ) is one component of dI/dV (V ) accord-
ing to Eq. (41), the comparison of them, and also the
magnetic asymmetry expressions in Eqs. (76)–(80) gives
useful insights to estimate the error one makes when ne-
glecting the background and tip-derivative components
of dI/dV (V ).

3 Prototype noncollinear magnetic surface:
Cr/Ag(111)

In order to demonstrate the capabilities of the described
model for simulating SP-STM/STS on complex magnetic
surfaces, a sample surface with noncollinear magnetic or-
der is considered [10, 56]. One monolayer (ML) Cr on
Ag(111) is a prototype of frustrated hexagonal antiferro-
magnets [90]. Due to the geometrical frustration of the
antiferromagnetic exchange interactions between Cr spin
moments, its magnetic ground state has been determined
to be a noncollinear 120◦ Néel state [15]. Two possible
Néel states with opposite chiralities are considered, that
are energetically equivalent only in the absence of spin-
orbit coupling.
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3.1 Computational details

Geometry relaxation and electronic structure calcula-
tions were performed based on the Density Functional
Theory (DFT) within the Generalized Gradient Approx-
imation (GGA) implemented in the Vienna Ab-initio
Simulation Package (VASP) [103–105]. A plane wave ba-
sis set for electronic wave function expansion together
with the projector augmented wave (PAW) method [106]
has been applied, and the exchange-correlation func-
tional is parametrized according to Perdew and Wang
(PW91) [107]. For calculating the fully noncollinear elec-
tronic structure the VASP code has been used as well
[108, 109], with spin-orbit coupling considered. This al-
lows one to determine the Néel state with the energeti-
cally favored chirality.

The Cr/Ag(111) system was modeled by a slab of a
five-layer Ag substrate and one-one monolayer Cr films
on each side, where the surface Cr layers and the first
Ag layers underneath have been fully relaxed. After re-
laxation the Cr-Ag interlayer distance was reduced by
9.5%, and the underneath Ag-Ag distance increased by
0.5% compared to bulk Ag. A separating vacuum region
of 14.6 Å width in the surface normal (z) direction has
been set up between neighboring supercell slabs. The av-
erage electron work function above the Cr was calculated
to be φS = 4.47 eV using Eq. (16). An 11 × 11 × 1
Monkhorst–Pack (MP) [110] k-point grid was used for
calculating the projected electron DOS onto the surface
Cr atoms in the (

√
3 ×√

3) magnetic surface unit cell.

3.2 Magnetic ground state

Performing fully noncollinear electronic structure cal-
culations, convergence to two different magnetic Néel

states has been obtained [56]. The magnetic surface unit
cell with the converged magnetic moment directions are
shown in the left part of Fig. 3. Each of the two Néel
states can be characterized by a chirality vector, defined
as [53]

K =
2

3
√

3
(e1

S × e2
S + e2

S × e3
S + e3

S × e1
S) (81)

Here ea
S denotes the local spin quantization unit vector

of the ath Cr atom. It is defined from the local mag-
netic moment, Ma

S =
∫ ES

F
−∞ ma

S(E)dE, similarly as in
Eq. (23), i.e., ea

S = Ma
S/|Ma

S |. The magnitude of the
magnetic moments of the Cr surface atoms are 3.73 μB,
with a tiny out-of-plane component, that is neglected
when defining the chirality vectors. Thus, in the first
row of Fig. 3, e1

S = (1/2,
√

3/2, 0), e2
S = (1/2,−√

3/2, 0),
and e3

S = (−1, 0, 0). This corresponds to the chirality
vector K = (0, 0,−1) or simply Kz = −1. Similarly,
in the second row of Fig. 3, e1

S = (1/2,−√
3/2, 0),

e2
S = (1/2,

√
3/2, 0), and e3

S = (−1, 0, 0) correspond
to Kz = +1. Comparing total energies of the two states,
Kz = −1 is found to be energetically favored by 1.1
meV compared to Kz = +1. This finding is consistent
with the magnetic ground state found for a Cr trimer
island on the Au(111) substrate in Ref. [53], where it was
also shown that the Dzyaloshinskii–Moriya interaction
is responsible for determining the ground state magnetic
chirality. Performing a collinear calculation with spin-
orbit coupling considered, a ferromagnetic (FM) state
with in-plane Cr atomic magnetic moments of 3.76 μB

is obtained. It turns out that this FM state is 1.04 eV
higher in energy than the Kz = −1 Néel state. The
energy difference of 346 meV/(magnetic atom) in favor
of the Néel state is in good agreement with results of Ref.

Fig. 3 Surface geometry of 1 ML Cr on Ag(111) and simulated SP-STM images at 0 V bias voltage and T = 4.2 K
depending on the tip magnetization direction (MTIP) assuming an ideal electronically flat maximally spin-polarized tip.
The Cr and Ag atoms are denoted by spheres colored by green (medium gray) and purple (dark gray), respectively, and the
magnetic moments of individual Cr atoms are indicated by (red) arrows in the left part of the Figure. The Cr atoms are
explicitly labeled corresponding to the calculated chirality vector in Eq. (81). In addition, the (

√
3×√

3) magnetic unit cell
is drawn by yellow (light gray) color. In the two rows noncollinear Néel states with opposite chiralities and corresponding
SP-STM images are shown. In the last column, the decreasing levels of Cr apparent heights are indicated by circular arrows.
Reproduced from Ref. [56].
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[15]. The out-of-plane FM state is 1 meV higher in energy
than the in-plane FM state with the same magnitude of
magnetic moments.

In the magnetic ground state characterized by Kz =
−1, the spin polarization of the surface Cr atoms is pos-
itive with respect to the direction of the corresponding
Cr magnetic moments below ES

F +0.54 eV, and negative
above this energy. More details on the energy dependence
of the Cr spin polarization can be found in Ref. [56].

3.3 SP-STM detection of magnetic chirality

In the Cr/Ag(111) system the tunneling current has been
calculated in a box above the magnetic unit cell contain-
ing 153 000 (34×30×150) grid points with a 0.15 Å lat-
eral and ≈ 0.053 Å horizontal resolution. Figure 3 shows
simulated constant current SP-STM images for the two
Néel states at zero bias voltage and T = 4.2 K, assum-
ing an ideal electronically flat maximally spin-polarized
tip with various magnetization directions. These are in
qualitatively good agreement with previous simulations
[15, 90]. Using a nonmagnetic tip, all surface Cr atoms
appear to be of equal height (one height level), i.e., the
surface topography is seen. As the spin polarization of
the Cr atoms at the Fermi energy is positive [56], and
the tip spin polarization is set to +1, the Cr atom with
parallel/antiparallel magnetization direction relative to
the tip appears to be higher/lower than the other two
Cr atoms, which have the same apparent height due to
symmetry (two height levels). Comparing the images, it
is clear that a contrast reversal occurs when turning the
tip magnetization to opposite direction. By setting the
tip magnetization direction perpendicular to a Cr mag-
netic moment, a structure with three height levels oc-
curs. This means that all Cr atoms in the magnetic unit
cell have different apparent heights. This is due to the
variation of the angles between the local Cr magnetic
moments and the tip magnetization, e.g., for Kz = −1,
ϕ1 = 90◦, ϕ2 = 30◦, and ϕ3 = 150◦. Determining the chi-
rality of the magnetic structure from experimental SP-
STM images is only possible in such a scenario if the
tip magnetization direction is not parallel to the mag-
netic moment of any of the surface atoms. In the exam-
ple of the Cr/Ag(111) system the three apparent height
levels follow a different order in the magnetic unit cell
corresponding to the different chiralities. The decreas-
ing levels of Cr apparent heights are indicated by circu-
lar arrows in the last column of Fig. 3. Generally, the
determining factor for the apparent height of magnetic
atoms in zero bias (V=0 V) measurements is the effec-
tive spin polarization (ESP) at the common Fermi level,
PT(ES

F)P a
S (ES

F) cos ξa(ES
F), similarly as it was identified

as the governing factor for the height of differential tun-

neling spectra at particular energies [89]. A positive ESP
results in higher tunneling current at a fixed distance
above a magnetic surface atom, while the opposite holds
for negative ESP. Considering a constant current con-
tour, thus, results in a larger apparent height for the
atom with positive, while a smaller height with negative
ESP, compared to the topographic heights.

3.4 Tip effects on the SP-STM images

In the following the magnetic Néel state with Kz = −1
chirality is considered since it has been identified as the
ground state. By including the energy dependent elec-
tronic structure of the sample and the tip into the tun-
neling model, one can study the bias dependent magnetic
contrast and its tip dependence as well. Figure 4 shows
simulated SP-STM images for various tip magnetization
directions at −1 V, 0 V and +1 V bias voltages assum-
ing an ideal magnetic tip. One finds qualitatively simi-
lar images for −1 V and 0 V for the corresponding tip
magnetization direction. This means that the ΔzCr1−Cr3

magnetic contrast has the same sign at −1 V and 0 V.
However, the magnitude of ΔzCr1−Cr3 at the same Cr1
apparent height increases at −1 V compared to 0 V for
all tip magnetization directions. This can be explained
by the integrated dIP

MAGN contribution, that does not
change sign in this bias range, see Ref. [56]. On the other
hand, the results show that the magnetic contrast is re-
versed at +1 V compared to the other two studied bias
voltages. This contrast reversal is observed for all tip
magnetization directions. It is interesting to find that on
the image with three height levels, the apparent heights
change order in such a way that the image at +1 V looks
like that the Néel state would have an opposite chiral-
ity compared to 0 V or −1 V, see the indicated circular
arrows in the last row of Fig. 4. This finding highlights
the importance of the applied bias voltage and suggests
that one has to be careful when interpreting the magnetic
structure from experimentally observed SP-STM images.
Based on this theoretical study, one can also conclude
that the magnetic contrast reversal occurs between 0 V
and +1 V bias voltages. This contrast reversal is solely
due to the sample electronic structure since the ideal
magnetic tip is electronically featureless. Similarly, the
sample electronic structure has been found responsible
for a contrast reversal in Ref. [55].

