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Abstract: Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental
pollutants with the potential to disrupt endocrine functions represent an emerging threat to human
health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse
model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days)
and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor,
respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old
THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples
and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from
the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the
mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-
specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global
TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a
direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH
action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown
adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate
distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the
THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.

Keywords: TBBPA; diclazuril; endocrine disruption; tissue-specific thyroid hormone action; thyroid
hormone action indicator mouse

1. Introduction

Thyroid hormone (TH) signaling is a well-known, fundamental regulator of cellular
functions. Physiological levels of TH action represent a prerequisite of normal tissue
function during development and adulthood [1]. Tissue TH action is regulated by a complex
machinery that allows the generation and maintenance of tissue-specific signatures of TH
action that can be independent of the relatively stable circulating serum TH levels [2–6].

Environmental pollutants with endocrine disruptor activity represent a growing con-
cern, since these molecules reach the food chain via water and agricultural production and
consequently can seriously impact human and animal health [7–9]. Despite intense efforts
and progress made in the screening of potential endocrine disruptor activities, our knowl-
edge is still limited concerning the impact of these molecules on tissue-specific TH action.
This is also associated with the limitations of the available experimental models [10–12].
While in recent years the number of novel test systems has appeared to be growing, a
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common aspect of most in vivo models is the use of endogenous genes as markers of TH
action. These genes are simultaneously regulated by numerous signaling systems, with
potential interference between direct and indirect effects of the tested disruptor on TH
economy [13,14]. Therefore, the assessment of endocrine disruptor activity in mammalian
tissues remains a major challenge.

We generated the THAI transgenic mouse model, which has been proven suitable to
selectively assess tissue-specific TH action in an unbiased manner using a TH-responsive
luciferase reporter system while all members of the local TH signaling machinery remain
intact [15–17]. We used this model to assess the endocrine disruptor activity of two com-
pounds, tetrabromobisphenol A (TBBPA) and diclazuril.

Tetrabromobisphenol A (TBBPA) is the most common flame retardant used for the
production of printed electronic circuit boards, various plastic products and textiles [18,19].
It is discharged into the environment during manufacturing, use and disposal of electrical
equipment, which results in the contamination of air, water, soil, sediments and sewage
sludge [20,21]. TBBPA was found to be a TH disrupting agent by studying Rana and
Xenopus metamorphosis [10,22].

Alarmingly, TBBPA was also detected in aquatic food samples at concentrations as
high as 207.3 ng/g lipid weight, further increasing human exposure [23]. Consequently,
TBBPA was also found in human tissues, milk and serum, and its concentrations reached
37 ng/g in breast milk and 649 ng/g in umbilical cord serum [8,24,25]. In addition, TBBPA
showed neurotoxic, nephrotoxic and hepatotoxic effects and also impacted reproductive
health in various animal models [10,26,27]. In human studies, it has been shown to affect the
endocrine and immune systems especially during development and pregnancy [12,28,29].
The acute toxicity indicated by the LD50 was determined to be between 5 and 10 g/bwkg
after a single oral dose in mice, rats and rabbits [30].

Diclazuril is widely used as an antiprotozoal agent and acts by targeting the chloro-
phyll a-D1 complex. It is used to prevent and treat coccidiosis in multiple species and is also
applied against equine protozoal myeloencephalitis, and to a lesser extent, toxoplasmosis
and neosporosis [31,32]. Its oral or subcutaneous dosages up to 5000 mg/bwkg caused no
mortality in mice and rats [33].

Coccidiosis poses an especially significant health risk in poultry, with significant
economic consequences. As chickens are often treated with medicated food containing
diclazuril, human exposure is a realistic scenario. Thus, the effect of diclazuril on the
human TH economy needs to be further investigated [34]. Diclazuril is considered to be
safe against toxoplasmosis during pregnancy in a mouse model [35]. However, continuous
exposure leads to stable plasma levels, which raises human concerns and calls for further
studies. Furthermore, its potential to disrupt hormonal signaling is poorly documented,
but its ability to bind androgen receptors was shown, along with data of its potential to
antagonize TH receptors in a high-throughput cell-based reporter gene assay [36,37].

Our data obtained in the THAI mouse demonstrate that TBBPA and diclazuril exert a
tissue-specific impact on mammalian TH action detectable in living animals and in isolated
tissue samples. The obtained data demonstrated the tissue-specific effects of TBBPA and
diclazuril on local and global TH economy. They also proved that the THAI mouse provides
a selective in vivo tissue-specific mammalian model to screen the potential of compounds
to disrupt TH signaling.

2. Results
2.1. Tissue-Specific Effects of TBBPA and Diclazuril on Peripheral TH Action

To assess the effect of TBBPA and diclazuril on TH action in different peripheral
tissues, we used our THAI mouse as an animal model [15]. TH action was assessed in
tissue samples by measuring the mRNA level of the TH-responsive luciferase reporter
system in dissected tissues with Taqman qPCR. We administered 150 mg/bwkg/day of
TBBPA for 6 days and 10.0 mg/bwkg/day of diclazuril for 5 days by oral gavage.
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After the TBBPA treatment, TH action remained unchanged in the heart, interscapular
brown adipose tissue (BAT), skeletal muscle, skin, small intestines and liver (Figure 1A–F).
In contrast, TH action in the bone was strongly decreased (Figure 1G).
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administration of 150 mg/bwkg/day of TBBPA in corn oil containing 2% Et-OH; (A) heart; (B) brown 

Figure 1. Peripheral thyroid hormone action after tetrabromobisphenol A (TBBPA) treatment. Thy-
roid hormone action quantified with luciferase mRNA levels in male THAI mice after six days of
oral administration of 150 mg/bwkg/day of TBBPA in corn oil containing 2% Et-OH; (A) heart;
(B) brown adipose tissue; (C) skeletal muscle; (D) skin; (E) small intestine; (F) liver; (G) bone.
n = 4–6 mice/group; figure shows Tukey Box Plots, α = 0.05; ***: p < 0.001.

