REAL

Reorganization of Parvalbumin Immunopositive Perisomatic Innervation of Principal Cells in Focal Cortical Dysplasia Type IIB in Human Epileptic Patients

Szekeres-Paraczky, Cecília Kata and Szocsics, Péter and Erőss, Loránd and Fabó, Dániel and Mód, László and Maglóczky, Zsófia (2022) Reorganization of Parvalbumin Immunopositive Perisomatic Innervation of Principal Cells in Focal Cortical Dysplasia Type IIB in Human Epileptic Patients. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 23 (9). ISSN 1661-6596

[img]
Preview
Text
ReorganizationofParvalbuminImmunopositivePerisomaticInnervation.pdf
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. As several studies have revealed, the abnormal functioning of the perisomatic inhibitory system may play a role in the onset of seizures. Therefore, we wanted to investigate whether changes of perisomatic inhibitory inputs are present in FCD. Thus, the input properties of abnormal giant- and control-like principal cells were examined in FCD type IIB patients. Surgical samples were compared to controls from the same cortical regions with short postmortem intervals. For the study, six subjects were selected/each group. The perisomatic inhibitory terminals were quantified in parvalbumin and neuronal nuclei double immunostained sections using a confocal fluorescent microscope. The perisomatic input of giant neurons was extremely abundant, whereas control-like cells of the same samples had sparse inputs. A comparison of pooled data shows that the number of parvalbumin-immunopositive perisomatic terminals contacting principal cells was significantly larger in epileptic cases. The analysis showed some heterogeneity among epileptic samples. However, five out of six cases had significantly increased perisomatic input. Parameters of the control cells were homogenous. The reorganization of the perisomatic inhibitory system may increase the probability of seizure activity and might be a general mechanism of abnormal network activity.

Item Type: Article
Uncontrolled Keywords: dysplasia; parvalbumin; focal epilepsy; perisomatic inhibition; neurodevelopmental disorder; dysmorphic neurons; human cortex; FCD; interneurons; inhibitory function;
Subjects: Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia > QH3015 Molecular biology / molekuláris biológia
R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában > R850-854 Experimental medicine / kisérleti orvostudomány
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 27 Feb 2023 13:31
Last Modified: 27 Feb 2023 13:31
URI: http://real.mtak.hu/id/eprint/160676

Actions (login required)

Edit Item Edit Item