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Chaves and Zelena. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 11 October 2022

DOI 10.3389/fendo.2022.985424
Ovariectomy-induced hormone
deprivation aggravates Ab1-42
deposition in the basolateral
amygdala and cholinergic fiber
loss in the cortex but not
cognitive behavioral symptoms
in a triple transgenic mouse
model of Alzheimer’s disease

Szidónia Farkas1,2, Adrienn Szabó1,2,3, Bibiána Török1,2,
Csenge Sólyomvári1, Csilla Lea Fazekas1,2,3, Krisztina Bánrévi2,
Pedro Correia1,2,3, Tiago Chaves1,2,3 and Dóra Zelena1,2*

1Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai
Research Centre, Pécs, Hungary, 2Laboratory of Behavioral and Stress Studies, Institute of
Experimental Medicine, Budapest, Hungary, 3János Szentágothai School of Neurosciences,
Semmelweis University, Budapest, Hungary
Alzheimer’s disease is the most common type of dementia, being highly

prevalent in elderly women. The advanced progression may be due to

decreased hormone synthesis during post-menopause as estradiol and

progesterone both have neuroprotective potentials. We aimed to confirm

that female hormone depletion aggravates the progression of dementia in a

triple transgenic mouse model of Alzheimer’s disease (3xTg-AD). As

pathological hallmarks are known to appear in 6-month-old animals, we

expected to see disease-like changes in the 4-month-old 3xTg-AD mice

only after hormone depletion. Three-month-old female 3xTg-AD mice were

compared with their age-matched controls. As a menopause model, ovaries

were removed (OVX or Sham surgery). After 1-month recovery, the body

composition of the animals was measured by an MRI scan. The cognitive and

anxiety parameters were evaluated by different behavioral tests, modeling

different aspects (Y-maze, Morris water maze, open-field, social

discrimination, elevated plus maze, light–dark box, fox odor, operant

conditioning, and conditioned fear test). At the end of the experiment, uterus

was collected, amyloid-b accumulation, and the cholinergic system in the brain

was examined by immunohistochemistry. The uterus weight decreased, and

the body weight increased significantly in the OVX animals. The MRI data

showed that the body weight change can be due to fat accumulation.

Moreover, OVX increased anxiety in control, but decreased in 3xTg-AD

animals, the later genotype being more anxious by default based on the
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anxiety z-score. In general, 3xTg-AD mice moved less. In relation to cognition,

neither the 3xTg-AD genotype nor OVX surgery impaired learning andmemory

in general. Despite no progression of dementia-like behavior after OVX, at

the histological level, OVX aggravated the amyloid-b plaque deposition in the

basolateral amygdala and induced early cholinergic neuronal fiber loss in the

somatosensory cortex of the transgenic animals. We confirmed that OVX

induced menopausal symptoms. Removal of the sexual steroids aggravated

the appearance of AD-related alterations in the brain without significantly

affecting the behavior. Thus, the OVX in young, 3-month-old 3xTg-AD mice

might be a suitable model for testing the effect of new treatment options on

structural changes; however, to reveal any beneficial effect on behavior, a later

time point might be needed.
KEYWORDS

Alzheimer’s disease, hormone deprivation, ovariectomy, cognitive function, anxiety,
estrogen, cholinergic neurons
1 Introduction

Alzheimer’s disorder (AD) is the most common type of

dementia, which is among the top 10 leading causes of death in

the world (1, 2). It is characterized by disturbances of memory,

attention, and sleep (1, 3). The patients often have difficulties in

their daily life due to their impaired behavioral abilities (4).

Morphologically, amyloid plaques [formed by amyloid-b 1-42

(Ab1-42)] and hyperphosphorylated tau aggregates appear in the

hippocampus, cortex, and amygdala, brain areas that are critical

in cognitive and emotional function (5, 6).

Plenty of risk factors have been identified regarding AD.

These can be lifestyle related, like diet, physical activity, and

environmental conditions, or medical factors, like obesity and

cardiovascular conditions (1). However, the three major risk

factors are age, gender, and genetical mutations (7–9). It is well

known that the incidence of AD is increasing with age, but it is

also important to note that women represent 70% of the patients

(10). The increasing female prevalence among elderly can be due

to hormonal change during menopause (11, 12). Namely, the

low levels of sex steroids, like 17b-estradiol (E2) and

progesterone (PG), may have an important role in the

pathomechanism (13). Indeed, both E2 and PG play a pivotal

role in neuroprotection, thereby improving cognitive function,

memory, attention, synaptic plasticity, spine density, and

dendrite formation (14–17). The loss of the ovarian hormones

can affect these functions, and also increase the appearance of

amyloidogenic markers, aggravating the progression of AD (18–

20). Beside the natural decrease in ovarian steroids during

menopause, the surgical removal of the gland in younger

generation may also have detrimental effect on their cognitive

capabilities (21, 22). It is estimated that, in USA, 100,000 cases of
02
dementia may be attributable annually to bilateral

oophorectomy (23). This later state can be modeled by

ovariectomy (OVX) in animals (24, 25).

AD can also be characterized by genetical mutations,

leading to family accumulations. Research has identified five

main “AD genes”: apolipoprotein E (ApoE) ϵ4 allele, amyloid

precursor protein (APP), presenilin-1 (PSEN1), presenilin-2

(PSEN2), and microtubule-associated protein tau (MAPT).

These genes may contribute to the formation of amyloid

plaques, leading to memory loss and behavioral changes (8,

26–33), as well as to different tauopathies such as AD (34, 35).

Genetic animal models were generated based on these human

mutations. The triple transgenic mouse (3xTg-AD), bearing

the humanoid mutation of APP, PSEN1, and tau, is widely

used and well characterized (36–38). This mouse strain

develops AD-l ike structural (amyloid plaques and

hyperphosphorylated tau) and behavioral (progressive

cognitive decline) symptoms.

The most relevant and affected neurocircuit in AD patients is

the cholinergic system (39, 40), most of all the basal forebrain

cholinergic (BFC) neurons (41, 42), being the main therapeutic

target (43). The cholinergic neurons from the medial septum

(MS), nucleus basalis magnocellularis (NBM), and substantia

innominata complex are highly affected in AD, and also express

E2 receptors (44–48), proving the importance of sexual steroids

in the pathophysiology of the disease. OVX may decrease, while

E2 treatment normalizes the number of cholinergic neurons in

the BFC, as well as the length and branching of these neurons

(49–51). In the 3xTg-AD mouse model, a cholinergic decline

was also discovered, showing the loss of ChAT immunoreactive

neurons in the MS and in the vertical limb of the diagonal band

of Broca (52, 53).
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Based on the important role of sexual steroids in neuronal

health and their role in mental diseases, we aimed to investigate

the aggravating effect of hormone deprivation induced by

bilateral OVX on AD-related somatic, behavioral, and

histological changes in the 3xTg-AD mice. The lack of E2 and

PG may anticipate difficulties in cognitive function and anxiety-

related behavior, perturbs somatic characteristics (like body

weight or body fat ratio), and assumes morphological changes

on amyloid deposition and in the cholinergic system. To test this

hypothesis, the following concepts were used: (I) As OVX is

often accompanied by body weight increase (54), and uterus

weight decrease (55, 56), we were concentrating on these somatic

parameters mainly to confirm the effectiveness of the OVX

surgery. (II) The major symptom of dementia is cognitive

disability; therefore, we used behavioral tests measuring (57)

(i) short-term memory [Y-maze, often used in AD testing (58);

based on spontaneous exploration of the mice]; (ii) social

discrimination (SD); (iii) spatial memory [Morris water maze

(MWM) as the gold standard in AD research (59, 60); also

known as avoidance-based complex association]; (iv) reward-

based simple association [operant conditioning (OC)]; and (v)

punishment-based simple association [conditioned fear test

(CFT)]. (III) As anxiety is often comorbid with AD (61, 62),

and is a core symptom during menopause, or after OVX (63), we

tested these symptoms by (i) elevated plus maze (EPM), as a gold

standard in anxiety research (64), showing changes during the

menstrual cycle (65); (ii) light–dark box (LD) test, which utilizes

the fear from open, light spaces, similarly to EPM; and (iii) fox

odor test (FOT), measuring the innate fear from a predator odor.