Dependence of the magnetic contrast on the tip elec-
tronic structure can be studied by considering different
tip models. As an example a ferromagnetic Ni tip has
been chosen in Ref. [56]. Such tips are routinely used
in SP-STM and STS experiments [74, 85]. The Ni tip
has been modeled by a seven-layer Ni film slab with
(110) orientation, having one-one Ni apex atoms on both
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Fig. 4 Simulated SP-STM images depending on the bias voltage and the tip magnetization direction assuming an ideal
electronically flat maximally spin-polarized tip. The magnetic contrast is reversed between 0.0 V and 1.0 V. In the last
row, the decreasing levels of Cr apparent heights are indicated by circular arrows. The surface geometry of 1 ML Cr on
Ag(111), its magnetic structure with Kz = −1 chirality, and the considered tip magnetization directions are explicitly
shown, similarly as in Fig. 3. Reproduced from Ref. [56].

surfaces, i.e., with a double vacuum boundary. Here, the
apex atom and the topmost surface layers have been re-
laxed on both sides. The interaction between apex atoms
in neighboring supercells is minimized by choosing a 3×3
surface cell, and a 15.4 Å wide separating vacuum region
in z direction. Moreover, an 11× 11× 1 MP k-point grid
has been chosen for obtaining the projected DOS onto
the apex atom. The electronic structure of the Ni apex
is given in the top part of Figure 1 of Ref. [89]. A spin
polarization of PT = −0.91 at the Fermi level, ET

F , and

|PT(E)| > 0.8 between ET
F − 0.3 eV and ET

F + 0.3 eV
is obtained. Employing Eq. (17), the local electron work
function above the tip apex is φT = 4.52 eV, and Eq.
(15) has been used to determine the vacuum decay.

Figure 5 shows simulated SP-STM images for various
tip magnetization directions at −1 V, 0 V and +1 V bias
voltages including the electronic structure of the Ni tip
into the tunneling model. By comparing images to those
shown in Fig. 4 obtained by using an ideal magnetic tip,
one finds that the magnetic contrast is the opposite for

Fig. 5 Simulated SP-STM images depending on the bias voltage and the tip magnetization direction assuming a model
Ni tip. The magnetic contrast is reversed compared to images obtained by using the ideal magnetic tip (compare to Fig.
4), and there is a bias dependent contrast reversal between 0.0 V and 1.0 V. In the last row, the decreasing levels of Cr
apparent heights are indicated by circular arrows. The surface geometry of 1 ML Cr on Ag(111), its magnetic structure with
Kz = −1 chirality, and the considered tip magnetization directions are explicitly shown, similarly as in Fig. 3. Reproduced
from Ref. [56].
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each picture. This is due to the negative spin polarization
(–0.91) of the Ni tip apex at its Fermi level [89]. Note
that the spin polarization of the ideal magnetic tip was
assumed to be +1 in the whole energy range. Similarly
as in Fig. 4, one finds qualitatively similar images for
−1 V and 0 V for the corresponding tip magnetization
directions with higher magnetic contrast at −1 V com-
pared to 0 V. Again, the magnetic contrast is reversed at
+1 V compared to the other two studied bias voltages.
This effect is highlighted in the last row of Fig. 5 showing
the decreasing levels of Cr apparent heights by circular
arrows, thus, indicating a bias dependent apparent mag-
netic chirality. These results suggest that different tips
can completely reverse the magnetic contrast. This effect
has to be taken into account when determining the mag-
netic structure from experimentally observed SP-STM
images.

3.4.1 Tip material effect on the magnetic contrast

Let us analyze the tip- and bias-voltage-dependent mag-
netic contrast in SP-STM images in more detail, e.g.,
between Cr1 and Cr3 atoms. In order to quantify the
magnetic contrast between two surface sites at a given
tip-sample distance, Eq. (69) or Eq. (72) has to be em-
ployed. For the determination of the vacuum decay con-
stants κCr1

TOPO(V ) and κav.Cr1−Cr3
TOTAL (V ) in the denomina-

tor of these equations, the corresponding current values
have to be calculated at least at two tip-sample distances.
From expressing Eq. (70) at tip-sample distances z1 �= z2,
the vacuum decay constant of the topographic current
above atom A can be given as

κA
TOPO(V ) =

ln IA
TOPO(z1, V ) − ln IA

TOPO(z2, V )
2(z2 − z1)

(82)

Similarly, using Eq. (71), the corresponding vacuum de-
cay constant can be obtained as

κav.AB
TOTAL(V ) =

ln Iav.AB
TOTAL(z1, V ) − ln Iav.AB

TOTAL(z2, V )
2(z2 − z1)

(83)

Note that though the absolute tip-sample distances z1
and z2 are unknown in experiments, the tip displacement
z2 − z1 can be experimentally obtained.

To prove that the exponentially decaying character of
the corresponding currents with respect to the tip-sample
distance z in Eq. (70) and Eq. (71) is a valid assump-
tion, a series of ordinary least squares linear regressions
on the ln I(z, V ) data were employed taking 150 z values
in the range [0.01 Å, 7.95 Å] for 500 bias voltages in the
[–2.5 V, 2.5 V] interval. For all considered bias voltages
Pearson product-moment correlation coefficients better
than r(V ) = −0.9999 were obtained. These r(V ) values

justify the exponentially decaying current assumption in
Eq. (70) and Eq. (71) within the 3D WKB atom super-
position approach. Note that orbital-dependent tunnel-
ing effects can modify this finding. The decay constants
κCr1

TOPO(V ) and κav.Cr1−Cr3
TOT (V ) were determined from the

linear regressions.
Figure 6 shows the bias dependent magnetic contrast

between Cr1 and Cr3 atoms at z = 3.5 Å tip-sample dis-
tance for both contrast formulas Eq. (69) and Eq. (72)
using the ideal and Ni tip models. The tip magnetization
direction is fixed parallel to the Cr1 magnetic moment.
Due to the noncollinear magnetic structure, the Cr2 and
Cr3 magnetic moments have an angle of 120◦ with re-
spect to the tip magnetization direction. Following this,
the spin-polarized (MAGN) parts of the current mea-
sured above the Cr2 and Cr3 surface atoms are equal
and their values are cos(120◦) = −0.5 times that above
Cr1, i.e.,

ICr2
MAGN = ICr3

MAGN = −ICr1
MAGN/2 (84)

The sign of the bias dependent contrast equals the sign
of the spin-polarized part of the current above Cr1 [57],
i.e.,

sgn(ΔzCr1−Cr3) = sgn(ICr1
MAGN) (85)

This is understandable as the sign of ΔzCr1−Cr3 is de-
termined by the sign of its numerator ΔICr1−Cr3

MAGN since
the denominator is always positive, and ΔICr1−Cr3

MAGN =
(3/2)ICr1

MAGN because of Eq. (84). Accordingly, the con-
trast reversal is obtained at ΔzCr1−Cr3 = 0, i.e., at

Fig. 6 The bias dependent magnetic contrast between Cr1 and
Cr3 atoms ΔzCr1−Cr3(z = 3.5 Å, V ) at z = 3.5 Å tip-sample dis-
tance calculated using Eq. (69) (solid lines) and Eq. (72) (dashed
lines) measured with the ideal magnetic tip (gray) and the Ni tip
(black). The tip magnetization direction is fixed parallel to the
Cr1 magnetic moment. The local absolute maxima of the mag-
netic contrasts and their bias values are explicitly shown in both
the negative and the positive bias ranges. Vertical dashed lines at
0.74 V and 0.94 V denote the contrast reversals. For comparison,
circle symbols show the apparent height difference between Cr1
and Cr3 atoms obtained from constant current SP-STM images,
see text for details. Reproduced from Ref. [57].
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0.94 V and 0.74 V for the ideal and the Ni tip, re-
spectively. From the calculated functions, bias voltages
can be identified in both the negative and positive bias
ranges, where a local absolute maximum magnetic con-
trast can be achieved. As can be seen, these highly de-
pend on the spin polarization character of the magnetic
tip. In the studied bias interval local absolute maximum
contrasts are expected at –1.40 V and 2.50 V for the
measurement with the ideal tip, whereas these bias val-
ues are considerably modified to –0.84 V and 1.31 V by
using the Ni tip. The maximum absolute contrasts are
obtained at the corresponding negative bias values for
both tips. The reported bias positions do not depend on
the employed magnetic contrast formula.

For validating the bias dependent magnetic contrast
predictions, the apparent height difference between Cr1
and Cr3 atoms from constant current SP-STM images
is calculated, that is also simulated within the 3D WKB
approach. The current contours are chosen in such a way
that the apparent height of the Cr1 atom is 3.5 Å at all
considered bias voltages. The obtained data for the two
considered tip models are shown in Fig. 6 using circle
symbols. The qualitative agreement with the predicted
magnetic contrasts using Eq. (69) and Eq. (72) is obvious
at the first sight. Having a closer look one finds that Eq.
(69) quantitatively reproduces the apparent height differ-
ence for ΔzCr1−Cr3 > 0, and Eq. (72) for ΔzCr1−Cr3 < 0.
This means that both formulas are needed for a quan-
titative determination of the bias dependent magnetic
contrast. In case one is interested in the identification
of the bias voltage for obtaining the maximum contrast,
the formula requiring less measurements or calculations,
Eq. (69), can be applied.

In order to get more insight of the above finding
that Eq. (69) quantitatively reproduces the apparent
height difference for ΔzCr1−Cr3 > 0, and Eq. (72) for
ΔzCr1−Cr3 < 0, a further analysis is needed. From Fig-
ure 6 it seems that the predicted magnetic contrast using
Eq. (72) (dashed lines) is always smaller than using Eq.

(69) (solid lines). This means a larger absolute contrast
for using Eq. (72) if the contrast is negative. Let us try
to understand this difference. Therefore, a relation be-
tween the two contrast formulas ΔzCr1−Cr3

I in Eq. (69)
and ΔzCr1−Cr3

II in Eq. (72) is derived. Using Eq. (84) and
that ICr3

TOPO = ICr1
TOPO, the average total current is

Iav.Cr1−Cr3
TOT

=
(ICr1

TOPO + ICr1
MAGN) + (ICr1

TOPO − ICr1
MAGN/2)

2

= ICr1
TOPO +

ICr1
MAGN

4
(86)

and thus,

ΔzCr1−Cr3
II =

ΔICr1−Cr3
MAGN

2κCr1
TOPOI

Cr1
TOPO + 2κCr1

MAGNI
Cr1
MAGN/4

=
ΔICr1−Cr3

MAGN

2κCr1
TOPOI

Cr1
TOPO

1

1 + 1
4

κCr1
MAGNICr1

MAGN
κCr1
TOPOICr1

TOPO

=
ΔzCr1−Cr3

I

1 + 1
4

κCr1
MAGNICr1

MAGN
κCr1
TOPOICr1

TOPO

(87)

where the (z, V ) or (V ) arguments of the quantities
are omitted for brevity, and an exponential decay for
ICr1
MAGN(z, V ) with respect to the tip-sample distance is

assumed. Since the quantities κCr1
MAGN, κCr1

TOPO and ICr1
TOPO

are always positive, the sign of ICr1
MAGN, i.e., the sign of

the contrast [see Eq. (85)] determines the relation be-
tween ΔzCr1−Cr3

I and ΔzCr1−Cr3
II : If ICr1

MAGN is positive
then 0 < ΔzCr1−Cr3

II < ΔzCr1−Cr3
I . On the other hand,

if ICr1
MAGN is negative then ΔzCr1−Cr3

II < ΔzCr1−Cr3
I < 0.

