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ABSTRACT

We explore the dynamics of stellar discs in the close vicinity of a supermassive
black hole (SMBH) by means of direct N-body simulations. We show that an iso-
lated nuclear stellar disc exhibits anisotropic mass segregation meaning that massive
stars settle to lower orbital inclinations and more circular orbits than the light stars.
However, in systems in which the stellar disc is embedded in a much more massive
isotropic stellar cluster, anisotropic mass segregation tends to be suppressed. In both
cases, an initially thin stellar disc becomes thicker, especially in the inner parts due
to the fluctuating anisotropy in the spherical component. We find that vector reso-
nant relaxation is quenched in the disc by nodal precession, but it is still the most
efficient relaxation process around SMBHs of mass 106 M� and above. Two body re-
laxation may dominate for less massive SMBHs found in dwarf galaxies. Stellar discs
embedded in massive isotropic stellar clusters ultimately tend to become isotropic on
the local two-body relaxation time-scale. Our simulations show that the dynamics of
young stars at the centre of the Milky Way is mostly driven by vector resonant re-
laxation leading to an anticorrelation between the scatter of orbital inclinations and
distance from the SMBH. If the S -stars formed in a disc less than 10 Myr ago, they
may coexist with a cusp of stellar mass black holes or an intermediate mass black hole
with mass up to 1000 M� to reproduce the observed scatter of angular momenta.

Key words: methods: numerical – stars: kinematics and dynamics – Galaxy: centre –
galaxies: nuclei

1 INTRODUCTION

More than two decades of repeated monitoring of stellar or-
bits in the Galactic centre revealed the presence of a compact
massive object that coincides with the radio source SgrA*
(Ghez et al. 2000; Gillessen et al. 2009; Genzel et al. 2010;
Gillessen et al. 2017). The high mass (M ' 4 × 106 M�) and
compact size (R < 10−6 pc) suggest that the object is a su-
permassive black hole (SMBH) (see Eckart et al. 2017 for a
discussion). The SMBH is surrounded by a dense cluster of
stars, most of which are old (> 5 Gyr old), but some stars
are very young (< 10 Myr old). The majority of young and
massive stars are distributed in a disc-like structure as seen
from their angular momentum vector directions (Levin &
Beloborodov 2003; Paumard et al. 2006; Bartko et al. 2009;
Yelda et al. 2014; von Fellenberg et al. 2022). This kinematic
structure is called the clockwise stellar disc and is located be-
tween 0.04 and 0.5 pc (Levin & Beloborodov 2003). Another
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distinct kinematic structure is the S -star cluster: a cluster
of young massive stars located within the inner arcsecond
(0.04 pc) from the SMBH. Detailed spectroscopic studies of
the S -stars indicate their ages are comparable with those
of the clockwise stellar disc suggesting the same origin for
both systems (Habibi et al. 2017). Recent observations sug-
gest that the S -star cluster is likely to be arranged in two
orthogonal discs (Ali et al. 2020; Peißker et al. 2020) which
may be identified from the distributions of the position an-
gles of the semimajor axes of the sky-projected orbits (Ali
et al. 2020)1.

The Milky Way galaxy is not the only galaxy that fea-
tures a stellar disc. At the centre of the Andromeda galaxy,
two distinct brightness peaks are observed (Lauer et al.
1993) which may be explained by the so-called eccentric nu-
clear disc (Tremaine 1995) where orbits of stars have aligned

1 Note that the existence of two orthogonal discs in S -stars is

debated (von Fellenberg et al. 2022)
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2 Panamarev & Kocsis

arguments of periapsides. Observations of nuclear star clus-
ters in nearby edge-on galaxies suggest that some of them
host stellar discs associated with multiple stellar populations
(Seth et al. 2006, 2008). Therefore, the coexistence of the nu-
clear star clusters with SMBHs and stellar discs appear to
be common in the universe motivating studies of these sys-
tems. The main focus of this paper is the nuclear stellar disc
of the Milky Way, but we also discuss stellar discs in nuclei
of dwarf galaxies.