(IV) At the structural level, we were concentrating on Ab
accumulation as well as cholinergic cell and fiber loss.
2 Materials and methods

2.1 Mouse strains

Three-month-old 3xTg-AD [B6;129-Tg(APPSwe,tauP301L)

1Lfa Psen1tm1Mpm/Mmjax] mice and their control strains

(C57BL6/J) were used (66). This age corresponds to young

adult humans without hormonal disturbances. The 3xTg-AD

animals were homozygotes for three AD-related human-based

genetic mutations: PSEN1, APPSwe, and tauP30IL (36–38). We

maintained the colony by breeding homozygous mice to each

other. Only females were used in this experiment. All animals

were bred and housed at the Institute of Experimental Medicine,

Budapest, Hungary. The mice were maintained under reversed

light–dark cycle (lights off at 8:00 a.m., lights on at 8:00 p.m.)

and provided with standard mice chow [without estrogen-free

dietary restrictions (67)] and water ad libitum. The animal

rooms have a temperature of 22 ± 2°C and a relative humidity

of 55 ± 10%. All tests were approved by the local committee of

animal health and care (PE/EA/918-7/2019) and performed
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according to the European Communities Council Directive

recommendations for the care and use of laboratory animals

(2010/63/EU).
2.2 Experimental design

Mice were ovariectomized (OVX) or Sham operated

without removing the ovaries (Sham), under ketamine–

xylazine anesthesia (dose: 125 mg/kg ketamine and 25 mg/kg

xylazine dissolved in 0.9% saline, administered in 10 ml/kg

concentration intraperitoneally). During surgery, the animals

were divided into the following four groups: (1) Control-Sham

(n = 8), (2) Control-OVX (n = 9), (3) 3xTg-AD-Sham (n = 7),

and (4) 3xTg-AD-OVX (n = 12) (Figure 1A; the unequal

animal numbers are due to surgical-related loss). Two series

were conducted; each contained all four groups. After 1 month,

a magnetic resonance imaging (MRI) measurement was

performed. During this period, the ovarian hormones were

supposed to disappear [maximal luteinizing hormone levels

can be detected at this point (68)] and enough time has passed

for the development of supposed behavioral changes. Then, the

following behavioral test battery was used: Y-maze, SD, EPM,

LD, FOT, MWM, OC, and CFT, with at least 24-h rest between

the different tests (Figure 1B). The order of the tests was chosen

from the milder stressors (5–10 min single test) to more

burdensome ones (through restricted diet in OC till foot

shock in CFT). All behavioral tests were performed during

the first half of the active (dark) cycle (between 9:00 a.m. and

2:00 p.m.). At the end of the experiments, animals were

sacrificed, and brains were dissected and post-fixed in 4%

PFA for 24 h, dehydrated in 30% sucrose solution for 24 h,

and then 30-μm-thick slices were made with a freezing

microtome (Leica SM2010 R). Uterus dissection and

weighting were also performed to validate the success of the

OVX. Due to technical reasons (e.g., missing video recording

and loss of brain slide during staining) in some experiments,

data from one to two animals are missing.
2.3 Magnetic resonance imaging
measurements

Body composition (body weight, fat, lean, free water, and

total water) measurements were performed with a body

composition analyzer for live small animals (EchoMRI™-700,

EchoMRI LLC, Houston, TX), as described by the manufacturer.

The animals were put in a restrainer and placed in the MRI

machine for approximately 1 min (Figure 2A). The

measurement was done in duplicate consecutively, without a

time gap, and averaged. The body fat and lean weight were

expressed as percentage of the body weight, and hydration ratio

was calculated as the following:
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HR =
total  water − free  water

lean
� 100
2.4 Behavioral tests

2.4.1 Cognitive behavioral tests
2.4.1.1 Y-maze test

The test was performed in a Y-shaped apparatus, with 3

arms (A, B, and C), with 30 × 7 × 20 cm dimensions, and in a 15–

20 lux environment (Figure 3A) (57). Mice were placed in arm A

and were allowed to explore the maze freely for 10 min. Before

the entry of each animal, the maze was cleaned with 70%

ethanol. Locomotion was calculated based on the total number

of entries, while the spontaneous alternation reflects short-term

memory and was calculated as the percentage (%) of “correct”
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alternation/total alterations. “Correct” alternation means entry

into all three arms on consecutive choices (i.e., ABC, BCA, or

CAB). Parameters were measured manually by an experimenter

blind to the treatment groups.

2.4.1.2 Social discrimination test

The test was performed in a 40 × 40 × 15 cm apparatus

under red light (69). The experiment consisted of four phases,

each lasting 5 min (Figure 3D). Firstly, the mice were placed in

the box for acclimatization [open-field phase (OF)]. Secondly,

two metal cages were placed into the box and fear from objects as

well as side preference was evaluated. The goal was to habituate

the animals to the container (object habituation). Then, a

stimulus mouse [C57BL6, 25- to 30-day-old male, test naïve,

sexually immature (70)] was placed under one of the metal cages

(sociability phase). In the last 5 min, another stimulus mouse
A

B

FIGURE 1

Experimental design. (A) Three-month-old female 3xTg-AD and C57BL6/J mice were used and divided into the following groups: (1) Control-
Sham (n = 8), (2) Control-OVX (n = 9), (3) 3xTg-AD-Sham (n = 7), and (4) 3xTg-AD-OVX (n = 12). (B) Chronological order of experimental
procedures. On 3-month-old mice, a bilateral ovariectomy (OVX) or Sham surgery was performed, then after 1 month, magnetic resonance
imaging (MRI) measurements were conducted followed by behavioral experiments in this order: Y-maze, social discrimination (SD), elevated
plus maze (EPM), light–dark box (LD), fox odor test (FOT), Morris water maze (MWM), operant conditioning (OC), and conditioned fear test
(CFT). The duration and time between different tests are marked in the chronological axis as days (d). At the end of the experiment, uterus and
brain were dissected for histological staining. OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder.
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was placed under the other metal cage, and the position of the

two cages was swapped [social discrimination (SD)]. The mice

were left to explore freely the two animals. In the OF, the

distance moved, and the time spent in the central or

peripheral zone was analyzed automatically by EthoVision XT

(Noldus IT, Wageningen, The Netherlands, version 15). Other

parts of the test were analyzed using Solomon Coder (Solomon

Coder, Hungary; https://solomoncoder.com/) by an

experimenter blind to the treatment groups. The time and

frequency sniffing the left or right container were evaluated.

The sociability index (third phase) was calculated as:

SI =
time   spent   sniffing   the  mice   container

time   spent   sniffing   the  mice   container + empty   container *
100

The discrimination index (DI, fourth phase) was calculated

as:

DI =
time   spent   sniffing   new − old  mice
time   spent   sniffing   new + old  mice
2.4.1.3 Morris water maze test

A plastic circular pool (90 cm in diameter and 40 cm in

height) was filled with tap water (24 ± 2°C), made opaque by

white wall paint (Figure 4A) (38). A platform (6 cm in diameter)

was placed 1 cm above the water for learning day 1, then moved

1 cm lower than the level of the water for days 2–5. The

apparatus was divided into four quadrants and the platform

was installed in the middle of one quadrant. Mice were released

into the water from different points across trials (Figure 4A,

marks 1–4) and were allowed to swim freely for 60 s to find the

platform. If the mice could not find the platform during the

1 min, then it was guided there and left on the platform for 10 s.

The learning phase (days 1–5) consisted of four trials with 30-

min intertrial interval (ITI) when the animals were dried by a

towel and returned to their home cages. On day 6 (probe day),

the platform was removed from the water and the mice had 60 s

to search for it. Latency to reach the platform during the learning

phase was recorded manually, while during the probe test, time

spent in different zones was calculated by EthoVision XT 15.