Similarly to TBBPA, diclazuril left TH action unchanged in the heart, BAT, skin and
small intestine (Figure 2A,B,D,E). However, diclazuril increased TH action in the skeletal
muscle and liver (Figure 2C,F) and did not change TH action in the bone (Figure 2G).
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Figure 2. Peripheral thyroid hormone action after diclazuril treatment. Thyroid hormone action
quantified with luciferase mRNA levels in male THAI mice after five days of oral administration of
10 mg/bwkg/day of diclazuril in saline suspension; (A) heart; (B) brown adipose tissue; (C) skeletal
muscle; (D): skin; (E) small intestine; (F) liver; (G) bone. n = 5–6/group; figure shows Tukey Box
Plots, α = 0.05; *: p < 0.05.

2.2. Distinct Impacts of TBBPA and Diclazuril on Local TH Action in Live THAI Mice

After assessing the impact of the two compounds in various peripheral tissues, we
were interested in whether a less invasive, in vivo method allowing a longer follow-up
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of the same animal would be adequate to assess trending changes that did not reach
significance in tissue homogenates (Figures 1 and 2). Therefore, we subjected the THAI
mice to in vivo imaging according to our established protocol that allows the assessment
of TH signaling in the small intestine and BAT of the THAI mouse [15]. We measured
TH action in these tissues with a longer treatment time than in the previous experiments,
using similar doses of the compounds. A 14-day-long treatment was accompanied with
imaging on day 7, 14 and 21 from the first day of treatment. The animals were subjected
to bioluminescent in vivo imaging before the first treatment, after 1 and 2 weeks of daily
treatment and finally after one week from treatment withdrawal. Each animal served as a
self-control for its own measurements.

In the small intestine, TH action was decreased after 2 weeks of TBBPA treatment
and then recovered after the recovery week (Figure 3A). In contrast, diclazuril induced a
significantly elevated TH action in BAT that also recovered after 1 week (Figure 3B). The
observed changes confirmed the trend obtained in mRNA expression in tissue homogenates
(Figures 1E and 2B).
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 Figure 3. Quantitation of local thyroid hormone action after disruptor treatment with in vivo imaging.
Representative images and quantification in male THAI mice treated orally for two weeks with
150 mg/bwkg/day of TBBPA in corn oil containing 2% Et-OH, or 10 mg/bwkg/day of diclazuril
as a saline suspension, followed by one week of recovery; (A) ventral in vivo imaging of TBBPA
treatment; (B) dorsal in vivo imaging of diclazuril treatment. n = 4–6 mice/group; figure shows
Tukey Box Plots, α = 0.05; *: p < 0.05, ***: p < 0.001.
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2.3. TBBPA Impacts the Hypothalamo–Pituitary–Thyroid (HPT) Axis, While Diclazuril Does Not

To assess whether the observed changes were the consequence of a local impact on TH
action or were associated with an altered function of the HPT axis, we measured parameters
that hallmark the activity of the HPT axis in animals treated with TBBPA or diclazuril.

After TBBPA treatment, trh expression in microdissected hypothalamic paraventricular
nucleus (PVN) samples did not change significantly, despite a trend toward an increase
(63% increase, p = 0.064). This was accompanied by unaltered tshb mRNA levels in the
pituitary (Figure 4A,B); in parallel, TH action remained unchanged in the microdissected
hypothalamic arcuate nucleus median eminence (ARC-ME) region and in the pituitary
(Figure 4C,D). Similar results were obtained with diclazuril (Figure 4E–H), except for the
lack of a trend toward an increase in trh expression in the PVN.
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However, despite the unchanged central parameters, massively decreased circulat-
ing free T4 (fT4) levels were detected after TBBPA treatment, while free T3 (fT3) remained 
unchanged (Figure 5A,B). Both fT4 and fT3 remained unchanged after diclazuril treat-
ment (Figure 5C,D). 

Figure 4. Hypothalamic and pituitary effects of disruptor treatment. Male THAI mice treated orally
for 6 days with 150 mg/bwkg/day of TBBPA in corn oil containing 2% Et-OH or for 5 days with 10
mg/bwkg/day of diclazuril as a saline suspension; thyroid hormone action quantified with luciferase
mRNA levels; (A–D) TBBPA; (E–H) diclazuril; (A) PVN trh mRNA after TBBPA; (B) pituitary tshb
mRNA after TBBPA; (C) ARC-ME luciferase mRNA after TBBPA; (D) pituitary luciferase mRNA after
TBBPA; (E) PVN trh mRNA after diclazuril; (F) pituitary tshb mRNA after diclazuril; (G) ARC-ME
luciferase mRNA after diclazuril; (H) pituitary luciferase mRNA after diclazuril. n = 4–6 mice/group;
figure shows Tukey Box Plots, α = 0.05.