This is exactly what can be observed in Fig. 6.
In order to better visualize the bias dependent mag-

netic contrast, constant current SP-STM images have
been simulated. Figure 7 shows such images measured
with the ideal magnetic tip (top row) and the Ni tip
(bottom row) at 0 V, at the bias voltages corresponding
to the contrast reversal (0.94 V and 0.74 V, respectively),
and at the voltages corresponding to the local absolute

Fig. 7 Simulated SP-STM images depending on the bias voltage and the considered tip: ideal magnetic tip (top row), Ni
tip (bottom row). The tip magnetization direction is fixed parallel to the Cr1 magnetic moment, and is indicated by a vector
(MTIP). The bias values have been chosen corresponding to the local absolute maxima of the magnetic contrasts and the
contrast reversals in Fig. 6. The surface geometry and the magnetic structure of Cr/Ag(111) as well as the scanning area
are also shown. Reproduced from Ref. [57].
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maxima of the magnetic contrast in both the negative
and positive ranges, i.e., at –1.40 V and 2.50 V for the
ideal tip, and at –0.84 V and 1.31 V using the Ni tip. The
surface geometry and the magnetic structure as well as
the scanning area are also shown. The tip magnetization
direction is fixed parallel to the Cr1 magnetic moment.
For the zero bias images a temperature of 4.2 K was
considered following Ref. [56] since there is no current at
0 K.

A similar type of magnetic contrast at 0 V and at the
negative bias voltages are found for both tips, respec-
tively, i.e., for V � 0, ΔzCr1−Cr3 > 0 (Cr1 appears higher
than Cr2 and Cr3) for the ideal tip, and ΔzCr1−Cr3 < 0
(Cr1 appears lower than Cr2 and Cr3) for the Ni tip,
similarly as reported in Figs. 4–6. At the correspond-
ing reversal voltages, 0.94 V (ideal tip) and 0.74 V (Ni
tip), all Cr atoms appear to be of equal height on the
SP-STM image. Here, the magnetic contrast is lost. This
corresponds to a qualitatively similar image of perform-
ing the STM measurement with a nonmagnetic tip, see
MTIP = 0 in Fig. 3. Above the reversal voltage, the mag-
netic contrast is inverted. This is illustrated by showing
the images calculated at 2.50 V for the ideal tip, and at
1.31 V for the Ni tip in Fig. 7.

3.4.2 Tip-sample distance effect on the magnetic
contrast

Let us analyze the effect of the tip-sample distance on
the obtained results. Figure 8 shows the bias dependent
magnetic contrast between Cr1 and Cr3 atoms calculated
using Eq. (69) with the ideal magnetic tip at different
tip-sample separations: z = 3.5, 4.0, 4.5, and 5.0 Å.
The tip magnetization direction is fixed parallel to the
Cr1 magnetic moment. It is clearly seen that the bias
positions of the contrast reversal and the local maxima
are practically unaffected by the tip-sample distance. On
the other hand, one finds that the absolute contrasts are
decreasing with increasing tip-sample distance. Assum-
ing an exponential decay, Eq. (73) has been put forward
to determine the bias dependent magnetic contrast at
arbitrary tip-sample distances from two contrast func-
tions at fixed heights z1 �= z2. Taking the functions at
z1 = 3.5 and z2 = 4.5 Å, Eq. (73) is used to interpolate
the bias dependent magnetic contrast to z = 4.0 Å, and
to extrapolate to z = 5.0 Å. As the results obtained by
the interpolation and the extrapolation agree quantita-
tively well with those calculated by using Eq. (69), the
exponential decay of the absolute magnetic contrast with
respect to the tip-sample distance and, thus, the valid-
ity of Eq. (73) are confirmed within the presented 3D
WKB atom superposition framework. Note that orbital-
dependent tunneling effects can modify this finding.

Fig. 8 The bias dependent magnetic contrast between Cr1 and
Cr3 atoms ΔzCr1−Cr3(z, V ) calculated using Eq. (69) with the
ideal magnetic tip at different tip-sample separations: z = 3.5 Å
(gray solid line), z = 4.0 Å (black circles), z = 4.5 Å (gray dash-
dotted line), and z = 5.0 Å (black squares). The tip magnetization
direction is fixed parallel to the Cr1 magnetic moment. Taking the
functions colored by gray at z = 3.5 Å and z = 4.5 Å, Eq. (73) is
used to interpolate the bias dependent magnetic contrast to z = 4.0
Å (black solid line), and to extrapolate to z = 5.0 Å (black dashed
line). The absolute contrast maximum of each curve is found at
–1.40 V, and is explicitly indicated. Reproduced from Ref. [57].

3.4.3 Tip magnetization direction effect on the
magnetic contrast

Finally, let us analyze the effect of the magnetization
orientation of the tip on the magnetic contrast. Figure
9 shows the bias dependent magnetic contrast between
Cr1 and Cr3 atoms calculated by Eq. (69) at z = 3.5
Å tip-sample distance using the ideal magnetic tip at
twelve in-plane magnetic directions rotated in steps of
30◦. The unit vectors of these directions are explicitly
shown for each curve. From the Figure it is clear that
the bias positions of the contrast reversal and the local
absolute maxima remain unaffected. The contrast curve
indicated by the (Cr1) direction is the same as the corre-
sponding curves in Fig. 6 (ideal tip) and in Fig. 8 (z = 3.5
Å). Moreover, one finds that the tip magnetization direc-
tion parallel or antiparallel to the Cr2 magnetic moment
results in a bias-independent zero magnetic contrast be-
tween Cr1 and Cr3 atoms. This is clear since the mag-
netic currents above Cr1 and Cr3 atoms are equal in this
case, similarly as the magnetic currents above Cr2 and
Cr3 atoms are equal when the tip magnetization is par-
allel to the Cr1 moment, see Eq. (84). Apart from this,
Fig. 9 shows that the magnetic contrast can be even more
enhanced if the tip magnetization direction is changed
from parallel to the Cr1 moment (+0.500,+0.866) to the
(+0.866,+0.500) direction. This latter direction provides
the largest achievable positive magnetic contrast between
Cr1 and Cr3 atoms at –1.40 V bias. Turning the tip mag-
netization orientation to the opposite (−0.866,−0.500)
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direction, a reversed curve is obtained. This direction of
the tip magnetization enables to reach the largest neg-
ative magnetic contrast between Cr1 and Cr3 atoms at
–1.40 V bias. This finding suggests the possibility of tun-
ing the magnetic contrast not only by changing the bias
voltage but also by changing the tip magnetization di-
rection.

Fig. 9 The effect of the tip magnetization orientation on the
bias dependent magnetic contrast between Cr1 and Cr3 atoms
ΔzCr1−Cr3(z = 3.5 Å, V ) at z = 3.5 Å tip-sample distance calcu-
lated using Eq. (69) with the ideal magnetic tip. The unit vectors
of the in-plane tip magnetization orientations are rotated in steps
of 30◦, and are explicitly shown. The parallel or antiparallel ori-
entations with respect to the corresponding Cr magnetic moments
are given in parentheses. The absolute contrast maximum of each
curve is found at –1.40 V, and is explicitly indicated. Reproduced
from Ref. [57].

3.5 dI/dV contributions

In the following, two distinctly different tip models are
used than before: a magnetic CrFe tip, and an electron-
ically flat magnetic tip based on the averaged electronic
structure of the CrFe tip. The electronic structure data
of the CrFe tip apex was taken from Ref. [76], where the
tip was modeled as a single Cr apex atom on the Fe(001)
surface. Ferriani et al. furthermore reported that an anti-
ferromagnetic coupling of the Cr adatom to the Fe(001)
surface is energetically preferred, and the vacuum spin
polarization is fairly constant at around +0.8 in the en-
ergy range [ET

F − 1 eV, ET
F + 1 eV] [76]. The local elec-

tron work function above the tip apex is assumed to be
φT = 4.5 eV, that has been used to obtain the energy
dependent vacuum decay in Eq. (15).

The electronically flat magnetic tip has been mod-
eled based on the electronic structure of the Cr apex
(PDOS) of the CrFe tip. The charge and absolute mag-
netization PDOS, nT(E) and |mT(E)|, respectively, have
been averaged in the [ET

F − 2 eV, ET
F + 2 eV] range, and

nT = 1.33/eV and mT = 1.06/eV were obtained. Thus,
the spin polarization is PT = mT/nT = +0.8. In this

case, the tip-derivative term of the differential conduc-
tance DT(V ) in Eq. (46) is zero, since ∂nT(E)/∂E =
∂mT(E)/∂E = 0. The electronic structure of the con-
sidered tip models and the surface Cr atom is given
in Fig. 1 of Ref. [10]. The vacuum decay can be mod-
eled using Eq. (15), where κ(E, V ) has an explicit V -
dependence, and φT = φS is assumed. Alternatively, a
simpler model for κ(E) can be considered without V -
dependence as in Eq. (8). In this case the background
term of the differential conductance B(V ) in Eq. (45) is
zero, since the tunneling transmission does not depend
on the bias voltage, and the physical differential con-
ductance equals the virtual differential conductance, i.e.,
dI/dV (V ) = dI/dU(V, V ). On the other hand, by as-
suming a V -dependent vacuum decay κ(E, V ), B(V ) is
not zero and it contributes to the total differential con-
ductance, i.e., dI/dV (V ) = dI/dU(V, V ) +B(V ).

Figure 10 shows the bias dependence of the total
tunneling current I(V ), calculated as the sum of Eqs.
(37) and (38), at the position z = 3.5 Å above a sur-
face Cr atom probed with the CrFe tip having parallel
(P) magnetization direction compared to the underlying
surface Cr atom. Positive current means tunneling from
the tip to the sample surface, whereas the current is
negative in the opposite direction. One finds that the
absolute value of the current is higher in the negative
bias range compared to the positive range. This is due to
the surface and tip electronic structures. The sample oc-
cupied PDOS combined with the tip unoccupied PDOS
is greater than the sample unoccupied PDOS combined
with the tip occupied PDOS [10]. Performing a numerical
differentiation of I(V ) with respect to V , the differential
conductance at this particular tip position is obtained.