2.4.1.4 Operant conditioning test

The test was performed in an automated operant chamber

(Med Associates, St. Albans, VT, USA) with two nose holes

(Figure 5A) (57). As a reward, 45 mg of food pellets (Bio-Serv

Dustless Precision Rodent Pellet, Bilaney Consultants GmbH,

Germany) was used (71). Animals were placed inside a test

chamber for 30 min to freely explore the environment. A nose

poke into one of the nose holes was immediately associated with

a reward followed by a 25-s-long time out with the chamber light

switched on (time-out period), while the other nose hole was not

baited (incorrect). During the time-out period, responses were

not rewarded, but were registered. The test was divided into two
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phases: habituation (days 1–2) and learning (days 3–7), and data

only from the learning phase is shown (Figures 5B, C, days 1–5).

Reward preference (RP) (ratio of responses on the rewarded

nose hole) was calculated. Number of rewarded responses and

time-out reward hole nose pokes were also recorded.

RP =  
correct   nose   poke

incorrect + correct   nose   poke
 �   100

2.4.1.5 Conditioned fear test

The mouse was placed into a Plexiglas chamber (25 × 25 ×

30 cm) with an electrical grid floor (Coulbourn Instruments)

that delivered the foot shocks (SuperTech Instruments). For

2.5 min, the animals were left in the boxes for habituation

[baseline (BL)]. Then, at pseudorandom intervals (60–90 s), a

30-s-long conditioned stimulus (CS: 80 dB pure tone at 7 kHz)

was played and co-terminated with an unconditioned stimulus

(foot shock: 0.7 mA, 1 s long, seven times in total), for a total of

11 min (Figure 5D). The following day, the experiment was

repeated, except that the animals did not receive foot shocks at

the end of the CSs (72). The chambers were cleaned with soap

water and water after every trial. The experiment was conducted

in bright light (700 lux). Time spent in immobility was measured

automatically by Ethovision XT 15 on the second day. Time

spent in immobility was calculated for the BL (mean for 10 s) as

well as for CSs (mean for 7 CS per 10 s).

2.4.2 Anxiety-related behavioral tests
2.4.2.1 Elevated plus maze test

A plus-shaped device was used, which comprised two

opposite open arms and two enclosed arms (30 × 7 × 30 cm)

(Figure 6A) (73). The mice were placed in the center of the

apparatus facing the open arm and were allowed to explore the

maze for 5 min. Before the entry of each animal, the maze was

cleaned with 70% ethanol. The time spent and number of entries

into the different arms as well as the distance moved (cm) were

quantified with EthoVision XT 15. The open arm preference

(OP) (74) was calculated as:

OP =  
open   arm   entries

open   arm   entries + closed   arm   entries
2.4.2.2 Light–dark box test

LD was performed in a 40 × 20 × 25 cm box, which had two

compartments: a light (white colored) compartment that is open

from above and a dark (black colored) compartment that is closed

from every side (Figure 6B). A small gate (5 × 5 cm) between the

two compartments, where the animal can freely pass, was present.

The mice were placed in the light part of the box and were allowed

to explore the environment for 10 min. The duration of time spent

in each compartment, the total number of entries, and latency to

dark compartments were measured by Solomon Coder.
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2.4.2.3 Fox odor avoidance test

Exposure to fox-derived synthetic predator odor, 2-methyl-

2-thriazoline (2MT, #M83406, Sigma Aldrich), was performed

in a separate experimental room under a fume hood. A

transparent Plexiglas arena (43 × 27 × 19 cm) was used

(Figure 7A). During the test, a 2MT solution-soaked filter

paper (40 ml in 1 ml of distilled water, 50 ml/animal) was

placed in a plastic 50-ml conical tube cap in one corner of the

box (75). A 7 × 11 cm “odor zone” around the odor source was

defined. The opposite part (25%) of the box was appointed as

“avoidance zone”. During the test, the animal was placed in the

avoidance zone and left to freely explore the arena for 10 min.

Time spent in the odor zone and the distance moved (cm) was

measured with EthoVision XT 15. Different anxiety-related

behaviors, like the time spent freezing, grooming, and sniffing

as well as the exploratory behaviors like time spent rearing and

exploring was analyzed manually by Solomon Coder by an

experimenter blind to the treatment groups.
2.5 Histological evaluations

2.5.1 Hematoxylin–eosin staining for uterus
morphology

After weighing, uteruses were fixed in 4% PFA for 24 h, then

dehydrated with 30% sucrose solution. Thirty-micrometer slices

were made with a freezing microtome (Leica SM2010 R).

Hematoxylin–eosin (HE) staining was performed on the slices

to see morphological changes in the epithelium layer thickness,

lumen size, and the integrity of the endometrial glands

(Figure 8A). Samples were imaged with a Nikon Eclipse E1 R

(Nikon, Tokyo, Japan) microscope at 4× magnification.

2.5.2 Amyloid-b1-42 and choline
acetyltransferase immunohistochemistry

For Ab1-42 and ChAT staining, peroxidase-based

immunohistochemistry with nickel-diaminobenzidine

tetrahydrochloride (Ni-DAB) visualization was undertaken (17).

Firstly, only for the Ab staining, a 10-min concentrated formic acid

(Sigma-Aldrich, #F0507) exploration was implemented. Secondly,

endogen peroxidase was blocked by a 3% peroxide (H2O2) solution.

After blocking, slices were incubated 72 h with the primary antibody

recognizing Ab (Rabbit, 1:500, Invitrogen, #71-5800) or ChAT

(Goat, 1:1,000, Millipore, #AB144P). After 72 h, brain slices were

incubated with a biotinylated secondary antibody (biotinylated anti-

rabbit, 1:200, Jackson ImmunoResearch, #111-065-003 or

biotinylated anti-goat 1:200, Jackson ImmunoResearch, #705-065-

147) at room temperature (RT), for 2 h. An avidin–biotin kit

(VECTASTAIN Elite ABC-Peroxidase Kits, PK-6100, Vector

Laboratories) was used for 2 h, RT, to detect biotinylated

molecules. Then, the visualization was performed with a Ni-DAB

and glucose oxidase mixture. Samples were imaged with a Nikon

Eclipse E1 R (Nikon, Tokyo, Japan)microscope at 4×magnification.
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In case of Ab plaques, the integrated optical density (IOD)

was measured by ImageJ/Fiji in the basolateral amygdala (BLA),

the somatosensory and motor cortex (CTX) between Bregma

0.50 mm and −1.20 mm, and the CA1 region of the

hippocampus (CA1-HC) between Bregma −1.19 mm and

−2.69 mm (Figure 9A). In other brain areas of 5-month-old

3xTg-AD mice, no amyloid deposition was found. After ChAT

staining, the number of ChAT-positive cells was counted in the

NBM, a brain region containing cholinergic cell bodies, and

highly affected in AD (Figure 10A) (76, 77).

2.5.3 Acetylcholinesterase histochemistry
To label cholinergic fibers in the somatosensory cortex (SSC),

the target area of the NBM neurons (78), an AChE histochemistry

was performed (17). Slices were selected from the coordinates:

Bregma +0.50 mm to −1.06 mm (Figure 10A). Free-floating brain

slices were incubated in a mixture of sodium acetate buffer (0.1 M;

pH 6) acetylthiocholine iodide (0.05%), sodium citrate (0.1 M),

copper sulfate (0.03 M), and potassium ferricyanide (5 mM). This

was followed by ammonium sulfide (1%) and then silver nitrate

(1%) incubation (17, 79). Analysis was performed with ImageJ/Fiji

software. Samples were imaged with a Nikon Eclipse E1 R (Nikon,

Tokyo, Japan)microscope at 10×magnification. IODwasmeasured

between layer IV and V of the SSC (Figure 10A).
2.6 Z-score calculations

Integrated z-score was calculated for four major parameters:

somatic, cognitive, anxiety, and locomotion, as proposed by

Guilloux et al. (80), and previously presented in (73, 81). For

each parameter, a normalized value (studentization) was

calculated according to the following equation:

z − score =  
individual   value −meancontrol

standard   deviationcontrol

and the included parameters were adjusted to have the same

directionality. Somatic z-score was calculated from the averages

of body weight change, fat/BW percentage, and uterus weight

(×−1) z-scores. Cognitive z-score was calculated from alteration

in the Y-maze; the area under the curve (AUC) of the latencies to

platform during learning days 1–5 in MWM (×−1), and latency

to platform on the probe day (×−1) in MWM; average freezing

during baseline and conditioned stimuli in CFT; and the AUC of

the reward preference learning days 3–7 in operant

conditioning. Anxiety z-score was averaged from the z-scores

of open arm duration (×0.5) and open arm preference (×0.5) in

EPM; time spent in light compartment in LD; time spent

freezing (×−1) and percentage of time spent in the odor zone

in FOT; and percentage of time spent with freezing in CFT day 2

(×−1). Locomotion z-score was calculated from the parameters

that reflected mobility in the given experiment [distance moved

in EPM (×0.5), OF and fox odor tests; total number of entries in
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the Y-maze, EPM (×0.5), and LD], then averaged for each

animal. Somatic, cognitive, anxiety, and locomotor z-scores

were averaged for every group and statistically tested. If

multiple parameters indicating the same meaning within an

experiment were included in averaged z-score calculations (e.g.,

distance moved and closed arm entries on EPM in the

locomotion z-score), then they were multiplied by ×0.5 in

order to avoid unwanted weighting of the specific test.
2.7 Statistical analysis

GraphPad Prism (version 6.0) was used for statistical

analyses. Two-way ANOVA (MRI, Y-maze, OF, Sociability,

SD, EPM, LD box, FOT, and histology; on factors genotype

and OVX) or repeated-measures ANOVA (MWM, body weight

change, OC, and CFT; additional factor: time) was used to

compare the groups, followed by Tukey HSD or Sidak post-hoc

test. For comparison of two groups, Student’s t-test was used (Ab
staining). All data are presented as mean ± SEM and p< 0.05 was

considered as a statistically significant difference.
3 Results

3.1 Changes in body composition
measured with MRI

Regarding body weight changes, a difference was found

between the two genotypes [F(3,59) = 12.59, p< 0.0001], the

3xTg-AD mice being heavier than the controls. However,

OVX surgery itself increased the body weight during a 40-day

period [F(1,19) = 16.35, p = 0.0007] without any influence of the

genotype (Figure 2B). This increased body weight can be

explained by the increased body fat ratio, where a genotype

effect was also detectable with more fat in 3xTg-AD animals

[F(1,32) = 10.01, p = 0.0034] (Figure 2C). OVX was able to

increase the fat accumulation in both genotypes [F(1,32) = 38.38,

p< 0.0001] (Figure 2C). Simultaneously, lean body weight ratio

decreased [genotype: F(1,32) = 11.97, p = 0.0016, OVX: F(1,32) =

47.45, p< 0.0001] (Figure 2D). A significant negative correlation

between body fat and lean ratio was also detected (r = −0.9870,

p< 0.0001) (Figure 2E). The hydration ratio (((total water − free

water)/lean)*100) of all animals was in the normal range (80 ±

5%), without any effect of genotype or OVX (Figure 2F).
3.2 Behavioral tests

3.2.1 Cognitive behavioral tests
3.2.1.1 Y-maze test

There was no difference between the groups in the main

parameter of short-term memory, the alternation (Figure 3B).
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The 3xTg-ADmice moved significantly less compared to control

animals [F(1,31) = 19.52, p = 0.0001] without any effect or

influence of OVX (Figure 3C).
3.2.1.2 Social discrimination (SD) test

We confirmed the reduced locomotion of 3xTg-AD mice

during the first 5 min OF phase [F(1,32) = 13.80, p = 0.0008],

without OVX effect (Figure 3E). Neither the genotype, nor the

OVX influenced the number of entries or time spent in the

centrum, not even if we corrected it with locomotion (Table 1).

During the object habituation phase, none of the mice

preferred any side; thus, the next phases did not require any

correction (Figure 3F). OVX did not significantly affect the

number of object approaches as well [F(1,32) = 3.05, p =

0.1298; Table 1].

In the sociability phase, every mouse showed more interest

to the stimulus mouse-containing cage [repeated-measures

ANOVA: F(1,32) = 33.81, p< 0.0001; single-sample t-test

against 50%; Control-Sham: t(7) = 4.27, p = 0.0037; Control-

OVX: t(9) = 5.49, p = 0.0004; 3xTg-AD-Sham: t(6) = 3.50, p =

0.0128; 3xTg-AD-OVX: t(9) = 3.90, p = 0.0036] without

significant difference between groups (Figure 3G). There was a

tendency for OVX animals to approach the social container a

fewer number of times [F(1,32) = 3.89, p = 0.0881; Table 1].

In the social discrimination phase, an increased interest

towards the new mouse was detected in all groups [F(1,62) =

7.75, p = 0.0071], suggesting that—in general—the test animals

preferred the new stimulus mice, as expected (Figure 3H).

However, when we checked the groups one by one, only the

Control-OVX group seemed to have intact memory with a

tendency in the 3xTg-AD-OVX group [single-sample t-test

against 0; Control-Sham: t(7) = 1.17, p = 0.2806; Control-OVX:

t(9) = 2.48, p = 0.0348; 3xTg-AD-Sham: t(6) = 0.53, p = 0.6179;

3xTg-AD-OVX: t(9) = 2.03, p = 0.0732]. A larger number of

animals are probably needed for this test to work properly.

Nevertheless, there was no overall difference between groups.
3.2.1.3 Morris water maze test

The latencies to reach the platform showed a significant

improvement in time during the learning phase, independently

from genotypes or surgery [F(4,132) = 43.42, p< 0.0001]

(Figure 4B). At the end of the 5th day, the animals were able

to find the platform within 20 s (o average: 17.01 ± 1.21 s),

suggesting that all groups learned the task. A significant

interaction between OVX and time was detected [F(4,128) =

4.31, p = 0.0026]; the OVX groups started to learn the task a bit

later, as day 2 was not significantly different from day 1 in

contrast to Sham-operated groups. Moreover, during days 4

and 5, the OVX groups differed significantly from the Sham-

operated ones [F(1,32) = 6.09, p = 0.0191], suggesting a flatter

learning curve. Additionally, the fluctuation observable in the

3xTg-AD-OVX group suggests random choice, thus, not
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appropriate learning of this group. The genotype also showed a

tendency for time dependence [F(4,128) = 2.18, p = 0.0744], with

a subtle learning impairment of the 3xTg-AD mice. All the

animals remembered the place of the platform as during the

probe test they spent more than 25% of the time in the platform

quadrant [single-sample t-test against 25; Control-Sham: t(7) =
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2.14, p = 0.0701; Control-OVX: t(9) = 5.50, p = 0.0004; 3xTg-

AD-Sham: t(6) = 6.12, p = 0.0009; 3xTg-AD-OVX: t(9) = 3.02, p

= 0.0130]. No difference was found between groups in the

probe day in the latency to reach the platform or time spent in

the quadrant, where the platform was during the probe

day (Figure 4C).
A B
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FIGURE 2

Magnetic resonance imaging (MRI) measurements. (A) Representative figure of the procedure. Animals were placed in a restrained tube, then

inserted into an EchoMRI™-700 machine for approximately 1 min. (B) Body weight change of the animals from day 0 to day 40. 3xTg-AD
animals were heavier than their controls (p < 0.0001). OVX induced body weight increase, irrespective of the genotype (p = 0.007). (C) Body fat
percentage at 1-month post-surgery. 3xTg-AD animals had higher body fat percentage [Fat/Body weight (BW)*100] (p = 0.0034), which was
aggravated by OVX in both genotypes (p < 0.0001). (D) Body lean percentage 1-month after surgery. A decrease in the body lean ratio [Lean/
Body weight (BW)*100] was detected after OVX (p < 0.0001), and between the two genotypes (p = 0.0016). (E) Correlation between body fat
and lean ratio. A negative and significant correlation was seen between the body fat and lean ratio (p < 0.0001). (F) Hydration ratio of the
different animal groups. The hydration ratio (HR = ((total water − free water)/lean)*100) was normal in all animals (80% ± 5). OVX, ovariectomy;
3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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3.2.1.4 Operant conditioning test

In reward preference, an improvement during time was

detected [F(4,128) = 9.73, p< 0.0001] without any influence of

the genotype or surgical removal of the ovaries (Figure 5B). In

the number of rewarded responses, a similar time effect was seen

[F(4,128) = 16.10, p< 0.001] (Figure 5C), with a tendency for

genotype × OVX interaction [F(1,32) = 53.49, p = 0.0707]. There

was a tendency for 3xTg-AD-Sham-operated animals to respond

fewer times than Control-Sham-operated ones (p = 0.0794),

while 3xTg-AD animals after OXV responded significantly more

than the Sham-operated ones (p = 0.0407).