However, despite the unchanged central parameters, massively decreased circulating
free T4 (fT4) levels were detected after TBBPA treatment, while free T3 (fT3) remained
unchanged (Figure 5A,B). Both fT4 and fT3 remained unchanged after diclazuril treatment
(Figure 5C,D).
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2.4. Diclazuril Does Not Impact the Cerebral Cortex; the Effect of TBBPA on dio3 Expression Is 
Counterbalanced by Local Mechanisms 

Having studied the impact of TBBPA or diclazuril on the HPT axis, we also investi-
gated how the cerebral cortex, a region protected by the blood–brain barrier, was affected 
by these compounds. Both treatments resulted in unchanged cortical TH action (Figure 
6A,C). 

Since the cortex is known to be programmed to maintain T3 homeostasis [2], we tried 
to characterize local regulators of TH action in the cortex under the present treatment. 
Monocarboxylate transporter 8 (MCT8) is one of the major TH transporters with a critical 
function in the brain. Neither TBBPA nor diclazuril had an effect on the mRNA levels of 
mct8, suggesting unaltered TH transport (Figure 6B,D). 

Figure 5. Circulating hormone levels after disruptor treatment. Male THAI mice treated orally for
6 days with 150 mg/bwkg/day of TBBPA in corn oil containing 2% Et-OH or for 5 days with 10
mg/bwkg/day of diclazuril as a saline suspension; (A,B) TBBPA; (C,D) diclazuril; (A) serum free T4
(fT4) after TBBPA; (B) serum free T3 (fT3) after TBBPA; (C) serum fT4 after diclazuril; (D) serum fT3
after diclazuril. n = 4–6 mice/group; figure shows Tukey Box Plots, α = 0.05; **: p < 0.01.

2.4. Diclazuril Does Not Impact the Cerebral Cortex; the Effect of TBBPA on dio3 Expression Is
Counterbalanced by Local Mechanisms

Having studied the impact of TBBPA or diclazuril on the HPT axis, we also investigated
how the cerebral cortex, a region protected by the blood–brain barrier, was affected by
these compounds. Both treatments resulted in unchanged cortical TH action (Figure 6A,C).

Since the cortex is known to be programmed to maintain T3 homeostasis [2], we tried
to characterize local regulators of TH action in the cortex under the present treatment.
Monocarboxylate transporter 8 (MCT8) is one of the major TH transporters with a critical
function in the brain. Neither TBBPA nor diclazuril had an effect on the mRNA levels of
mct8, suggesting unaltered TH transport (Figure 6B,D).

Neuronal TH action is heavily regulated by type 3 deiodinase (D3), the main TH-
degrading enzyme [38]. To further characterize the cortical effects of TBBPA or diclazuril,
we also studied how dio3 was impacted. TBBPA exerted a tissue-specific effect on dio3
expression; it was decreased in the cortex, increased in the hippocampus and remained
unchanged in the pituitary and liver (Figure 7A).
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Figure 6. Changes in parameters of thyroid hormone action in the cerebral cortex after disruptor
treatment. Male THAI mice treated orally for 6 days with 150 mg/bwkg/day of TBBPA in corn oil
containing 2% Et-OH or for 5 days with 10 mg/bwkg/day of diclazuril as a saline suspension; thyroid
hormone action quantified with luciferase mRNA levels; (A,B) TBBPA; (C,D) diclazuril; (A) luciferase
mRNA after TBBPA; (B) mct8 mRNA after TBBPA; (C) preamplified luciferase mRNA after diclazuril;
(D) mct8 mRNA after diclazuril. n = 5–6 mice/group; figure shows Tukey Box Plots, α = 0.05.
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Figure 7. Regulation of dio3 expression by TBBPA and diclazuril. (A) of dio3 mRNA changes in
different tissues of male THAI mice treated orally for 6 days with 150 mg/bwkg/day of TBBPA in corn
oil containing 2% Et-OH or for 5 days with 10 mg/bwkg/day of diclazuril as a saline suspension;
(B,C) transfected HEK293T cultures treated with 50 nM T3 and/or 1 µM TBBPA or diclazuril measured
with Dual-Luciferase Reporter Assay. n = 4–6 mice/group for A, α = 0.05; ***: p < 0.001.
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To understand whether these were indirect, compensatory changes or direct effects
of TBBPA on the dio3 promoter, we performed promoter assays in HEK293T cell cultures
transfected with a luciferase reporter linked to a dio3 promoter, which enabled the biolu-
minescent quantitation of promoter activity. TBBPA increased dio3-luciferase expression in
hormone-free medium and did not have an additive effect in the presence of 50 nM T3,
that, as expected, also induced reporter expression in the presence of TRβ (Figure 7B). In
contrast, diclazuril did not regulate dio3 promoter activity either in the cerebral cortex or
in the in vitro promoter assay (Figure 7A,C). Interestingly, TBBPA is likely able to impact
the local TH action in various tissues by directly interacting with the dio3 promoter, but
this effect seems to be insufficient to alter cortical TH action, as shown by the unaltered
luciferase mRNA level.

3. Discussion

Environmental pollution is growing due to industrialization and intense arable and
livestock farming. Many of the polluting compounds have been used widely for a long time,
which has led to their accumulation in the environment [9]. As a consequence, chemical
compounds reach the human population, and there is growing evidence suggesting that
this interaction is associated with the development of human diseases [39–41]. Therefore, it
has become critically important to uncover the potential hazards these molecules could
exert on the population.

Endogenous, non-peptide hormones that control sexual functions, growth, cellular
metabolism and differentiation often contain aromatic rings as a molecular backbone.
Unsurprisingly, many cyclic and aromatic chemicals can interact with these molecules, thus
interfering with various hormonal actions. Hormones of the thyroid gland represent no
exceptions due to their aromatic amino acids that are critical for tissue function.