Fig. 10 Comparison of single point differential conductance tun-
neling spectra calculated from numerical differentiation of the tun-
neling current I(V ), and dI/dV calculated according to Eq. (41),
and its contributing terms, the virtual differential conductance
dI/dU(V, V ), the background term B(V ), and the tip-derivative
term DT(V ). The model CrFe tip apex is 3.5 Å above a surface Cr
atom and its magnetization direction is parallel to that of the un-
derlying surface Cr atom. The inset shows the ratio of B(V )/I(V ).
Reproduced from Ref. [10].
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As can be seen this is extremely noisy, and a smoothing
procedure should be applied to it before further anal-
ysis. Alternatively, the differential conductance can be
calculated using Eq. (41), implemented within the 3D
WKB atom superposition approach. Figure 10 shows
that dI/dV obtained this way (black curve) is a smooth
function that fits precisely to the noisy numerical deriva-
tive of the current. There is more discussion about avoid-
ing the numerical differentiation of the tunneling current
in determining the dI/dV , e.g., in Ref. [16].

More information about the dI/dV can be obtained by
analyzing its components, the virtual differential conduc-
tance dI/dU(V, V ), the background term B(V ), and the
tip-derivative term DT (V ). One finds that dI/dU(V, V )
differs less than 10 % compared to dI/dV in the bias
range [–0.01 V, +0.01V] only, i.e., practically at the
common Fermi level of the tip and the sample. Out-
side the given bias range, the relative difference between
dI/dU(V, V ) and dI/dV is more than 10%. This means
that the virtual differential conductance approximation
for the dI/dV (also known as the LDOS approxima-
tion) is not sufficient for nonzero bias. Note that at
zero bias the two quantities are identical, dI/dV (0) =
dI/dU(0, 0). Moreover, one can recognize that most
part of the dI/dV peak structure is already included
in the dI/dU(V, V ) term, which is qualitatively similar
to the charge PDOS of the surface Cr atom of the sam-
ple, nS(E) [10]. Apart from this, the peak structure of
DT(V ), calculated via Eqs. (50)–(51), clearly shows up
in the dI/dV , particularly pronounced at high bias volt-
ages. The reason is the rapidly changing tip electronic
structure in these energy regions [10]. The features from
dI/dU(V, V ) and DT(V ) are transferred to the physi-
cal differential conductance, since B(V ), calculated via
Eqs. (48) and (49), is smooth compared to the other two
components in the whole bias range. Moreover, one finds
that B(V ) is a monotonic function of the bias voltage,
and it is nearly proportional to I(V ) as has been reported
earlier for different levels of STS theories [7, 87]. The pro-
portionality function B(V )/I(V ) is plotted in the inset
of Fig. 10. It can be seen that its sign is in agreement
with Ref. [7] and it has a non-trivial bias dependence.
This is essentially due to the extra 1/κ(E, V ) factor in
the energy integration of the background term, Eqs. (48)
and (49), compared to the tunneling current expression.
More discussion on B(V )/I(V ) can be found in Ref. [10].
In the following the focus will be on the comparison of
SP-STS spectra by reversing the tip magnetization di-
rection, and also using the flat magnetic tip model.

3.6 Tip effects on the SP-STS spectra

Figure 11 shows simulated single point differential con-

ductance tunneling spectra following Eq. (41), probed
with the flat magnetic tip and the model CrFe tip,
z = 3.5 Å above a surface Cr atom. Parallel (P) and an-
tiparallel (AP) tip magnetization directions are set rela-
tive to the underneath surface Cr atom. It can clearly be
seen that measuring the spectra with oppositely magne-
tized tips of the same type result in different differential
conductance curves, in agreement with SP-STS exper-
iments performed on oppositely magnetized sample ar-
eas with a fixed tip magnetization direction [73, 75].
For the flat magnetic tip, two different vacuum decays,
κ(E) and κ(E, V ) are assumed using Eqs. (8) and (15),
respectively. For the bias-independent vacuum decay
(dotted curves) one finds that dIP/dV > dIAP/dV be-
low V = +0.54 V, while dIP/dV < dIAP/dV above
V = +0.54 V. In Ref. [89] the effective spin polariza-
tion [PT(E)PS(E) = mT(E)mS(E)/(nT(E)nS(E))] has
been identified responsible for such an effect. This is
the decisive factor for determining the sign of the mag-
netic contribution to dI/dV at energy E in the SP-STS
model presented in Section 2.2 as well. The magnetic
part of the physical differential conductance is given in
Eq. (43). Since the vacuum decay does not depend on the
bias voltage V for the dotted curves, and the tip is elec-
tronically flat, dIMAGN/dV (V ) = dIMAGN/dU(V, V ).
Thus, the sign change of dIMAGN/dV occurs at the
sign change of dIMAGN/dU(V, V ), i.e., at the reversal of
the sample spin polarization vector at 0.54 eV above the
sample Fermi level [56]. For the flat magnetic tip and the

Fig. 11 Comparison of simulated single point differential con-
ductance tunneling spectra following Eq. (41), probed with the
flat magnetic tip and the model CrFe tip, 3.5 Å above a surface Cr
atom. Parallel (P) and antiparallel (AP) tip magnetization direc-
tions are set relative to the underneath surface Cr atom. For the
flat magnetic tip, two different vacuum decays, κ(E) and κ(E, V )
are assumed using Eqs. (8) and (15), respectively. The vertical dot-
ted line at –1.2 V shows the bias position of the identified STS peak
coming from the electronic structure of the CrFe tip. Reproduced
from Ref. [10].
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assumed bias dependent vacuum decay (dashed curves)
one finds that dIP/dV > dIAP/dV below V = +0.5
V, and dIP/dV < dIAP/dV above V = +0.5 V, i.e., the
sign change of the magnetic component is slightly shifted
toward zero bias. The reason is the nonzero background
term BMAGN(V ) due to κ(E, V ), and dIMAGN/dV (V ) =
dIMAGN/dU(V, V ) + BMAGN(V ) has to be considered.
Note that DMAGN

T (V ) is still zero because of the con-
stant tip magnetization PDOS. Comparing the two vac-
uum decay models for the flat tip, it is clear that the
topographic part of the background term has another ef-
fect on the heights of the spectra, i.e., they are enhanced
and reduced in the negative and positive bias ranges, re-
spectively, compared to the κ(E) model. On the other
hand, the features of the spectra (peaks and dips) oc-
cur at the same bias positions for both vacuum decay
models.

The inclusion of a realistic tip electronic structure
into the SP-STS model complicates the spectra even
more. This is demonstrated in Fig. 11 for the CrFe tip
model (solid lines). In this case all three terms con-
tribute to the differential conductance, and dI/dV (V ) =
dI/dU(V, V )+B(V )+DT(V ). Thus, the relative heights
of the differential conductance tunneling spectra dIP/dV
and dIAP/dV are determined by the superposition
of the magnetic dIMAGN/dU(V, V ), BMAGN(V ), and
DMAGN

T (V ) terms. The role of the effective spin po-
larization is more complicated, since, apart from the
dIMAGN/dU(V, V ) term, it appears in the dI/dV expres-
sion through the bias-integrated quantities BMAGN(V )
and DMAGN

T (V ). For the P tip magnetization, dIP/dV
is the same as the black solid curve in Fig. 10, and its con-
tributions are also shown there. In Fig. 11, more changes
of the relative height of the dIP/dV and dIAP/dV spec-
tra measured with the CrFe tip than with the flat tip
are observed. These include the sign changes of the mag-
netic part of the spectra, similarly as before. One finds
that dIP/dV > dIAP/dV in the bias interval [−1.04 V,
+0.49 V], and a reversed relation is obtained in the com-
plementary bias regime. Comparing the spectra to the
ones calculated with the flat magnetic tip, one can see
that they are qualitatively closer to the κ(E, V ) model
used for the flat tip due to the presence of the back-
ground terms. Moreover, the individual features coming
from the sample and the tip electronic structures can be
assigned. In the presented case the peak at –1.2 V, indi-
cated by a vertical dotted line in Figure 11, is identified
coming from the CrFe tip electronic structure since it is
missing from the spectra calculated with the flat tip. All
other features are related to the sample electronic struc-
ture as they appear in the spectra measured with the flat
tip.

3.7 Tip effects on the magnetic asymmetry

The relative heights of the differential conductance tun-
neling spectra dIP/dV and dIAP/dV can also be deter-
mined from the magnetic asymmetry, Eq. (74). Let us
compare the magnetic asymmetries calculated from the
spectra in Fig. 11 using the two magnetic tips. More-
over, for the CrFe tip, the asymmetry expressions de-
fined in Eqs. (76)–(80) are compared to estimate the
error one makes when neglecting the background and
tip-related components of dI/dV (V ). Figure 12 shows
the calculated asymmetry functions at z = 3.5 Å above
a surface Cr atom. It can be seen that AFlat,κ(E)(V )
and AFlat,κ(E,V )(V ) (dashed curves) behave qualita-
tively similarly. In addition, AFlat,κ(E)(V ) is greater than
AFlat,κ(E,V )(V ) in almost the full studied bias range. The
opposite relation holds between 0 V and +0.3 V only,
however, the relative difference between the two quanti-
ties is less than 1.4 % in this regime. Moreover, these two
magnetic asymmetries are within 5% relative difference
in the bias range [–0.23 V, +0.31 V].

Fig. 12 Comparison of magnetic asymmetries 3.5 Å above a sur-
face Cr atom probed with the flat magnetic tip and the model CrFe
tip. AFlat,κ(E), AFlat,κ(E,V ), and ACrFe,dI/dV are calculated from
the corresponding P and AP spectra shown in Fig. 11. For the
CrFe tip we compare the magnetic asymmetry expressions defined
in Eqs. (76)–(80). Reproduced from Ref. [10].