3.2.1.5 Conditioned fear test

We expressed the time spent in immobile posture during

different phases as the percentage of the time period to get

comparable values [i.e., the 150-s BL period is hardly

comparable to the 30-s CS periods or random breaks (Br)]
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(Figure 5E). When we were concentrating on CS-induced

changes, there was a significant interaction between the

genotype and OVX [repeated-measures ANOVA on the seven

CS: F(1,31) = 4.72, p = 0.0375]; the OXV increased freezing in

control, but decreased in 3xTg-AD mice. The same effect was

also seen in the cumulative time spent in freezing (in 1-min bins)

(Figure 5F); not surprisingly this time, the interaction was

significant between all three (genotype, OVX, and time)

factors [F(10,320) = 53.26, p = 0.0005]. The time spent with

inactivity during the initial context-dependent phase (BL,

150 s) (Figure 5G) and during the seven CS (conditioned

phase, Figure 5H) was also calculated. Using repeated-

measures ANOVA on context and cue-induced freezing, the

CS, as a cue, significantly elevated the immobility time [F(1,32) =

8.16, p = 0.0075]. There was a tendency again for genotype and

OVX interaction [F(1,32) = 4.03, p = 0.0531]. This was due to the

significant interaction during tone-dependent freezing [F(1,32) =
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FIGURE 3

Y-maze and social discrimination (SD) tests. (A) Representative image of the Y-maze apparatus with three arms (A, B, and C). (B) Percentage of
the good alternation in the Y-maze test. There was no significant difference between the groups. (C) Locomotor activity of the animals
represented by the total number of entries. 3xTg-AD animals moved less than controls (p = 0.0001), without any OVX effect. (D) Representative
figure of the different phases of the SD test. (E) Open-field (OF) test was the first 5-min phase of the SD test. A decreased locomotor activity,
expressed in the distance moved (cm), was seen in the 3xTg-AD groups (p = 0.0008). (F) Object habituation phase of the SD test. No side
preference was detected; thus, the next phases did not require any correction. (G) Sociability phase of the SD test. Every test mouse showed
more interest towards the stimulus mouse containing cage (p < 0.0001); asterisks (*) show the result from the single-sample t-test against 50%.
(H) SD phase. An increased interest towards the new mouse was detected in all groups (p = 0.0071). OVX, ovariectomy; 3xTg-AD, triple
transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, **p < 0.01, ***p < 0.001, *p < 0,05.
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5.53, p = 0.0251] (Figure 5H) as no difference was detectable

in the context-dependent phase [F(1 ,32) = 3.12, p =

0.0871] (Figure 5G).
3.2.2 Anxiety-related behavioral tests
3.2.2.1 Elevated plus maze test

There was a significant interaction between genotype and

OVX in the time spent in open arms [F(1,32) = 7.774, p = 0.0088],

and in open arm preference [F(1,32) = 4.484, p = 0.0421]

(Figures 6C, D), but no difference was detected in the time

spent in the closed arm [time %; Control-Sham: 239.52 ± 9.99,

Control-OVX: 250.09 ± 10.68, 3xTg-AD-Sham: 237.62 ± 14.09,

3xTg-AD-OVX: 260.13 ± 7.06; genotype: F(1,32) = 0.1554, p =

0.6961; OVX: F(1,32) = 2.569, p = 0.1188]. More specifically,

Control-OVX animals spent less time in the open arm compared

to the Control-Sham group (p = 0.0192), whose effect was not
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detectable in 3xTg-AD mice. In the locomotion parameters,

similar to distance moved and the number of entries into the

closed arms, no significant differences were detected between the

groups (Figures 6E, F).

3.2.2.2 Light–dark box test

No differences were seen in the anxiety-related parameters

like time spent in the light compartment (Figure 6G). However,

in the locomotor activity represented by the number of entries to

the dark compartment, a genotype effect was detected [F(1,30) =

9.80, p = 0.0039] (Figure 6H). 3xTg-AD animals moved

significantly less than the controls.

3.2.2.3 Fox odor test

A tendency for decreased time spent in the odor zone was

seen in the 3xTg-AD animals compared to the control groups
A

B C

FIGURE 4

Morris water maze (MWM) test. (A) Representative figure of the MWM circular pool, with the location of the hidden platform, and the four
starting points marked with 1–4. The learning phase consisted of 5 days; on each day, 4 × (60 + 10)-s trials were performed, with 30-min
intertrial intervals (ITI). In the probe day (6th) one 60-s trial was done without the platform. (B) Latency to platform in seconds during the 5-day
learning period. An improvement during the learning phase was seen in all groups (p < 0.0001). An interaction between OVX and time was
detected, with a flatter learning curve of the OVX groups (p = 0.0004). (C) Latency to reach the platform on the probe day. No significant
difference was found between the groups in the spatial memory. OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s
disorder. Data are shown as mean ± SEM. **p<0,01.
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[F(1,27) = 3.51, p = 0.0719] (Figure 7B). Accordingly, the 3xTg-

AD animals spent more time freezing [F(1,31) = 25.33, p<

0.0001] (Figure 7C) and reared [F(1,31) = 7.15, p = 0.0118]

(Figure 7E) and vertically explored the environment [F(1,31) =

22.48; p< 0.0001] (Figure 7D) less than controls. These may

suggest that 3xTg-AD animals were more anxious in the

presence of a predator odor. A tendency of genotype

difference was also seen in the locomotor activity, expressed

by the distance moved [F(1,31) = 3.46, p = 0.0723] (Figure 7F).

Other parameters (like grooming and sniffing) were not

different between groups and thereby not shown. The OVX

surgery had no significant effect on the parameters examined

during FOT.
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3.3 Z-scores

The somatic z-score showed a significant interaction between

genotype and surgery groups [F(1,32) = 41.35, p < 0.0001] (Table 2).

Animals who underwent OVX surgery had a higher somatic z-

score [F(1,32) = 12.92, p = 0.0010], whose effect was more

pronounced in Control than in 3xTg-AD mice. In cognitive z-

score, no significant differences were detected between the groups.

Anxiety z-score showed an interaction between genotype and

surgery groups [F(1,32) = 23.26, p < 0.0001]. Namely, OVX

increased anxiety in Control, but decreased in 3xTg-AD animals.