Impairments of TH action result in tissue disfunction, with documented consequences
on human health [1,6]. TH economy is regulated by two major regulatory systems. Cir-
culating TH levels are maintained centrally by the HPT axis, yet the target tissues have a
striking autonomy to develop their own TH action by a cell-type specific local, intracellular
regulatory system that involves TH activation and inactivation by deiodination, TH uptake
by specific transporters and the TH receptor complex [4,5]. Due to this complex regulation,
compounds like endocrine disruptors can affect TH economy also without affecting the
circulating TH levels [42]. Therefore, it is of increasing interest to study the impact of
endocrine disruptors on TH economy in a tissue-specific context.

In order to assess TH action in specific tissues of mice in the most unbiased way
possible, we generated the THAI transgenic mouse model that expresses a specifically
TH-responsive luciferase reporter system [15]. This model provides a proven approach
to quantify the local TH action in microdissected brain regions, peripheral tissue samples
and live mice by in vivo imaging [15–17]. Importantly, the assessment of TH signaling
in this model is free from the confounding effects of non-TH-dependent pathways that
are also able to impact the expression of endogenous TH-responsive genes, e.g., enpp2, a
well-known endogenous TH marker gene that is also regulated by estrogen [43]. However,
the reporter system of the THAI mouse overcomes these problems and provides a highly
selective approach to assess TH action. While the THAI mouse provides a model to assess
the disruptor potency of specific compounds in an intact mammalian tissue context, species-
specific differences should be also kept in mind when extrapolating data. The picture could
be further complicated by the species-specific metabolism of specific compounds, giving
rise to bioactive metabolites. However, the THAI mouse can be subjected to in vivo imaging
that allows to perform self-controlled experiments. This provides the advantage of studying
the kinetics of the impact of disruptor exposure even during an extended time period that
could much better model the real-life exposure of humans and animals. In addition, it also
contributes to facilitating the reduction of the number of used experimental animals.

TBBPA and diclazuril treatments were performed according to literature data [27,44].
In comparison to the used dose, TBBPA concentration is significantly lower in human
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tissues (see Introduction), but it is obvious that only a fraction of the orally given dose will
be deposited in tissues; furthermore, our exposure time was considerably shorter compared
to real-life exposure.

TBBPA, a commonly used flame retardant, is known to impact TH economy. It was
shown in an in vitro reporter assay in cultured neural cells that TBBPA can directly interfere
with the response to T3 of TH-regulated genes [45]. It was also shown that TBBPA treatment
decreased the circulating T4 levels in rats, which was accompanied with unchanged T3 and
TSH levels [46].

We observed the same phenomenon in THAI mice. fT4 was decreased along with a
strong trend toward an increase of TRH expression in the PVN that did not reach statis-
tical significance. Based on this, it can be speculated that TBBPA acts at the level of the
thyroid gland, e.g., by interfering with the hormone synthesis; the observed decrease in TH
signaling in the bone and small intestine could be a direct consequence of decreased T4
levels. This hypothesis is supported by data showing that TH signaling in these tissues
are markedly sensitive to the circulating TH levels compared to what observed in other
tissues [15].

Tissue-specific TH action is a net result of TH availability and in certain tissues partially
relies on the local deactivation of TH by the T3-degrading D3 enzyme. In hdio3 promoter
assays, we found that TBBPA stimulated the dio3 promoter. This discovery suggests
that altering the D3-encoding dio3 gene activity can be another checkpoint where TBBPA
potentially interferes with local TH action. This would represent a novel example of how en-
docrine disruptors act via altering hormone metabolism/inactivation, one of the categories
listed by the recent Consensus Statement on the characteristics of endocrine-disrupting
chemicals [47]. Generally, increased net dio3 activity in the periphery could contribute to the
observed lowered fT4 along with a relatively intact HPT axis. However, the tissue-specific
changes of dio3 expression point towards a more complex phenomenon, which makes it
difficult to formulate generalized conclusions about the peripheral TH metabolism.

Importantly, the statistically not significant change in trh expression in the PVN does
not exclude the possibility of the large observed difference being a functional response of the
HPT axis. This seems to be controversial, since another study using hypothalamic in vivo
transfection of a trh-luc construct into the mouse hypothalamus found either an increase or
a decrease in trh transcription depending on the TBBPA treatment regime [27]. However,
it is difficult to compare these findings with our data, since we measured endogenous
trh expression in microdissected PVN samples in contrast to the mentioned study in
which the transcriptional activity of a ~500-bp trh 5′FR-luc was assessed in the whole
hypothalamus [27]. It can be speculated that the impact of TBBPA on the HPT axis is a
net effect of various minor effects resulting in the partial downregulation of the global
TH economy.

The veterinary drug diclazuril is used as a coccidiostatic agent [31,32]. Our data also
provided evidence that in addition to TBBPA, diclazuril acts as a modulator of tissue-
specific TH signaling. In contrast to TBBPA, all effects of diclazuril we observed in the
THAI mice were stimulatory of TH action. Interestingly, these changes were accompanied
with unchanged circulating TH levels and unchanged HPT axis parameters and a lack of a
direct effect on the dio3 promoter.