Considering the CrFe tip, the experimentally measur-
able magnetic asymmetry ACrFe,dI/dV (V ) (black solid
curve) is qualitatively different from the two asymme-
try functions calculated with the flat tip, e.g., it has a
richer structure at positive bias voltages. More impor-
tantly, it has an extra sign change occurring at –1.04
V apart from +0.49 V. These correspond to the height
changes of dIP/dV and dIAP/dV relative to each other
in Fig. 11. Let us estimate the error of the magnetic
asymmetry when neglecting the background and the tip-
derivative terms. According to Eq. (77), ACrFe,dI/dU (V )
(curve with symbol “o”) considers the virtual differen-
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tial conductances only. It is within 10% relative error
compared to ACrFe,dI/dV (V ) in the bias range [−0.65
V, +0.1 V]. However, its sign does not correspond to
ACrFe,dI/dV (V ) in the bias intervals [−2 V, −1.04 V]
and [+0.49 V, +0.54 V]. Adding the background term
B(V ) to dI/dU(V, V ) results in an improved differential
conductance expression, and ACrFe,dI/dU+B(V ) (curve
with symbol “+”), defined in Eq. (79), behaves qualita-
tively similarly to ACrFe,dI/dU(V ) above –0.65 V. How-
ever, its sign change is shifted to +0.45 V from +0.54 V.
Additionally, a sign change in the negative bias range
occurs at –1.62 V. Close to the sample Fermi level,
ACrFe,dI/dU+B(V ) is within 10% relative error compared
to ACrFe,dI/dV (V ) in a decreased bias range of [–0.34
V, +0.1 V]. Finally, by adding the tip-derivative term
DT(V ) to dI/dU(V, V ), ACrFe,dI/dU+DT(V ) (curve with
symbol “x”), defined in Eq. (80), shows the most closely
related shape to ACrFe,dI/dV (V ). Furthermore, it is also
quantitatively close to the physical magnetic asymmetry
as its sign changes occur at –1.01 V and +0.5 V, and it is
within 10% relative error compared to ACrFe,dI/dV (V ) in
an increased bias interval [–0.90 V, +0.45 V]. Summariz-
ing this paragraph, the contribution of all three terms to
the dI/dV (V ) according to Eq. (41) is needed to define
the physical magnetic asymmetry, that can meaningfully
be compared to experiments.

3.8 Two-dimensional local spectroscopic information

The methods presented in Sections 2.4.3 and 2.4.4 also
enable one to simulate two-dimensional (2D) dI/dV and
effective spin polarization (ESP) maps in high spatial
resolution above the surface, that can be compared to re-
sults of SP-STS experiments. Such experiments are rou-
tinely performed while the tip follows a constant TOTAL
current contour, see, e.g., Ref. [111]. Figure 13 illustrates
this capability of the 3D WKB method, where the flat
tip model with tip magnetization direction MTIP paral-
lel to the Cr1 magnetic moment has been used. More-
over, κ(E, V ), Eq. (15) has been used for the vacuum
decay. By choosing Vstab = +1 V, the 3D TOTAL cur-
rent map in a finite box above the surface is calculated.
From this 3D data, the current contour of ITOTAL = 54
nA is extracted, which is around 3.5 Å above the sample
surface and has a corrugation of 4.2 pm. This contour,
z(x, y, Vstab = +1 V, ITOTAL = 54 nA) is plotted in the
bottom left part of Fig. 13. For calculating the differen-
tial conductance-related 2D maps, the vertical position z
of the tip apex atom is varied following this constant cur-
rent contour. Thus, spin-resolved dI/dV and magnetic
asymmetry maps can be simulated at different V bias
voltages corresponding to experiments. As an example,
dI/dV (x, y) and ESP(x, y), see Eq. (78), are shown in

the middle and right columns of Fig. 13, respectively, cal-
culated at bias voltages V = +0.5 V (top) and V = +0.6
V (bottom). These voltages have been chosen close to the
spin polarization reversal of the sample surface at 0.54
eV above its Fermi level, see Ref. [56]. Indeed, the re-
versal of the 2D dI/dV map at V = +0.6 V compared
to V = +0.5 V can clearly be seen. While the SP-STM
image at +1 V and the dI/dV map at +0.6 V show the
same type of contrast, the dI/dV signal is inverted for
+0.5 V. Since PT = +0.8 is constant in the full energy
range, this effect is due to the surface electronic struc-
ture. At +0.6 V bias, all surface Cr spin polarization
vectors point opposite to their local magnetic moment
directions [56], and since PT = +0.8 is set with respect to
the (1/2,

√
3/2) direction (MTIP), the leading term of the

magnetic differential conductance, dIMAGN/dU(V, V ) is
negative above the surface Cr1 atom. Moreover, the sign
of dIMAGN/dU(V, V ) changes to positive above the other
two Cr atoms in the magnetic unit cell. This results in
the minimal total dI/dV (x, y) above the Cr1 atom (22.9
nA/V), whereas above the other two Cr atoms dI/dV
is maximal (23.6 nA/V). This happens even though the
topographic differential conductance is higher above the
Cr1 atom, which is lower-lying on the constant current
contour. Similarly, the case of +0.5 V is reversed, since
all surface Cr spin polarization vectors point along their
local magnetic moment directions [56] and the maxi-
mal total dI/dV (x, y) is achieved above the Cr1 atom
(16.5 nA/V), whereas above the other two Cr atoms
dI/dV is lower (16.0 nA/V). The minimal dI/dV = 15.8
nA/V is obtained above the midpoint of the lines con-
necting two dI/dV maxima. If we introduce the nota-
tion of dIP/dV (x, y) for the above calculated differential
conductances with P parallel to the indicated MTIP di-
rection in Fig. 13, then the antiparallel tip orientation
is denoted by AP, and dIAP/dV (x, y) can similarly be
calculated. For the very same reason as discussed, a re-
versed tip magnetization direction would result in a re-
versed dIAP/dV map concerning the heights above the
non-equivalent magnetic Cr atoms. Thus, at +0.6 V the
difference between dIP/dV (x, y) and dIAP/dV (x, y) is
minimal and negative above the Cr1 atom, and maximal
and positive above the other two Cr atoms, while the op-
posite is true at +0.5 V. These explain qualitatively well
the simulated ESP(x, y) maps, see the right column of
Fig. 13. The ESP(x, y) = 0 contour acts as a border be-
tween surface regions with positive and negative ESP at
the given bias. Note that the sign of the tip spin polariza-
tion has a crucial effect on the ESP(x, y) map. Reversing
the sign of PT compared to the MTIP direction would
result in a reversed ESP(x, y) map.

Applying the presented 3D WKB method to magnetic
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Fig. 13 Top left: Surface geometry of 1 ML Cr on Ag(111) and the magnetic ground state with Kz = −1 chirality. For
explanation, see the caption of Fig. 3. The (

√
3 ×√

3) magnetic unit cell is drawn by yellow (light gray) color. The surface
Cr positions are denoted by “x”. The tip magnetization direction (MTIP) is indicated by an arrow. Bottom left: Constant
current contour at about 3.5 Å above the surface with ITOTAL(Vstab = +1 V)=54 nA calculated with the flat magnetic
tip using κ(E, V ), Eq. (15). Middle column: Simulated 2D differential conductance maps dI/dV (x, y, V = +0.5 V) (top
middle; min. 15.8, max. 16.5 nA/V), and dI/dV (x, y, V = +0.6 V) (bottom middle; min. 22.9, max. 23.6 nA/V), while the
tip is following the constant current contour at the bottom left part of the Figure. Minimum (MIN) and maximum (MAX)
values are indicated. Right column: Simulated effective spin polarization (ESP) maps on the same current contour following
Eq. (78), ESP(x, y, V = +0.5 V) (top right), and ESP(x, y, V = +0.6 V) (bottom right). Black contours correspond to zero
ESP, and the regions with positive (+) and negative (−) ESP are indicated. The surface magnetic unit cell is drawn by a
yellow (light gray) rhombus on each 2D map. Reproduced from Ref. [10].

surfaces, two-dimensional dIP/dV (x, y), dIAP/dV (x, y),
and magnetic asymmetry A(x, y) maps can be con-
structed on appropriate current contours at arbitrary V
bias, corresponding to SP-STS experiments. Similarly,
an ESP(x, y) map can be simulated. It has to be stressed
again that the ESP can not simply be obtained from
experimental magnetic asymmetry due to the presence
of the background and tip-derivative terms. By explic-
itly considering the tip electronic structure in the SP-
STS model based on experimental information, it could
help in a more reasonable interpretation of experimen-
tally measured tunneling spectra, magnetic asymmetries,
and effective spin polarization.

4 Corrugation inversion due to orbital effects:
W(110)

In order to demonstrate the capabilities of the orbital
dependent tunneling model presented in Section 2.3, a
W(110) surface is considered. This surface has technolog-

ical importance as it is widely used as substrate for thin
film growth, see e.g., Refs. [44, 112]. As it was pointed out
by Heinze et al. [112], the determination of the position
of surface atomic sites is not straightforward as atomic
resolution is lost at negative bias voltages, and a bias-
dependent corrugation reversal has been predicted. This
means that normal and anticorrugated constant current
STM images can be obtained in certain bias voltage
ranges, and the W atoms do not always appear as pro-
trusions in the images. It was shown that a competition
between states from different parts of the surface Bril-
louin zone is responsible for this effect [112, 113]. Here,
the corrugation reversal effect is reviewed based on Ref.
[91].

4.1 Computational details

Geometry relaxation and electronic structure calcula-
tions were performed based on the Density Functional
Theory (DFT) within the Generalized Gradient Approx-
imation (GGA) implemented in the Vienna Ab-initio
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Simulation Package (VASP) [103–105]. A plane wave ba-
sis set for electronic wave function expansion together
with the projector augmented wave (PAW) method [106]
has been applied, and the exchange-correlation func-
tional is parametrized according to Perdew and Wang
(PW91) [107]. The electronic structures of the sample
surface and the tip have been calculated separately.

The W(110) surface is modeled by a slab of nine layers,
where the two topmost W layers have been fully relaxed.
After relaxation the W-W interlayer distance between
the two topmost layers is reduced by 3.3%, while the
underneath W-W interlayer distance increased by 1.1%
compared to bulk W. A separating vacuum region of 18
Å width in the surface normal (z) direction has been
set up between neighboring supercell slabs. The average
electron work function above the surface is calculated to
be φS = 4.8 eV. A 41 × 41 × 5 Monkhorst–Pack (MP)
[110] k-point grid has been used for obtaining the orbital-
decomposed projected electron DOS onto the surface W
atom, na

Sα(E). The same k-set has been used for calcu-
lating the sample electron wave functions for the Tersoff–
Hamann [12, 13] and Bardeen [14] simulations. The unit
cell of the W(110) surface (shaded area) and the rectan-
gular scan area for the tunneling current simulation are
shown in Fig. 14. In the calculations, the experimental
lattice constant aW = 316.52 pm has been used. More-
over, the surface top (T) and hollow (H) positions are
explicitly shown.