Indeed, in general, 3xTg-AD animals had a lower anxiety z-score,

meaning more anxious behavior [F(1,32) = 17.61, p = 0.0002]. The
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FIGURE 5

Operant conditioning (OC) and conditioned fear (CFT) tests. (A) Representative figure of the OC apparatus, with the light on above the reward
associated nose hole. (B) Reward preference (ratio of responses on the rewarded vs. all nose pokes) during the OC test. An improvement during
time was seen in all groups (p < 0.0001). (C) Number of rewarded responses during the OC test. Besides the time effect (p < 0.0001), a
tendency for genotype × OVX interaction was also detected (p = 0.0707). 3xTg-AD animals after OXV responded significantly more than the
Sham-operated ones (p = 0.0407). (D) Representative timeline of the 2 days (D1 and D2) lasting CFT test. D1 started with a 2.5-s baseline (BL)
measurement, followed by a 30-s-long conditioned stimulus (CS: 80 dB pure tone at 7 kHz), which was co-terminated with an unconditioned
stimulus [foot shock (FS): 0.7 mA, 1 s long, seven times in total], for a total of 11 min with random intertrial intervals (ITI, or break, Br). On D2, the
experiment was repeated except that the animals did not receive an FS at the end of the CS. (E) Time spent freezing during CS and Br periods.
For comparability, the values were calculated to 10-s bins. The AD × OVX interaction on CS meant that in the Control-Sham group, OVX
aggravated, while in the 3xTg-AD group, the immobility was diminished (p = 0.0375). (F) The cumulative time spent in freezing (in 1-min bins)
showed interaction between genotype, OVX, and time (p = 0.0005) with similar differences as seen on subgraph (E). (G) Context and (H) tone or
CS-dependent freezing (/10 s) during CFT. Repeated-measures ANOVA on time showed a significant elevation in freezing after CS (p = 0.0075).
Again, a tendency for genotype and OVX interaction was detected (p = 0.0531), mainly due to the differences during tone dependency (p =
0.0251). OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p < 0.05.
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FIGURE 6

Elevated plus maze (EPM) and light–dark box (LD) tests. (A) Representative figure of the EPM apparatus, with two open and two closed arms. (B)
Representative image of the LD equipment, with a light and a dark compartment, separated with a small gateway. (C) Time spent in the open
arm of the EPM. A significant interaction between genotype and surgery groups was detected (p = 0.0088). Control-OVX animals spent less
time in the open arm compared to Control-Sham ones (p = 0.0192). (D) Open arm preference in the EPM test. A significant interaction between
genotype and surgery groups was seen (p = 0.0421). (E) Distance moved (cm) during the 5-min EPM test. No difference between the groups
was detected. (F) Total number of entries into the closed arms in the EPM test. Differences between the groups were not significant. (G) Time
spent in the light compartment during the LD test. No difference regarding genotype or OVX surgery was detected. (H) Number of entries in the
dark compartment during LD test. 3xTg-AD mice moved significantly less, than controls (p = 0.0044), without any OVX effect. OVX,
ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p < 0.05, **p < 0.01.
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locomotor differences were also supported by its z-score. Namely,

the 3xTg-AD animals had a lower z-score number, meaning, in

general, they moved less [F(1,32) = 19.64, p = 0.0001]. A significant

interaction between genotype and surgery groups was also detected

[F(1,32) = 27.45, p < 0.0001]. More specifically, OVX reduced

locomotion in Control, but not that much in 3xTg-AD mice,

which was moving less even before that.
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3.4 Histological evaluations

3.4.1 Uterus
The representative pictures with HE staining showed

increased epithelium thickness, deteriorated endometrial

glands, and a substantial difference between the size of the

uterus and lumen (Figure 8A). Both in the control and 3xTg-
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FIGURE 7

Fox odor test (FOT). (A) Representative figure of the FOT apparatus, presented with the odor zone [where the 2-methyl-2-thriazoline (2MT, fox
odor) was placed] and the avoidance zone (distant part from the odor). (B) Time (in seconds) spent in the odor zone. No significant difference
between genotypes or between surgery groups was detected. (C) Time (in seconds) spent freezing. 3xTg-AD mice spent more time freezing
compared to control groups (p < 0.0001). (D) Time (in seconds) spent exploring the FOT box. The 3xTg-AD group showed reduced exploration
time compared to controls (p < 0.0001). (E) Time (in seconds) spent rearing. A genotype effect was visible with less vertical movement in 3xTg-
AD animals (p = 0.0118). (F) Distance moved (cm). A tendency for genotype difference was seen, with the 3xTg-AD mice moving less than
controls (p = 0.0723). OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p <
0.05, ***p < 0.001.
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AD groups, the normalized weight of the uterus was significantly

lower after OVX compared to the Sham group [F(1,31) = 121.80,

p< 0.0001] (Figure 8B).

3.4.2 Amyloid-b accumulation in different
brain areas

Amyloid-b plaques were only quantified in 3xTg-AD mice,

because no deposition was detected in the Control-Sham or

Control-OVX groups (see Supplementary Figure 1). In the BLA,

the 3xTg-AD-OVX mice had significantly more plaques than

their Sham-operated mates [t(9) = 2.72, p = 0.0236] (Figures 9B,

C). In the CTX and CA1-HC, no significant effect of OVX was

found (Figures 9D–G).

3.4.3 Morphological changes in the cholinergic
system

ChAT-positive cells were counted in the NBM region. We

found no difference in the number of the cells between 3xTg-AD

and control animal, neither in Sham-operated nor in OVX

groups (Figure 10C). However, the AChE fiber density was

significantly decreased in 3xTg-AD animals [F(1,22) =29.49, p<

0.0001], with a significant interaction between genotype and

OVX [F(1,22) = 11.61, p = 0.0025]. In 3xTg-AD mice, OVX

surgery exacerbated the fiber loss compared to the Sham group

(p = 0.0147) (Figures 10B, D).
4 Discussion

In contrast to our hypothesis, OVX did not aggravate the

appearance of AD-related symptoms in the cognitive behavioral

tests , but in morphological examinations, signs of
Frontiers in Endocrinology 14
neurodegeneration were visible (see amyloid deposition in the

BLA, and cholinergic fiber density in the SSC). Table 3 contains

the summary of the changes.

We confirmed that our model worked, as OVX induced the

expected increase in body weight with fat accumulation as well

as decrease in uterus weight and lean body percentage. The lack

of sexual steroids can cause an increased risk for obesity, since E2

and PG also mediate glucose and lipid metabolism, and also

affects adipocyte physiology (54, 82, 83). Indeed, in human

studies, an increased visceral fat mass can be seen on women

after menopause (84, 85). This is supported in mice by our MRI

findings, where the body fat ratio of the OVX groups increased.

Importantly, obesity is a prominent risk factor for AD:

increasing Ab plaques, adipokines, and cytokines, and effecting

insulin homeostasis [reviewed in (86–88)]. Thus, this might be

associated with how OVX might aggravate the development of

AD-like symptoms. In support, 3xTg-AD animals per se were

fatter and greasier, suggesting—together with the OC data—

some metabolic disturbances, which require further studies. In

contrast, after OVX, the weight of the uterus decreased, which

can be explained by the estrogen deficit. Indeed, E2 has a

proliferative effect on the uterus; hence, its lack causes

hypotrophy (55, 89, 90). In future studies, luteinizing hormone

measurements can help better understand the effect of OVX on

the hypothalamic–hypophyseal–gonadal axis and their role in

the development of AD (91–93). The MRI data also showed a

decreased body lean ratio in the OVX groups, which may be the

prodrome of a most common problem in menopausal patients,

osteoporosis. Indeed, female sex hormone depletion was linked

closely to low bone mineral density (94). Estrogen receptors can

be also found in the bone, mediating protection of the bone

structure, by inhibiting osteoclast activity and stimulating
A B

FIGURE 8

Changes in the uterus 2 months after Sham or OVX surgery. (A) Representative figure of the uterus stained with hematoxylin–eosin (HE). A
decrease in size and epithelial layer thickness, and damaged integrity of the endometrial glands is visible. (B) Uterus weight normalized to the
body weight (BW) of the animals. A significant decrease was seen after OVX surgery (p < 0.0001). OVX, ovariectomy; 3xTg-AD, triple transgenic
mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, ****p < 0.0001. Scale bar, 200 µm.
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development of long bones and pubic epiphyses (94–96). The