Considering that muscle, liver and fat have been reported to accumulate diclazuril [48],
it is not surprising that the largest effects observed in the THAI mouse were found in
these tissues. A longer exposure also allowed us to visualize the effect on BAT with
in vivo imaging. Based on this, it is likely that the prolonged exposure increased the
stimulatory capabilities of the drug on local TH action. However, after the recovery
week, the observed effect disappeared, indicating a fast clearance in vivo. While these
remarks suggest that diclazuril is rather an endocrine modulator than a disruptor, our
data hint towards diclazuril being able to substantially modify the local TH action under
continuous exposure.
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In the case that the observed stimulatory effect of diclazuril occurred in treated poul-
try, this could result in elevated tissue energy expenditure and metabolism by increasing
TH-dependent gene expression in the muscle and liver. While it has been thought that
BAT-dependent thermogenesis is absent in the chicken, this has been recently questioned
by demonstrating the emergence of beige-like fat as a physiological adaptation to cold [49].
This induction of BAT TH signaling by diclazuril could contribute to non-shivering ther-
mogenesis and energy loss also in the chicken, but further studies are required to directly
prove this hypothesis. Additionally, an effect of diclazuril on the growth performance
and feed conversion of the chicken was studied, although the topic has not been widely
investigated yet, and the results are controversial [50].

Medication may have a direct influence on growth performance, which might origi-
nate either from the direct modulation of tissue-specific TH signaling by a drug or from
its inhibitory effect on subclinical or clinical coccidiosis, which of course per se negatively
influences growth performance and body weight gain. In order to reveal a direct modula-
tory effect, studies on further target species are needed in the absence of coccidial infection.
Would such effect truly exist, its connection to altered TH action would be plausible.

In summary, our data provide evidence of a tissue specific disruption of TH signaling
by TBBPA in the mouse, while also revealing the stimulatory effect of diclazuril on TH
signaling without affecting the HPT axis. The current experiments also prove that THAI
mouse can be used as an in vivo model to assess the potential of specific compounds
to disrupt TH economy. In the BAT and small intestine, THAI mouse also provides a
tool to perform self-controlled longitudinal studies on live mice to assess modulation of
TH signaling.

4. Materials and Methods
4.1. Animals

The experiments were performed on ~90-day-old male THAI#4 mice; in vivo imaging
experiments were performed on white furred THAI mice. Animals had food and water
ad libitum and were housed under standard conditions. The experimental protocol was
reviewed and approved by the Animal Welfare Committee at the Institute of Experimental
Medicine (PE/EA/106-2/2021).

4.2. Animal Treatment and Sample Collection

TBBPA (Sigma) was delivered by oral gavage in corn oil containing 2% Et-OH as a
saline suspension, in a dose of 150 mg/bwkg/day as described [27]. The treatment lasted
6 days, and control animals received the vehicle. Diclazuril (Sigma-Aldrich, St. Louis, MO,
USA) was delivered by oral gavage in a dose of 10.0 mg/bwkg/day as a saline suspension
as described [44]. Diclazuril treatment lasted 5 days, and control animals received the
vehicle. Following the last treatment, the animals were sacrificed by decapitation, and trunk
blood was collected. Peripheral tissues and brain regions were harvested and flash-frozen
in dry ice. The PVN and ARC-ME regions were microdissected with the Palkovits punch
technique; bone was collected from the distal part of the tibia and skeletal muscle was
collected from musculus gastrocnemius. Treatment for in vivo imaging was continued for
14 days, followed by a 7-day-long withdrawal.

4.3. In Vivo Imaging

In vivo imaging was performed on anesthetized animals according to our estab-
lished protocol, as previously described [15]. In short, THAI mice were anesthetized
with ketamine–xylazine (50 and 10 µg/bwkg, respectively) i.p. Hair covering the abdomi-
nal or scapular regions was removed by a commercial depilatory cream, and D-luciferin
(sodium salt, Gold Biotechnology, St. Louis, MO, USA) was introduced i.p. (150 µg/bwg).
Images were taken after 15 min of incubation with 3 min acquisition time. Measurements
were taken after 7, 14 and 21 days after the first day of treatment.
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4.4. Serum Hormone Measurements

FT4 and fT3 levels were measured with the AccuLite CLIA Microwells kit (cat. no.
1275-300B and 1375-300B, respectively, Monobind Inc., Lake Forest, CA, USA) according
to the manufacturer’s instructions in a Luminoskan Ascent (Thermo Fisher Scientific,
Waltham, MA, USA) machine. However, TBBPA being a structural analogue, we were
curious about whether it directly distorted the results. Spiked samples were used to
elucidate this; control and treated animal sera were spiked with TBBPA in excess and
resulted in the same concentrations as the unspiked samples. We concluded that the CLIA
method was fit for our analytical purpose.

4.5. Taqman qPCR

Total RNA from tissues was isolated with the NucleoSpin RNA kit (Macherey-Nagel,
Düren, Germany) according to the manufacturer’s instructions, with the following modifi-
cations. Non-brain samples were first homogenized with 1 mL Trizol reagent, extracted
with 200 µL of chloroform and separated by centrifugation (15 min, 12,000× g on 4 ◦C). The
supernatant was processed using the kit, as instructed. Then, 1 µg of total RNA was tran-
scribed with the High-Capacity Reverse Transcription kit (Applied Biosystems, Waltham,
MA, USA), as instructed. The product cDNA content was measured with the Qubit ssDNA
assay (Invitrogen, Waltham, MA, USA), using 10 ng of cDNA in all Taqman reactions (Viia7,
Applied Biosystems). The Taqman gene expressions assays are detailed in Table 1 (Thermo
Fisher Scientific, Waltham, MA, USA). qPCR on microdissected brain regions of the THAI
mouse was performed as described [17]. If a gene of interest was measured above 34 cycles,
preamplification was performed with 5.55 ng of cDNA/reaction (Applied Biosystems).
The preamplified DNA was not normalized for DNA content but only with respect to
preamplified hprt. The details of qPCR are shown in the figure legends when relevant.

Table 1. Taqman gene expression assays.