Fig. 14 The surface unit cell of W(110) (shaded area) and the
rectangular scan area for the tunneling current simulations. Cir-
cles denote the W atoms. The top (T) and hollow (H) positions
are explicitly shown. Reproduced from Ref. [91].

Different tip models were considered. The orbital-
independent ideal tip is characterized by tαβ = 1 and
nTβ(E) = 1/9(eV)−1, so that nT(E) =

∑
β nTβ(E) =

1(eV)−1. This ideal electronically flat tip represents the
limiting case of the independent orbital approximation
used in previous atom superposition tunneling models
[56, 57, 89, 90]. In order to study the effect of the or-
bital dependent tunneling, other tip models are needed.
First, ideal tip models are considered, having a particular
orbital symmetry β0. In this case tαβ is calculated fol-
lowing Eq. (59), and for the energy dependence of the tip
PDOS, nTβ0 = 1(eV )−1 and nT (β �=β0) = 0 are assumed.
More realistic tips can also be employed by calculating
the orbital decomposition of the tip apex PDOS in model
tip geometries, and using Eq. (59) for the orbital depen-

dent transmission factor. Let us consider a blunt W(110)
tip. Motivated by a previous simulation [114], it has been
modeled by a slab consisting of three atomic layers hav-
ing one W apex atom on both surfaces, i.e., with a double
vacuum boundary. In this system the apex atoms have
been relaxed on both sides. The adatom-topmost layer
vertical distance decreased by 19.3% compared to bulk
W. The interaction between apex atoms in neighboring
supercells in the lateral direction is minimized by choos-
ing a 3 × 3 surface cell, and a 17.9 Å wide separating
vacuum region in the z direction. The local electron work
function above the tip apex was assumed to be φT = 4.8
eV. Moreover, an 11 × 15 × 5 MP k-point grid has been
chosen for calculating the orbital-decomposed projected
DOS onto the apex atom, nTβ(E). The same k-point
sampling has been used for obtaining the tip electron
wave functions for the Bardeen calculation.

STM images were simulated employing the orbital de-
pendent 3D WKB tunneling model, and the Tersoff–
Hamann [12, 13] and Bardeen [14] methods implemented
in the BSKAN code [4, 115]. Scattering up to first or-
der [115] did not affect the quality of the images. Using
the orbital dependent model, the tunneling current has
been calculated in a box above the rectangular scan area
shown in Figure 14 containing 99000 (30×22×150) grid
points with a 0.149 Å lateral and 0.053 Å vertical resolu-
tion. The electron local density of states (LDOS) was cal-
culated above the same scan area in a box of 31×21×101
grid points using the Tersoff–Hamann method with the
same spatial resolution as reported above. For the cal-
culation of the tunneling current employing the Bardeen
method, a box of 31×10×100 grid points above the half
of the rectangular scan area has been chosen in order to
speed up the simulation. In this case the lateral resolu-
tion remains 0.149 Å, and the vertical resolution is 0.106
Å. The constant current contours are extracted following
the method described in Section 2.4.1. All of the STM
images will be presented above the full rectangular scan
area.

4.2 Convergence properties

Previously, the convergence of the dI/dU part of the
differential conductance has been investigated with re-
spect to the number of surface atoms involved in the
summation of the orbital-independent atomic superposi-
tion formula [89]. Due to the spherical exponential decay
assumed for the electron wave functions, a rapid conver-
gence was found. Here, a similar convergence test for the
orbital-dependent tunneling approach is reported, com-
paring different tip models. In order to take into account
a wide energy range around the Fermi level, the tun-
neling current has been calculated at –2.5 V and +2.5
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V bias voltages at z = 4.5 Å above a surface W atom,
and these current values have been averaged. The fol-
lowing tips were considered: the ideal tip of the orbital-
independent model, ideal tips with s, pz, and d3z2−r2

symmetry, and the W(110) tip. In order to obtain com-
parable results, the averaged current was normalized for
each tip calculation. The convergences of the normalized
averaged current with respect to the lateral distance on
the surface, d//, characteristic for the number of atoms
involved in the atomic superposition, are shown in Fig.
15. By calculating the current, contributions from sur-
face atoms within a radius of d// measured from the W
atom below the tip apex are summed up (sum over a).
It is found that the orbital-independent, the s-type, and
the W(110) tips behave quite similarly concerning the
current convergence, while for the pz- and d3z2−r2-type
tips a faster convergence is found. This rapid conver-
gence can be explained by the more localized charac-
ter of the latter tip orbitals in the direction normal to
the sample surface (z). On the other hand, the orbital-
independent tip with T = e−2κd is a good approximation
for the s-type tip (with index β = 1), where the spher-
ically decaying transmission function part is still domi-
nant, i.e., Tα,1 = e−2κdχ2

α because χ2
1 = 1. In case of the

W(110) tip, electronic states of all considered symme-
tries have a contribution, and their relative importance is
not only determined by the transmission function via the
orbital shapes but also by the product of the symmetry-
decomposed electron PDOS of the surface and the tip.
In general, the orbitals localized in different than the z
direction can show a slower current convergence than the
s orbitals. However, the partial PDOS of such states is
relatively low, and interestingly, a similar current con-
vergence is obtained in the studied energy range as for
the s-type tip. Choosing different bias voltages for the
W(110) tip, thus different electron states involved in the
tunneling, current convergences dissimilar to the s-type

Fig. 15 Convergence of the normalized averaged current calcu-
lated with different tip models. Reproduced from Ref. [91].

tip behavior were found. The convergence can be slower
or faster than obtained for the s-type tip depending on
the partial PDOS of each directional orbital in the given
energy range.

Based on the convergence tests, atom contributions
within at least d// = 3a ≈ 9.5 Å distance from the
surface-projected tip position shall be considered. In case
of calculating STM images, d// = 3a ≈ 9.5 Å has to be
measured from the edge of the scan area in all directions
in order to avoid distortion of the image, thus involv-
ing 67 surface atoms in the atomic superposition. For
brevity, in the following, the same surface atoms are used
in order to calculate single point tunneling properties as
well.

4.3 Orbital contributions

Let us analyze the relative importance of all α ↔ β

transitions in determining the total tunneling current
at different tip positions. From this analysis, a qual-
itative picture about the role of the different atomic
orbitals in the construction of the tunneling current is
obtained. The Iαβ current contributions can be calcu-
lated according to Eq. (62). These can be represented by
a current histogram that gives the percentual contribu-
tions of the individual transitions to the total current.
Figure 16 shows such histograms using the W(110) tip at
V = −0.1 V bias voltage z = 4.5 Å above two different
tip positions: part a) corresponds to the tip apex above
the surface top position, and part b) to the tip apex
above the surface hollow position, T and H in Fig. 14,
respectively. A 9× 9 matrix from the considered orbitals
is obtained, where the orbitals are denoted by numbers 1
to 9 following the indices reported in Table 2. One finds
that most contributions are due to the s (1), pz (3), dyz

(6), d3z2−r2 (7), and dxz (8) orbitals and their combi-
nations. The largest contribution to the current is given
by the d3z2−r2 − d3z2−r2 (7–7) transition, 31 and 20 per
cent above the top and hollow positions, respectively.
Concomitantly, above the hollow position, the relative
importance of both tip and sample dyz (6) and dxz (8)
orbitals is increased as it is expected from the geometri-
cal setup, i.e., the dyz −dyz (6–6), dyz −d3z2−r2 (6–7 and
7–6), dxz−dxz (8–8), and dxz−d3z2−r2 (7–8 and 8–7) con-
tributions correspond to larger orientational overlap of
the mentioned tip and sample orbitals if the tip is above
the hollow position rather than above the top position as
suggested by the geometry in Fig. 14 and Eq. (59). For
more theoretical insights, please see Ref. [116], where
the concept of a parallel path of conduction has been
introduced. Thus, the orbital dependent 3D WKB tun-
neling model captures the effect of the localized orbitals
and goes beyond the spherical Tersoff-Hamann model.
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Fig. 16 Histograms of the current contributions (Iβγ) from all tip-sample transitions with different orbital symmetries
using the W(110) tip at V = −0.1 V bias. (a) Tip apex z = 4.5 Å above the surface top (T) position (W atom); (b) tip
apex z = 4.5 Å above the surface hollow (H) position, see also Fig. 14. The indices of the atomic orbitals (1–9) follow the
notation reported in Table 2. Reproduced from Ref. [91].

Note that if a larger bias voltage is considered, i.e., the
electronic states are somewhat averaged, then the inde-
pendent orbital approach might turn out to be a good
approximation [90].

4.4 Atomic contrast reversal

The role of the localized orbitals can best be demon-
strated by reinvestigating the corrugation inversion phe-
nomenon found, e.g., on (100) [24], (110) [112], and
(111) [117] metal surfaces. Chen explained this effect as
a consequence of m �= 0 tip states [23]. According to
Heinze et al. [112], under certain circumstances the ap-
parent height of W atoms at the surface top position
(zT) can be larger or smaller than the apparent height
of the surface hollow position (zH) at constant current
(I = const) condition. (For the surface top (T) and hol-
low (H) positions, see Fig. 14.) Thus, the sign change of
Δz(I) = zT(I) − zH(I) is indicative for the corrugation
inversion. Obviously, Δz(I) > 0 corresponds to a normal
STM image, where the W atoms appear as protrusions,
and Δz(I) < 0 to an anticorrugated image. Since the
tunneling current is monotonically decreasing with the
increasing tip-sample distance, one can obtain informa-
tion about the occurrence of the corrugation inversion
simply by calculating the current difference between tip
positions above the top and hollow sites of the W(110)
surface. The current difference at tip-sample distance z
and at bias voltage V is defined as

ΔI(z, V ) = IT(z, V ) − IH(z, V ) (88)

This quantity can be calculated for specific tips, and the
ΔI(z, V ) = 0 contour is called the corrugation inversion
map [91]. This gives the (z, V ) combinations where the
corrugation inversion occurs. The sign of ΔI(z, V ) pro-

vides the corrugation character of an STM image in the
given (z, V ) regime. Due to the monotonically decreasing
character of the tunneling current, ΔI(z, V ) > 0 corre-
sponds to Δz(I(V )) > 0, i.e., normal corrugation, and
similarly ΔI(z, V ) < 0 corresponds to Δz(I(V )) < 0 and
anticorrugation.