OVX-induced somatic changes presented in the literature were

also supported by the somatic z-score, calculated from the body

weight change, body fat ratio, and uterus weight. Interestingly,

the OVX-induced changes were smaller in 3xTg-AD mice (see

genotype × OVX interaction in somatic z-score).
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As the major symptom of dementia is the cognitive decline,

we evaluated five different memory tests to have a

comprehensive picture. They measure different modalities

[spontaneous exploration (Y-maze), social stimulus, simple

association-based reward (OC) or punishment (CFT), or even

complex association based on spatial memory (MWM)]. The
A

B

D

E

F

G

C

FIGURE 9

Immunohistochemical staining (NiDAB) of amyloid-b1-42 (Ab) plaques in different brain regions. There was no Ab signal detectable in the brain of
control animals; therefore, we compared 3xTg-AD with and without ovariectomy (OVX). (A) Representative figures based on the Paxinos Mouse
Brain atlas (4th Edition) about the brain regions of interest, framed with red: Basolateral amygdala (BLA), at Bregma −1.23 mm, Motor and
somatosensory cortex (CTX) at Bregma −1.07 mm, and CA1 hippocampal region (CA1-HC) presented at Bregma −2.15 mm. (B) Representative
pictures of Ab plaques in the BLA of the 3xTg-AD animals after Sham or OVX surgery. (C) The integrated optical density (IOD) of Ab plaques
measured in the BLA. A significant increase was detected after OVX surgery (p = 0.0236). (D) Representative pictures of Ab plaques in the CTX in
3xTg-AD animals after Sham or OVX surgery. (E) The IOD of Ab plaques measured in the CTX. No significant difference was detected. (F)
Representative pictures of Ab plaques in the CA1-HC of 3xTg-AD animals after Sham or OVX surgery, with a close-up to a small part of the CA1
region. (G) The IOD of Ab plaques measured in the HC. The difference between the two surgery groups was not significant. 3xTg-AD, triple
transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p < 0.05. Scale bar: 200 µm.
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cumulative effect (z-score) was very similar to the single tests,

with overall ineffectiveness of the genetic deletion in the 3xTg-

AD animals as well as the OVX. According to the literature,

3xTg-AD animals develop memory loss after 6 months (36, 38).
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Hence, for our animals that were between 4 and 5 months old,

the results are not unexpected. However, we could not support

our hypothesis, as the OVX did not aggravate the cognitive

decline (no OVX effect was detected whatsoever). Even the
A

B

DC

FIGURE 10

Immunohistochemical and histochemical staining of the cholinergic cell bodies and fibers. (A) Neuroanatomical location of the cholinergic
choline-acetyltransferase (ChAT)-positive neurons in the nucleus basalis magnocellularis (NBM) and their acetylcholinesterase (AChE)-positive
fibers in the somatosensory cortex (SSC). Schematic coronal brain section was adapted from Franklin and Paxinos (4th Edition) Mouse Brain
atlas. (B) Representative pictures of the AChE-positive fibers in layers IV and V of SSC. Black bars indicate layers IV and V of the SSC. (C) Number
of ChAT-positive cell bodies in the NBM region, stained with NiDAB immunohistochemistry. No significant difference was detected between
groups. (D) AChE-positive fiber density measured in the SSC, expressed in integrated optical density (IOD). 3xTg-AD mice have a lower AChE
fiber density compared to controls (p < 0.0001), with a significant interaction between groups (p = 0.0025). The decrease in density was
exacerbated by OVX surgery in the 3xTg-AD group (p = 0.0147). OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s
disorder. Data are shown as mean ± SEM, *p < 0.05, ***p < 0.001. Scale bar: (A) AChE staining in the SSC, 50 µm, and ChAT staining in the
NBM, 100 µm. (B) 50 µm.
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Statistics
Control
 Control
 3xTg-AD
 3xTg-AD
fr
Sham
 OVX
 Sham
 OVX
 p-value
Average
 SEM
 Average
 SEM
 Average
 SEM
 Average
 SEM
 Genotype
 OVX
 Interaction
n
-

d se
 % time spent in centrum
 17.01
 2.98
 16.60
 3.33
 16.55
 4.71
 20.22
 4.31
 0.6955
 0.6865
 0.6135
Centrum frequency
 32.00
 3.59
 28.40
 3.65
 25.29
 5.12
 24.91
 3.06
 0.1901
 0.6055
 0.6752
se
 Sniffing
frequency
Cage inside
 20.38
 2.57
 19.30
 3.59
 25.86
 4.54
 13.45
 2.79
 0.9099
 0.0817
 0.1474
Cage outside
 16.13
 2.36
 16.30
 2.65
 21.14
 5.18
 13.27
 2.86
 0.6118
 0.3327
 0.3072
∑
 36.50
 3.75
 35.60
 5.67
 47.00
 9.14
 26.73
 5.26
 0.7353
 0.1298
 0.1696
% time spent with sniffing cages
 22.29
 3.18
 22.74
 3.34
 30.86
 5.16
 20.12
 4.28
 0.3331
 0.3076
 0.2595
Bout length
 0.58
 0.06
 0.69
 0.08
 0.66
 0.11
 0.67
 0.08
 0.5417
 0.3646
 0.7367
Sniffing
frequency
Cage with mouse
 18.38
 4.16
 13.90
 2.05
 22.14
 2.09
 15.64
 2.40
 0.1960
 0.0881
 0.9309
Empty cage
 7.25
 1.91
 13.80
 2.19
 14.29
 1.80
 11.18
 1.93
 0.1979
 0.2901
 0.0391
SI
 76.40
 6.18
 72.97
 4.18
 71.52
 6.14
 70.16
 5.17
 0.4810
 0.6602
 0.8499
Bout length mouse
 3.73
 0.52
 4.85
 0.88
 6.57
 1.88
 5.20
 0.73
 0.5915
 0.5915
 0.4337
n
 Sniffing
frequency
Known mouse
 16.38
 3.19
 16.30
 2.88
 14.86
 1.52
 14.00
 2.73
 0.5045
 0.8701
 0.8909
Unknown mouse
 16.25
 1.41
 18.00
 1.80
 14.57
 2.95
 14.82
 2.74
 0.3173
 0.6792
 0.7554
DI
 0.20
 0.17
 0.25
 0.10
 0.06
 0.11
 0.30
 0.15
 0.7194
 0.2943
 0.4958
Bout length two mice
 2.82
 0.63
 2.86
 0.56
 3.43
 0.53
 3.24
 0.45
 0.3772
 0.8899
 0.8411
ata are expressed as mean ± SEM. The results of the statistical analysis (two-way ANOVA) are presented. Significant differences are marked with red, bold numbers. OVX, ovariectomy;
Tg-AD, triple transgenic mouse model of Alzheimer’s disorder, SI, Sociability index, DI, Discrimination index.
TABLE 2 Z-scores calculated from somatic, cognitive, anxiety, and locomotor parameters.

Type Experimental groups Z-score ± SEM Genotype Surgery Interaction

Somatic Control-Sham (−0.0070) ± 0.1387 p = 0.2902 p = 0.0010 p = 0.0000

Control-OVX 3.8905 ± 0.5631

3xTg-AD-Sham 0.6443 ± 0.4267

3xTg-AD-OVX 3.7049 ± 0.4227

Cognitiv Control-Sham (−0.000) ± 0.1197 p = 0.6754 p = 0.3038 p = 0.2349

Control-OVX 0.1442 ± 0.1645

3xTg-AD-Sham 0.0302 ± 0.2340

3xTg-AD-OVX 0.2686 ± 0.1861

Anxiety Control-Sham 0.0000 ± 0.3964 p = 0.0002 p = 0.8743 p = 0.0000

Control-OVX (−0.2518) ± 0.4862

3xTg-AD-Sham (−2.0022) ± 0.2444

3xTg-AD-OVX (−1.6222) ± 0.3366

Locomotor Control-Sham 0.000 ± 0.4750 p = 0.0001 p = 0.6097 p = 0.0000

Control-OVX (−0.4145) ± 0.6432

3xTg-AD-Sham (−2.4225) ± 0.4375

3xTg-AD-OVX (−2.5365) ± 0.3748
Data are expressed as z-score (mean) ± SEM. Statistical data (two-way ANOVA) is presented. Significant differences are marked with red, bold numbers. OVX, ovariectomy; 3xTg-AD,
triple transgenic mouse model of Alzheimer’s disorder.
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tendencies for learning impairment in MWM were detected

separately for OVX and AD without any interaction. The only

genotype × OVX interaction in cognition was seen during the

CS-induced freezing in CFT, when OVX aggravated the

symptoms in Control, but decreased in 3xTg-AD animals.