Gene Symbol Gene Name Assay ID

actinb β actin Mm02619580_g1

dCpG luciferase dCpG luciferase reporter (custom made) AIY9ZTZ

dio3 deiodinase, iodothyronine type III Mm00548953_s1

gapdh glyceraldehyde-3-phosphate dehydrogenase Mm99999915_g1

hprt1 hypoxanthine guanine phosphoribosyl transferase Mm01545399_m1

slc16a2 MCT8, monocarboxylate transporter 8 Mm01232724_m1

trh Thyrotropin releasing hormone Mm01963590_s1

tshb thyroid stimulating hormone, beta subunit Mm03990915_g1

4.6. Cell Transfection and Luciferase Assay

The hdio3 promoter–reporter construct contains 4327 bp of the 5′-flanking region plus
224 bp of the 5′-untranslated region of the human dio3 gene. It was a gift of Prof. M.
Dentice (University of Naples Federico II Italy) and was prepared as earlier described [51].
HEK293T cells were plated on 24-well plates in normal medium (89% DMEM, 10% FBS,
1% penicillin–streptomycin). Before transfection, the medium was changed to a hormone-
free medium containing charcoaled FBS. The cells were transfected with the dio3-luciferase
reporter, Renilla luciferase reporter and TRβ with X-tremeGene HP DNA transfection reagent
(cat. no. 06366236001, Roche Basel, Switzerland) overnight. Then, the medium was replaced
with hormone-free medium containing 50 nM T3 and/or 1 µM of TBBPA/diclazuril. The
cells were harvested after 24 h of treatment. Luciferase and Renilla activity were measured
with the Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA) according
to the manufacturer’s instructions in a Luminoskan Ascent (Thermo Scientific, Waltham,
MA, USA) machine as previously described [52].
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4.7. Data Analysis

Data were analyzed with STATISTICA v13 software (Tibco Software, Palo Alto, CA,
USA). Figures were prepared with Prism 9.3 (GraphPad Software Inc., San Diego, CA,
USA). The figures show Tukey Box Plots; the box represents the two middle quartiles,
the lower whisker represents the lower quartile, the upper whisker represents the upper
quartile, the line represents the median, the dots represent outlier data. The number of used
animals is indicated in figure legends. Null-hypothesis significance tests were conducted
with a 95% level of confidence. The Student’s two sample two-sided t test was used to
analyze two groups; one-way analysis of variance (ANOVA) followed by Tukey post-hoc
test was used to compare more than two groups; ANOVA was applied as within-subjects
ANOVA for in vivo imaging data. The models were deemed adequate based on residual
plots and residual normal plots.
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17. Sinkó, R.; Mohácsik, P.; Kővári, D.; Penksza, V.; Wittmann, G.; Mácsai, L.; Fonseca, T.L.; Bianco, A.C.; Fekete, C.; Gereben,
B. Different hypothalamic mechanisms control decreased circulating thyroid hormone levels in infection and fasting-induced
Non-Thyroidal Illness Syndrome in male Thyroid Hormone Action Indicator Mice. Thyroid 2022, in press. [CrossRef]

18. Tong, F.; Gu, X.; Gu, C.; Xie, J.; Xie, X.; Jiang, B.; Wang, Y.; Ertunc, T.; Schaffer, A.; Ji, R. Stimulation of Tetrabromobisphenol A
Binding to Soil Humic Substances by Birnessite and the Chemical Structure of the Bound Residues. Environ. Sci. Technol. 2016, 50,
6257–6266. [CrossRef] [PubMed]

19. Sunday, O.E.; Bin, H.; Guanghua, M.; Yao, C.; Zhengjia, Z.; Xian, Q.; Xiangyang, W.; Weiwei, F. Review of the environmental
occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. Environ. Res. 2022, 206, 112594.
[CrossRef]

20. Yuan, X.; Li, T.; He, Y.; Xue, N. Degradation of TBBPA by nZVI activated persulfate in soil systems. Chemosphere 2021, 284, 131166.
[CrossRef]

21. Lyche, J.L.; Rosseland, C.; Berge, G.; Polder, A. Human health risk associated with brominated flame-retardants (BFRs). Environ.
Int. 2015, 74, 170–180. [CrossRef]

22. Kitamura, S.; Kato, T.; Iida, M.; Jinno, N.; Suzuki, T.; Ohta, S.; Fujimoto, N.; Hanada, H.; Kashiwagi, K.; Kashiwagi, A. Anti-thyroid
hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: Affinity to the mammalian thyroid
hormone receptor, and effect on tadpole metamorphosis. Life Sci. 2005, 76, 1589–1601. [CrossRef]

23. Liu, A.F.; Qu, G.B.; Yu, M.; Liu, Y.W.; Shi, J.B.; Jiang, G.B. Tetrabromobisphenol-A/S and Nine Novel Analogs in Biological
Samples from the Chinese Bohai Sea: Implications for Trophic Transfer. Environ. Sci. Technol. 2016, 50, 4203–4211. [CrossRef]
[PubMed]

24. Barghi, M.; Shin, E.S.; Kim, J.C.; Choi, S.D.; Chang, Y.S. Human exposure to HBCD and TBBPA via indoor dust in Korea:
Estimation of external exposure and body burden. Sci. Total Environ. 2017, 593–594, 779–786. [CrossRef]

25. Cariou, R.; Antignac, J.P.; Zalko, D.; Berrebi, A.; Cravedi, J.P.; Maume, D.; Marchand, P.; Monteau, F.; Riu, A.; Andre, F.; et al.
Exposure assessment of French women and their newborns to tetrabromobisphenol-A: Occurrence measurements in maternal
adipose tissue, serum, breast milk and cord serum. Chemosphere 2008, 73, 1036–1041. [CrossRef]