First, ΔI(z, V ) was calculated using the independent
orbital approximation and Eq. (12) for the tunneling
transmission, and ΔI(z, V ) was found always positive.
This means that the spherical exponential decay itself
can not account for the observed corrugation inversion
effect, and the W atoms always appear as protrusions in
STM images calculated with this model. However, con-
sidering the orbital dependent tunneling transmission in
Eq. (55) evidence is found for the corrugation inversion
effect, thus highlighting the role of the real space shape
of electron orbitals involved in the tunneling. Figure 17
shows ΔI(z, V ) = 0 contours calculated with different
tip models in the [0 Å, 14 Å] tip-sample distance and
[–2 V, +2 V] bias voltage range. Before turning to the
analysis of the results obtained with previously not con-
sidered tip models let us compare the results with those
of Heinze et al. [112], where an s-wave tip model has
been used. They found corrugation reversal at around
–0.4 V at z = 4.6 Å tip-sample distance, and above that
voltage normal while below anticorrugated STM images
were obtained. The orbital dependent 3D WKB model
with an s-tip provides the same type of corrugation re-
versal at –0.21 V at the same distance as can be seen
in part a) of Fig. 17 (curve with filled square symbol).
These bias values are in reasonable agreement particu-
larly concerning their negative sign. At this range atomic
resolution is difficult to achieve experimentally, which is
an indication for being close to the corrugation inversion
regime [112]. On the other hand a linear dependence of
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Fig. 17 The ΔI(z, V ) = IT(z, V ) − IH(z, V ) = 0 contours indicative for the corrugation inversion [see Eq. (88), and its
meaning in the text] calculated with different tip models above the W(110) surface. Parts (a) and (b) show two distinct
behaviors depending on the tip orbital composition. The sign of ΔI(z, V ) is explicitly shown: In part (a) it is positive (+)
below the curves, and negative (−) above them; in part (b) positive inside the loop of a given curve, and negative (−)
outside the loop. Note that positive ΔI(z, V ) corresponds to normal, while negative to inverted atomic contrast. Reproduced
from Ref. [91].

the corrugation reversal voltage and the tip-sample dis-
tance has been reported by Heinze et al. (z = 4.6 Å,
V = −0.4 V) to (z = 7.2 Å, V = 0 V). Our model qual-
itatively reproduces this linear dependence in the same
bias range though the quantitative values are somewhat
different.

Calculating the corrugation inversion maps with more
tip models, two distinct behaviors depending on the
tip orbital composition were found. Parts (a) and (b)
of Fig. 17 show these. While the tip models in part
(a) can show corrugation inversion in the whole stud-
ied bias range, this effect does not occur at positive bias
voltages for tips in part (b). Moreover, anticorrugation
(ΔI(z, V ) < 0) is observed in the large tip-sample dis-
tance region (z > 13.5 Å) in both parts. This is in accor-
dance with the prediction of Ref. [113] based on the anal-
ysis of the competing electron states in the surface Bril-
louin zone of an Fe(001) surface. In the z < 13.5 Å range,
however, the corrugation character in the two parts of
Fig. 17 is remarkably different. In part (a), normal cor-
rugation is found close to the surface, which reverts only
once with increasing tip-sample distance for the tip mod-
els with a single orbital symmetry in the full studied
bias range. The W(110) tip behaves similarly below +1.7
V, while above there is a double reversal of the cor-
rugation character as the tip-sample distance increases.
This indicates that anticorrugation can be expected at
short tip-sample distances (3.5 Å–5 Å) at around +2
V. On the other hand, the tip models in part (b) always
show anticorrugation at positive bias voltages, and below

–0.05 V they provide corrugation characters starting
from anticorrugation, then normal corrugation, and
again anticorrugation with increasing tip-sample dis-
tance. These different behaviors can be attributed to the
tip orbital characters. It is interesting to notice that none
of the considered tip orbitals in part b) are localized in
the z-direction, and they have nodal planes either in the
yz plane (px and dxz) or in the xz plane (py and dyz) or
in the x = y and x = −y planes (dx2−y2). On the other
hand, in part a) there are tips which are localized in the
z-direction (pz and d3z2−r2) or having nodal planes in
both the xz and yz planes (dxy) as well as the spher-
ical s tip and the W(110) tip that contains all type of
orbitals with energy dependent partial PDOS functions.
The particular tip nodal planes restrict the collection
of surface atom contributions to specific regions on the
sample surface. Furthermore, by changing the tip-sample
distance, the orientational overlaps between the tip and
sample orbitals change, and according to the model some
localized orbitals gain more importance in the tunneling
contribution, see also Fig. 16. Since the current difference
is calculated between tip positions above the surface top
and hollow sites, the complex tip-sample and bias volt-
age dependent effect of the real space orbitals on the
tunneling can be visualized via the corrugation inversion
maps.

Concerning tips with pz and d3z2−r2 orbital symmetry,
Heinze et al. [112] calculated a corrugation enhancement
factor of 2 and 6.25, respectively, based on Chen’s deriva-
tive rule [21]. Moreover, they argued that the corrugation
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inversion map should be practically identical to the one
obtained by using the s-tip model, and the corrugation
values just have to be scaled up by these factors. On the
contrary, based on the orbital dependent 3D WKB tun-
neling model one finds that the pz and d3z2−r2 tips pro-
vide qualitatively different corrugation inversion maps,
i.e., although their bias dependent shape is similar to
the one of the s-tip, their tip-sample distance is system-
atically pushed to larger values, see part a) of Fig. 17.
This is due to the more localized character of these tip
orbitals in the z-direction.

Corrugation inversion with the dxy tip occurs at the
largest tip-sample distance. A possible explanation can
be based on its xz and yz nodal planes. While above
the top position only the underlying W atom, above the
hollow position all four nearest neighbor W atoms give
zero contribution to the current, thus IT is expected to
be higher than IH at small tip-sample distances. To over-
come this effect the tip has to be moved farther from the
surface since then the relative importance of the nearest
neighbor contributions decays rapidly compared to other
parts of the surface.

Apart from above findings, corrugation inversion is
also obtained in the positive bias range at enlarged tip-
sample distances for the s, pz, d3z2−r2 , and W(110) tips
considered in part (a) of Fig. 17. This is most probably
due to the surface electronic structure. Note that this
effect is even more difficult to capture in experiments
as the corrugation values themselves decay rapidly with
increasing tip-sample distance [57].

4.5 STM images – Comparison to other tunneling
models

In order to demonstrate the corrugation inversion more
apparently, constant current STM images can be simu-
lated. As it is clear from Fig. 17, any type of crossing
of the ΔI(z, V ) = 0 contour results in the occurrence of
the corrugation reversal. In experiments two ways can
be considered to record STM images in the normal and
anticorrugated regimes: i) keep the tip-sample distance
z constant, and change the bias voltage V ; or ii) keep
the bias voltage V constant, and change the tip-sample
distance. Respectively, these modes correspond to a hor-
izontal and a vertical crossing of the ΔI(z, V ) = 0 con-
tour in the (z, V ) plane in Fig. 17. Heinze et al. followed
the first method in their simulations [112]. However, as
the second option seems to be experimentally more feasi-
ble and needs less calculations as well, STM images were
simulated at a fixed bias voltage of –0.25 V [91].

In Fig. 18, STM images are compared using the orbital
dependent 3D WKB model assuming an s-type tip [first
row (a)–(c)] to those calculated by the Tersoff–Hamann

method [second row (d)-(f)]. One finds that the images
are in good qualitative agreement for the (a)–(d), (b)–
(e), and (c)–(f) pairs, respectively. In parts (a) and (d),
at a tip-sample distance of about 3.80 Å, the apparent
height of the W atom is larger than the one of the hollow
position, i.e., Δz = zT − zH > 0. This resembles normal
corrugation. Moving the tip farther from the surface, the
corrugation inversion and striped images are obtained.
These are shown in parts (b) and (e) of Fig. 18. It is found
that the orbital dependent 3D WKB method reproduces
the corrugation inversion effect at almost the same tip-
sample distance (4.15 Å) as the Tersoff–Hamann model
predicts (4.21 Å). Increasing the tip-sample distance fur-
ther, the anticorrugation regime is reached, and the ap-
parent height of the W atom is smaller than the one
of the hollow position, i.e., Δz = zT − zH < 0. Such
images are shown in parts (c) and (f). Note that all
of the simulated STM images in Figure 18 are in good
qualitative agreement with Ref. [112]. The corrugation
of the individual current contours has also been calcu-
lated: (a) Δz′ = 0.23 pm, (b) Δz′ = 0.10 pm, (c)
Δz′ = 0.12 pm, (d) Δz′ = 1.63 pm, (e) Δz′ = 1.82 pm,
(f) Δz′ = 1.79 pm. One finds that the orbital dependent
3D WKB model gives approximately one order of magni-
tude less corrugation than the Tersoff–Hamann method.
Note, however, that the small corrugation amplitudes us-
ing the orbital dependent 3D WKB method are in good
agreement with the results of Ref. [112], where Δz′ < 1
pm is reported close to the contrast reversal.

As we have seen, the corrugation inversion effect al-
ready occurs considering the electronic structure of the
sample only. However, Fig. 17 indicates that different tips
can modify its tip-sample distance and bias voltage de-
pendence quite dramatically. In Fig. 19 STM images are
compared using the orbital dependent 3D WKB model
[first row (a)–(c)] to those calculated by the Bardeen
method [second row (d)–(f)] explicitly taking the elec-
tronic structure of the W(110) tip in both cases into
account. One finds that the images are in good qualita-
tive agreement for the (b)–(e) and (c)–(f) pairs. In parts
(a) and (d), at a tip-sample distance of about 4.50 Å, the
agreement is weaker, however, the normal corrugation
is more pronounced in the orbital dependent 3D WKB
model: The corrugation amplitude of part (a) Δz′ = 0.36
pm is much larger than that of part (d) Δz′ = 0.07 pm.
Note that employing the orbital dependent 3D WKB
model, a better qualitative agreement to the image of
part (d) has been found at a larger tip-sample sepa-
ration, i.e., closer to the corrugation inversion. This
inversion is demonstrated in parts (b) and (e) of Fig.
19. Again, striped images are obtained. Note, however,
that the stripes with larger apparent height correspond
to the atomic rows, in contrast to what has been found in
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Fig. 18 Comparison of simulated STM images of the W(110) surface using the orbital dependent 3D WKB model with
an s-type tip [top, (a)–(c)] and the Tersoff–Hamann model [bottom, (d)–(f)] at V = −0.25 V bias voltage. The scan area
corresponds to the rectangle shown in Fig. 14. Light and dark areas denote higher and lower apparent heights, respectively.
The apparent heights of the W atom (zT), and the corrugation of the contours (Δz′) are as follows: Orbital dependent
3D WKB model: (a) zT = 3.80 Å, Δz′ = 0.23 pm; (b) corrugation inversion, zT = 4.15 Å, Δz′ = 0.10 pm; (c) zT = 4.35
Å, Δz′ = 0.12 pm. Tersoff–Hamann model: (d) zT = 3.80 Å, Δz′ = 1.63 pm; (e) corrugation inversion, zT = 4.21 Å,
Δz′ = 1.82 pm; (f) zT = 4.70 Å, Δz′ = 1.79 pm. Reproduced from Ref. [91].