Although we used CFT as an associative learning and memory

test (97), its result strongly depends on the animal’s anxiety state

(98). Indeed, these CFT results were very similar to the anxiety z-

score data. The intact memory can also be explained by the lack

of Ab deposition in the hippocampus and cortical areas (99,

100). We might assume that more time is needed for the

development of the symptoms; therefore, investigating

memory deficit would be informative with older animals only

even after OVX (101).

Anxiety is a core symptom of postmenopausal women (102),

as well as might be comorbid with AD (103). However, anxiety

symptoms remain largely unexplored, despite the significant

impact on quality of life, if not diagnosed and treated (102).

As anxiety is associated with both AD and OVX (23), we

assumed that both interventions will increase its level in mice,

with a possible synergistic effect. However, we found a significant
Frontiers in Endocrinology 18
anxiogenic effect of OVX in EPM only, the most frequently used

anxiety test (64, 104). On the contrary, an AD effect was visible

in the FOT test measuring innate fear and anxiety-related

behavior (75). We found that 3xTg-AD animals spend more

time freezing, which suggests that these animals were more

frightened (75, 105). Also, 3xTg-AD animals spend less time

exploring and rearing, which might reflect anxiety, too (see

immobility in CFT) (106). Nevertheless, these findings may be

related to the increased Ab deposition in the BLA (Figure 9), as

this region is responsible for formation of fear-related responses

and can be linked to anxious behavior (105, 107–109). The

increased overall anxiety z-score of 3xTg-AD animals coincides

with the increased anxiety in human AD patients (110, 111).

Moreover, the locomotor activity shown by the different

behavioral tests (distance moved in EPM, OF, and FOT; total

number of entries in the Y-maze; and number of entries to

closed arms or dark compartment in EPM and LD) and the

locomotion z-score calculated from these parameters showed a

difference between the two genotypes with lower levels in 3xTg-

AD animals. In line with previous results, this decreased

locomotor activity may reflect anxious behavior. However, we
TABLE 3 Summary table of the main effect of genotype, OVX surgery, and interaction between the two parameters in the different procedures.

Category Parameters 3xTg-AD OVX Interaction

Somatic Body weight ↑ ↑ Ø

Fat ↑ ↑ Ø

Lean ↓ ↓ Ø

Uterus Ø ↓ Ø

Z-score Ø ↑ +

Cognitiv Short term in Y-maze Ø Ø Ø

SD Ø Ø Ø

MWM Ø Ø Ø

OC ↓ Ø Ø

CFT: freezing ↑ Ø +

Z-score Ø Ø Ø

Anxiety EPM: open arm time Ø ↓ +

EPM: open arm preference Ø Ø +

LD Ø Ø Ø

Fox odor ↑ Ø Ø

Z-score ↑ Ø +

Locomotor Y-maze ↓ Ø Ø

OF ↓ Ø Ø

EPM (↓) Ø Ø

LD box ↓ Ø Ø

Fox odor (↓) Ø Ø

Z-score ↓ Ø +

Social interaction Sociability Ø Ø Ø

Morphology Amyloid-b N.M. ↑ N.M.

ChAT cell number Ø Ø Ø

AChE fiber density Ø ↓ +
f

Up arrow ↑—increased, Down arrow ↓—decreased, Ø—no effect, +—positive interaction, ()—tendency, N.M. not measured.
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cannot close out a moderate motoric disabilities as well (112,

113). The decrease in movement can be related to the presence of

Ab in the motoric and somatosensory cortex (Figure 9) (114).

Nevertheless, in line with an anxious phenotype, OVX also

decreased locomotion, which was mainly detectable in

controls. In support, volcano mice presented a scalloped

pattern of daily activity during the estrous cycle and OVX

reduced the total movement (115). Moreover, in estrogen

receptor knockout mice (on C57BL6 background), E2 injection

to OVX animals increased total activity and amplitude (116).

The smaller effects in the AD model might be due to the already

low levels, which cannot be easily decreased further.

Despite subtle behavioral changes, morphological changes

were more equivocal. Namely, Ab plaques, one of the most

characteristic morphological changes of AD (99, 117), appeared

only in 3xTg-AD animals; however, we could detect their presence

already around 5 months. Although we expected that OXV alone

will lead to the appearance of pathological hallmarks in control

animals, in humans, OVX induced behavioral and morphological

changes only in the elderly or those having genetic mutations [e.g.,

ApoE-4 genotype (118–120)]. In line with this, OVX was able to

increase the number of amyloid plaques in the 3xTg-AD animals,

further increasing the translational values of our model. However,

we detected changes in the BLA, but not in the HC and CTX. We

have to note that in much older animals, OVX-induced Ab
formation was found also in the CTX and HC (121–123). Thus,

BLA might be a sensitive area, where changes occur earlier than in

other parts of the brain. It is known that stress, i.e.,

glucocorticoids, increases excitability of BLA, while E2 decreases

it (124). Thus, in our hands, repeated testing, as a stressor, as well

as E2 decline due to OVX, might have promoted the stress

sensitivity of BLA (125, 126). In support of the E2 effect, the

replacement of the hormone after OVX can decrease the number

and density of Ab plaques in rodents (25, 100, 121). This is also in

line with human studies, where OXV patients were treated with

hormone replacement therapy, resulting in no difference in Ab
deposition (120). These differences (namely, age, genetic

predisposition, and hormone replacement) might be the cause

of the controversy in the literature on OVX-induced amyloidosis

in the brain reported to be missing by some (120, 127) or

increased by others (13, 128–130). However, Palm et al., also

using 3xTg-AD mice, showed no difference after E2 treatment in

Ab deposition (123), while Carroll et al. (121) used PG to reduce

the p-Tau accumulation in the CA1 region of the hippocampus,

subiculum, and frontal cortex.

The novelty of our study is that we included more behavioral

tests and examined the cholinergic system as well. The

importance of the cholinergic system in AD is outstanding,

being the target of almost all the drugs in the market (131, 132).

Thus, we decided to examine the cell numbers in the NBM (133),

and their projections to the SSC (79). In the ChAT-positive cell

numbers, no difference was found in 5-month-old mice,
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probably because of their young age. However, AChE-positive

fiber degeneration was detected in 3xTg-AD mice and even

aggravated after OVX, suggesting that axonal and dendritic

degenerations start earlier than behavioral decline (114, 134).

Our study has certain limitations. First, we used standard

diet, and phytoestrogens might have influenced the outcome.

Next, we did not monitor the cycle, and the cyclic changes might

increase variability in Sham-operated groups. Furthermore, to

keep the number of used animals as low as possible, we used

repeated testing, which might influence each other’s results. For

some tests, more animals/group might have been required to see

statistically significant differences.

All in all, we confirmed that OVX induced menopausal

symptoms and removal of the sexual steroids aggravated the

appearance of AD-related alterations in the brain without

significantly influencing behavior. Thus, the OVX in young, 3-

month-old 3xTg-AD mice might be a suitable model for testing

the effect of new treatment options at the structural level, which

can speed up testing (it is not necessary to wait 6–12 months for

the animals to age). However, to reveal any beneficial effect on

behavior, a later time point might be needed.
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SUPPLEMENTARY FIGURE 1

Immunohistochemical staining (NiDAB) of Amyloid-b1-42 (Ab) plaques in
different brain regions of the control animals. There was no Ab signal

detectable in the brain of control animals, therefore no quantitative

measurement was possible. (A) Representative figures based on the
Paxinos Mouse Brain atlas (4th Edition) about the brain regions of

interest, framed with red: Basolateral amygdala (BLA), at Bregma
-1.23 mm, Motor and somatosensory cortex (CTX) at Bregma -1.07 mm

and CA1 hippocampal region (CA1-HC) presented at Bregma -2.15 mm.
(B) Representative pictures of the BLA of the control animals after Sham or

OVX surgery. (C) Representative pictures of the CTX of control animals

after Sham or OVX surgery. (D) Representative pictures of the HC of
control animals after Sham or OVX surgery, with a close-up to a small part

of the CA1 region. Scale bar: 200µm.
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