26. Wu, H.; Wang, J.; Xiang, Y.; Li, L.; Qie, H.; Ren, M.; Lin, A.; Qi, F. Effects of tetrabromobisphenol A (TBBPA) on the reproductive
health of male rodents: A systematic review and meta-analysis. Sci. Total Environ. 2021, 781, 146745. [CrossRef]

27. Decherf, S.; Seugnet, I.; Fini, J.B.; Clerget-Froidevaux, M.S.; Demeneix, B.A. Disruption of thyroid hormone-dependent hypothala-
mic set-points by environmental contaminants. Mol. Cell Endocrinol. 2010, 323, 172–182. [CrossRef] [PubMed]

28. Huang, H.; Liang, J.; Tang, P.; Yu, C.; Fan, H.; Liao, Q.; Long, J.; Pan, D.; Zeng, X.; Liu, S.; et al. Associations of bisphenol exposure
with thyroid hormones in pregnant women: A prospective birth cohort study in China. Environ. Sci. Pollut. Res. Int. 2022, 29,
87170–87183. [CrossRef]

29. Clayton, E.M.; Todd, M.; Dowd, J.B.; Aiello, A.E. The impact of bisphenol A and triclosan on immune parameters in the U.S.
population, NHANES 2003-2006. Environ. Health Perspect. 2011, 119, 390–396. [CrossRef]

30. Darnerud, P.O. Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int. 2003, 29, 841–853. [CrossRef]
[PubMed]

31. Hackstein, J.H.; Mackenstedt, U.; Mehlhorn, H.; Meijerink, J.P.; Schubert, H.; Leunissen, J.A. Parasitic apicomplexans harbor a
chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol. Res. 1995, 81, 207–216. [CrossRef]

32. Stock, M.L.; Elazab, S.T.; Hsu, W.H. Review of triazine antiprotozoal drugs used in veterinary medicine. J. Vet. Pharmacol. Ther.
2018, 41, 184–194. [CrossRef]

33. European Medicines Agency, V.M.E.U. Committee for Veterinary Medicinal Products. In Diclazuril. Summary Report (1);
EMEA/MRL/086/96-FINAL; European Medicines Agency: Amsterdam, The Netherlands, 1996.

34. Peek, H.W.; Landman, W.J. Coccidiosis in poultry: Anticoccidial products, vaccines and other prevention strategies. Vet. Q. 2011,
31, 143–161. [CrossRef]

35. Oz, H.S. Novel Synergistic Protective Efficacy of Atovaquone and Diclazuril on Fetal-Maternal Toxoplasmosis. Int. J. Clin. Med.
2014, 5, 921–932. [CrossRef] [PubMed]

36. Park, Y.; Park, J.; Lee, H.S. Endocrine disrupting potential of veterinary drugs by in vitro stably transfected human androgen
receptor transcriptional activation assays. Environ. Pollut. 2021, 286, 117201. [CrossRef] [PubMed]

http://doi.org/10.1530/EC-18-0029
http://www.ncbi.nlm.nih.gov/pubmed/29572405
http://doi.org/10.3390/molecules27030798
http://doi.org/10.1021/acs.est.1c06729
http://doi.org/10.1210/en.2017-00582
http://www.ncbi.nlm.nih.gov/pubmed/29253128
http://doi.org/10.1038/s41467-022-31154-1
http://doi.org/10.1089/thy.2022.0404
http://doi.org/10.1021/acs.est.5b06265
http://www.ncbi.nlm.nih.gov/pubmed/27223831
http://doi.org/10.1016/j.envres.2021.112594
http://doi.org/10.1016/j.chemosphere.2021.131166
http://doi.org/10.1016/j.envint.2014.09.006
http://doi.org/10.1016/j.lfs.2004.08.030
http://doi.org/10.1021/acs.est.5b06378
http://www.ncbi.nlm.nih.gov/pubmed/27008063
http://doi.org/10.1016/j.scitotenv.2017.03.200
http://doi.org/10.1016/j.chemosphere.2008.07.084
http://doi.org/10.1016/j.scitotenv.2021.146745
http://doi.org/10.1016/j.mce.2010.04.010
http://www.ncbi.nlm.nih.gov/pubmed/20399831
http://doi.org/10.1007/s11356-022-21817-3
http://doi.org/10.1289/ehp.1002883
http://doi.org/10.1016/S0160-4120(03)00107-7
http://www.ncbi.nlm.nih.gov/pubmed/12850100
http://doi.org/10.1007/BF00937111
http://doi.org/10.1111/jvp.12450
http://doi.org/10.1080/01652176.2011.605247
http://doi.org/10.4236/ijcm.2014.515124
http://www.ncbi.nlm.nih.gov/pubmed/25210646
http://doi.org/10.1016/j.envpol.2021.117201
http://www.ncbi.nlm.nih.gov/pubmed/33965802


Int. J. Mol. Sci. 2022, 23, 14782 16 of 16

37. Paul-Friedman, K.; Martin, M.; Crofton, K.M.; Hsu, C.W.; Sakamuru, S.; Zhao, J.; Xia, M.; Huang, R.; Stavreva, D.A.; Soni, V.; et al.
Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library. Environ.
Health Perspect. 2019, 127, 97009. [CrossRef]

38. Bianco, A.C.; Salvatore, D.; Gereben, B.; Berry, M.J.; Larsen, P.R. Biochemistry, cellular and molecular biology and physiological
roles of the iodothyronine selenodeiodinases. Endo. Rev. 2002, 23, 38–89. [CrossRef]