Fig. 19 Comparison of simulated STM images of the W(110) surface using the orbital dependent 3D WKB model [top,
(a)–(c)] and the Bardeen method [bottom, (d)–(f)] with the W(110) tip at V = −0.25 V bias voltage. The scan area
corresponds to the rectangle shown in Fig. 14. Light and dark areas denote higher and lower apparent heights, respectively.
The current values (I), the apparent heights of the W atom (zT), and the corrugation of the contours (Δz′) are as follows:
Orbital dependent 3D WKB model: (a) I = 6.3 nA, zT = 4.50 Å, Δz′ = 0.36 pm; (b) corrugation inversion, I = 0.43 nA,
zT = 5.80 Å, Δz′ = 0.02 pm; (c) I = 0.35 nA, zT = 5.90 Å, Δz′ = 0.02 pm. Bardeen method: (d) I = 4.4 nA, zT = 4.50
Å, Δz′ = 0.07 pm; (e) corrugation inversion, I = 0.7 nA, zT = 5.55 Å, Δz′ = 0.03 pm; (f) I = 0.19 nA, zT = 6.25 Å,
Δz′ = 0.02 pm. Reproduced from Ref. [91].

parts (b) and (e) of Fig. 18, where the atomic and hollow
sites appeared as depressions. This difference is definitely
due to the effect of the W tip, which was not considered
in Fig. 18. On the other hand, one finds good agree-
ment concerning the tip-sample distance of the corruga-
tion inversion: 5.80 Å in the orbital dependent 3D WKB
model, and 5.55 Å calculated by the Bardeen method.
Parts (c) and (f) of Fig. 19 correspond to anticorrugated
images. In this tip-sample distance regime the extremely

small corrugation amplitudes are in good agreement be-
tween the orbital dependent 3D WKB model and the
Bardeen method: Δz′ = 0.02 pm in parts (b), (c), (f),
and Δz′ = 0.03 pm in part (e). Note that for the current
calculations within the 3D WKB approach, ε = 1 eV has
been used in Eq. (31), that provides comparable current
values to the Bardeen results.

Finally, computational times between the orbital de-
pendent 3D WKB model and the Bardeen method were
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compared, and the following was found:
i) orbital dependent model, 30× 22× 150 grid points,

1 CPU, time = 229 s;
ii) Bardeen method in BSKAN code, 31×10×100 grid

points, 4 CPUs, time = 173 866 s.
Normalizing to the same real space grid points, one

obtains that the orbital dependent 3D WKB method is
2425 times faster using one CPU than using four CPUs
for the Bardeen calculation. As the four CPUs’ calcu-
lations are approximately 3.5 times faster than the cal-
culations on one CPU in standard computer clusters, a
remarkable one-CPU equivalent time boost of about 8500
is obtained for the orbital dependent 3D WKB method
compared to the Bardeen method for the given surface-
tip combination. While the k-point samplings of the sur-
face and tip Brillouin zones affect the computational time
of the Bardeen method due to the enhanced number of
transitions as the number of k-points increases, the com-
putational time of the orbital dependent 3D WKB model
is insensitive to the number of k-points as the PDOS of
the tip apex and surface atoms are used. The energy
dependent PDOS functions have the same data struc-
ture, no matter of the number of the constituting elec-
tron states obtained by the k-summation [56]. This is a
great computational advantage in favor of the orbital de-
pendent 3D WKB model. Of course, the quality of the
results depends very much on the k-point samplings.

5 Summary and outlook

In this work, we reviewed the recently developed 3D
WKB atom-superposition approach for simulating STM
and STS, based on electronic structure data obtained
from first principles. In the method, contributions from
individual electron tunneling transitions between the tip
apex atom and each of the sample surface atoms are
summed up assuming the 1D WKB approximation in all
these transitions. This tunneling model suits well to sim-
ulate spin-polarized STM and STS on surfaces exhibiting
a complex noncollinear magnetic structure, i.e., without
a global spin quantization axis, at very low computa-
tional cost. The tip electronic structure from first princi-
ples can also be incorporated into the model, that is often
assumed to be constant in energy in the vast majority
of the related literature, which could lead to a misinter-
pretation of experimental findings. Using this approach,
we highlighted some of the electron tunneling features
on a prototype frustrated hexagonal antiferromagnetic
Cr monolayer on Ag(111) surface. We obtained useful
theoretical insights into the simulated quantities that is
expected to help the correct evaluation of experimental
results, even on different magnetic surfaces. By extend-

ing the method to incorporate a simple orbital depen-
dent electron tunneling transmission, we reinvestigated
the bias voltage- and tip-dependent contrast inversion ef-
fect on the W(110) surface. We highlighted the role of the
real space shape of the orbitals involved in the tunnel-
ing, rather than considering electron states in the recip-
rocal space, thus a different kind of understanding is pro-
vided. STM images calculated using this orbital depen-
dent model agree reasonably well with Tersoff–Hamann
and Bardeen results.

The main advantages of the 3D WKB method are com-
putational efficiency, i.e., computational time and data
storage throughout the simulation, and the flexibility of
using any electronic structure code for the PDOS in-
puts. So far, the method has been tested and used em-
ploying the PDOS calculated by the VASP code [103–
105], the SKKR code [118, 119], and the FLEUR code
(http://www.flapw.de, tip PDOS data calculated by Fer-
riani et al. [76]). It is possible to combine different levels
of electronic structure calculations for the sample sur-
face and the tip, see, e.g., Ref. [10]. The most impor-
tant feature is that the k-point samplings of the surface
and tip Brillouin zones do not affect the computational
time, in contrast to the Bardeen method. We showed that
in a certain case, a relative computational time gain of
8500 is obtained compared to the Bardeen calculation,
without the loss of quality. On the other hand, calculat-
ing and storing the projected DOS onto surface atoms
is computationally much cheaper compared to the ex-
act vacuum LDOS of the surface on a great number of
real space grid points: While the na

S(E) and ma
S(E) real

quantities take altogether at most 60 kBytes on a 5101
E-point grid in the three-atomic magnetic unit cell of the
Cr/Ag(111) surface, the nS(x, y, z, E) and mS(x, y, z, E)
real quantities in Eqs. (6) and (7) take altogether 2.9
GBytes on the same E-grid in the box above the mag-
netic unit cell containing 153 000 (34 × 30 × 150) real
space grid points. Moreover, the atom-projected PDOS
functions are routinely obtained in all ab initio electronic
structure codes, whereas the vacuum LDOS is not always
routinely accessible for the average user. Thus the pre-
sented 3D WKB method meets the requirement for an
efficient user-friendly simulation tool that could be eas-
ily used by experimental groups, and give (SP-)STM and
(SP-)STS results within minutes with reasonable accu-
racy.

The picture would not be complete without mention-
ing the limitations of the 3D WKB method. For exam-
ple, it does not account for multiple scattering [115] and
interference effects [24, 31], which could be important
for certain systems. Therefore, it is expected that the
3D WKB model works well on simple metals, possibly
on molecular adsorbates on surfaces as well, but not on
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materials with strong band structure or Fermi surface
effects. Another limitation is the uniform vacuum decay
κ of the electron states for different orbital symmetries
in Eq. (55). At the moment, the orbital effects are con-
tained in the geometry factor, Eq. (59) only. Still, the
model in its present form provides comparable results to
more sophisticated tunneling models (Tersoff–Hamann,
Bardeen), see Section 4.5.

Though some of these limitations cannot be overcome
owing to the simple physical picture behind the 3D
WKB method, other limitations call for further exten-
sions of the model, to become an even more powerful tool
for (SP-)STM and (SP-)STS simulations. One type of
improvements concerns the tunneling transmission func-
tion. Considering different decays for different orbital
symmetries, the vacuum decay κ in Eq. (55) could also
be described depending on the electron orbitals. Fur-
thermore, the correct description of the electron work
function is extremely important on strongly corrugated
surfaces [102]. Related to this, the sample work function
can be position-dependent, φS(x, y), or even position-
and orientation-dependent, φS(x, y, ϑ, ϕ). Here, the an-
gles can be calculated in a fixed tip position. Using
such improved local work functions, the description of
the effective rectangular tunnel barrier can be replaced
by more sophisticated tunnel barrier models. Moreover,
extending the orbital dependent 3D WKB model to
magnetic junctions is expected to enable the study of
the interplay of real space orbital and spin polariza-
tion effects in SP-STM and SP-STS experiments in the
future. On the other hand, the orbital dependent 3D
WKB model makes it possible to consider the effect of
arbitrary crystallographic tip orientations on the tunnel-
ing properties. The more sophisticated tunneling models
are very restricted to treat such effects at high com-
putational cost [114]. Owing to the atom-superposition
framework, the effect of multi-tip apices or nanotips can
also be studied that have experimental relevance since
the tip preparation techniques are hard to control [120].
Finally, the real space character of the 3D WKB method
to calculate tunneling properties on a fine grid in a box
above the surface enables the further speed-up of the
calculations by parallelizing the code via the partition-
ing of the real space box.
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120◦ antiferromagnetic Néel structure in real space: One

monolayer Mn on Ag(111), Phys. Rev. Lett., 2008, 101(26):

267205
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danger, Atomic-scale spin spiral with a unique rotational

sense: Mn monolayer on W(001), Phys. Rev. Lett., 2008,

101(2): 027201
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tum modulation of the Kondo resonance of Co adatoms on

Cu/Co/Cu(100): Low-temperature scanning tunneling spec-

troscopy study, Phys. Rev. B, 2008, 78(3): 033402

64. P. Roura-Bas, M. A. Barral, and A. M. Llois, Co impurities

on Ag and Cu: Kondo temperature dependence on substrate

orientation, Phys. Rev. B, 2009, 79(7): 075410

65. K. R. Patton, H. Hafermann, S. Brener, A. I. Lichtenstein,

and M. I. Katsnelson, Probing the Kondo screening cloud

via tunneling-current conductance fluctuations, Phys. Rev.

B, 2009, 80(21): 212403
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atomic contrast in scanning probe microscopy on (111) metal

surfaces, J. Phys.: Condens. Matter, 2012, 24(8): 084003
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