39. Demeneix, B.A. Evidence for Prenatal Exposure to Thyroid Disruptors and Adverse Effects on Brain Development. Eur. Thyroid J.
2019, 8, 283–292. [CrossRef]

40. Mughal, B.B.; Demeneix, B.A. Endocrine disruptors: Flame retardants and increased risk of thyroid cancer. Nat. Rev. Endocrinol.
2017, 13, 627–628. [CrossRef]

41. Caporale, N.; Leemans, M.; Birgersson, L.; Germain, P.L.; Cheroni, C.; Borbely, G.; Engdahl, E.; Lindh, C.; Bressan, R.B.; Cavallo,
F.; et al. From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science 2022, 375, eabe8244. [CrossRef]

42. Zoeller, R.T. Endocrine disrupting chemicals and thyroid hormone action. Adv. Pharmacol. 2021, 92, 401–417. [CrossRef] [PubMed]
43. Sarvari, M.; Kallo, I.; Hrabovszky, E.; Solymosi, N.; Rodolosse, A.; Liposits, Z. Long-Term Estrogen Receptor Beta Agonist

Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats. Front. Cell Neurosci. 2016, 10, 149.
[CrossRef]

44. Lindsay, D.S.; Blagburn, B.L. Activity of diclazuril against Toxoplasma gondii in cultured cells and mice. Am. J. Vet. Res. 1994, 55,
530–533. [PubMed]

45. Guyot, R.; Chatonnet, F.; Gillet, B.; Hughes, S.; Flamant, F. Toxicogenomic analysis of the ability of brominated flame retardants
TBBPA and BDE-209 to disrupt thyroid hormone signaling in neural cells. Toxicology 2014, 325, 125–132. [CrossRef]

46. Cope, R.B.; Kacew, S.; Dourson, M. A reproductive, developmental and neurobehavioral study following oral exposure of
tetrabromobisphenol A on Sprague-Dawley rats. Toxicology 2015, 329, 49–59. [CrossRef]

47. La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.;
Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard
identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [CrossRef]

48. Zhang, M.; Qiu, J.; Li, X.; Zhang, W.; Fan, J.; Zhou, H.; He, L. Determination of residual enantiomers of diclazuril in chicken edible
tissues by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1118–1119, 203–209.
[CrossRef] [PubMed]

49. Sotome, R.; Hirasawa, A.; Kikusato, M.; Amo, T.; Furukawa, K.; Kuriyagawa, A.; Watanabe, K.; Collin, A.; Shirakawa, H.;
Hirakawa, R.; et al. In vivo emergence of beige-like fat in chickens as physiological adaptation to cold environments. Amino Acids
2021, 53, 381–393. [CrossRef]

50. Asadi Iraee, H.; Asadi Iraee, M.; Youssefi, M.R.; Abouhosseini Tabari, M. Growth performance parameters in chicken experimental
coccidiosis treated with Diclazuril and Clopidol: The need for assessing new anticoccidial resources. Iran. J. Vet. Med. 2015, 9,
189–194.

51. Dentice, M.; Luongo, C.; Huang, S.; Ambrosio, R.; Elefante, A.; Mirebeau-Prunier, D.; Zavacki, A.M.; Fenzi, G.; Grachtchouk, M.;
Hutchin, M.; et al. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal
and malignant keratinocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 14466–14471. [CrossRef] [PubMed]

52. Egri, P.; Fekete, C.; Denes, A.; Reglodi, D.; Hashimoto, H.; Fulop, B.D.; Gereben, B. Pituitary Adenylate Cyclase-Activating
Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice.
Endocrinology 2016, 157, 2356–2366. [CrossRef]

http://doi.org/10.1289/EHP5314
http://doi.org/10.1210/edrv.23.1.0455
http://doi.org/10.1159/000504668
http://doi.org/10.1038/nrendo.2017.123
http://doi.org/10.1126/science.abe8244
http://doi.org/10.1016/bs.apha.2021.05.002
http://www.ncbi.nlm.nih.gov/pubmed/34452692
http://doi.org/10.3389/fncel.2016.00149
http://www.ncbi.nlm.nih.gov/pubmed/8017699
http://doi.org/10.1016/j.tox.2014.08.007
http://doi.org/10.1016/j.tox.2014.12.013
http://doi.org/10.1038/s41574-019-0273-8
http://doi.org/10.1016/j.jchromb.2019.04.042
http://www.ncbi.nlm.nih.gov/pubmed/31059927
http://doi.org/10.1007/s00726-021-02953-5
http://doi.org/10.1073/pnas.0706754104
http://www.ncbi.nlm.nih.gov/pubmed/17720805
http://doi.org/10.1210/en.2016-1043

	Introduction 
	Results 
	Tissue-Specific Effects of TBBPA and Diclazuril on Peripheral TH Action 
	Distinct Impacts of TBBPA and Diclazuril on Local TH Action in Live THAI Mice 
	TBBPA Impacts the Hypothalamo–Pituitary–Thyroid (HPT) Axis, While Diclazuril Does Not 
	Diclazuril Does Not Impact the Cerebral Cortex; the Effect of TBBPA on dio3 Expression Is Counterbalanced by Local Mechanisms 

	Discussion 
	Materials and Methods 
	Animals 
	Animal Treatment and Sample Collection 
	In Vivo Imaging 
	Serum Hormone Measurements 
	Taqman qPCR 
	Cell Transfection and Luciferase Assay 
	Data Analysis 

	References