The interaction between a young stellar disc and the old
spherical cluster may be described by secular processes that
take place on time-scales significantly shorter than two-body
relaxation. Due to the finite number of stars even a spheri-
cal cluster exhibits a fluctuating stochastic anisotropy which
generates a strong net gravitational torque on stellar orbits,
giving rise to rapid diffusion of orbital angular momenta
in a process called resonant relaxation (Rauch & Tremaine
1996; Hopman & Alexander 2006; Eilon et al. 2009; Kocsis
& Tremaine 2011, 2015; Giral Mart́ınez et al. 2020). In near-
Kepler potentials in which the orbital time is much shorter
than the apsidal precession time, the dynamics of stars can
be represented as the interaction of quasi-stationary ellipti-
cal wires exerting mutual gravitational torques. In this case
the individual orbital energies are approximately conserved,
but the torques change both the magnitudes and the direc-
tions of the angular momentum vectors due to scalar res-
onant relaxation (SRR). In non-Keplerian spherical mean-
field potential, which arises in the Galactic centre due to
the extended stellar mass distribution and/or general rela-
tivistic precession, the elliptical orbits are not closed, but
experience rapid apsidal precession. For these systems the
dynamical relaxation of orbital parameters is further accel-
erated by the coherent torques between N rings or annuli
covered by the individual stellar orbits. This reorients the
angular momentum vector directions even more rapidly in a
process called vector resonant relaxation (VRR) while both
orbital energy and angular momentum magnitude are nearly
conserved (Rauch & Tremaine 1996).

Theoretical studies of VRR benefit from the Hamilto-
nian formalism where the Hamiltonian represents the gravi-
tational energy from the stellar potential excluding the Kep-
lerian orbital energy around the SMBH (Kocsis & Tremaine
2015). This may be achieved by orbit-averaging over the pre-
cession time-scale. The final equilibrium state may be found
by means of mean field theory, the Monte Carlo Markov
Chain method, kinetic theory, or by integrating Hamilton’s
equations of motion in time using orbit-averaged N-ring or
direct N-body simulations. First, using the mean field ap-
proach, the distribution function of the angular momentum
vector directions can be found by maximising the entropy of
the system using calculus of variations (Roupas et al. 2017;
Takács & Kocsis 2018; Magnan et al. 2022). The equations
have been solved analytically in the idealised case where
all stars have identical masses, semi-major axes and eccen-
tricities. Roupas et al. (2017) and Takács & Kocsis (2018)
found that the stellar discs may represent statistical equi-
librium structures. Moreover, depending on the total energy
and angular momentum the system exhibits a phase transi-
tion between disc and spherical phases showing an analogy
with liquid crystals. Recently these models were generalised
by Magnan et al. (2022) to include the mass spectrum of
stars showing that massive stars tend to arrange in thinner

discs than light stars in a process called vertical mass seg-
regation. This confirms the original expectation of Rauch &
Tremaine (1996).

A similar conclusion was reached earlier using the
Markov Chan Monte Carlo (MCMC) method. Szölgyén &
Kocsis (2018) showed that for a particular anisotropic initial
condition the massive stars in the cluster form a disc. The
study was recently extended by Máthé et al. (2022) where
the authors explored the VRR equilibrium for a range of
initial configurations in energy – angular momentum space.
Both of these studies included orbit-averaged interactions
but did not consider the diffusion arising from two-body en-
counters. They found that massive objects form discs even
in cases where the initial level of anisotropy is only a few
percent.

Mass segregation may also occur in the eccentricity dis-
tribution, but in this case driven by SRR. Scalar resonant
relaxation is the dominant process to randomise the eccen-
tricities of the S -stars in the Galactic centre (Perets et al.
2009). Fouvry et al. (2018) showed that massive stars tend
to become more circular than light stars in discrete quasi-
Keplerian axisymmetric discs. In spherically symmetric sys-
tems, mass segregation in eccentricity may take place in both
directions: the orbits of massive stars become more circular
and light stars become more eccentric or vice versa depend-
ing on the total energy of the system (Gruzinov et al. 2020).

The time-evolution of the system towards VRR equilib-
rium may be described by kinetic theory solving the Boltz-
mann equation. This approach has been used to elucidate
SRR (Bar-Or & Fouvry 2018) and VRR processes (Fouvry
et al. 2019b).

The time-evolution leading to mass-dependent
anisotropy was demonstrated in a set of direct N-body and
N-ring simulations featuring a stellar disc, an intermediate
mass black hole (IMBH) and a spherically symmetric
cluster of stars (implemented as an external potential) with
a SMBH. Szölgyén et al. (2021) showed that the orbit of the
IMBH aligns rapidly with the disc of stars within 3-10 Myr
(depending on the IMBH mass and the initial inclination
angle) and the IMBH eccentricity decreases rapidly due
to VRR and SRR by the effect called resonant dynamical
friction. This work featured direct integration of two-body
encounters between the SMBH, IMBH, and the stars in the
disc, but neglected the two-body interactions between stars
in the disc and in the spherical cluster and deviations from
spherical symmetry.

Mass segregation effects in the vicinity of a massive
black hole were originally described in the context of two-
body relaxation in isotropic spherically symmetric stellar
systems (Bahcall & Wolf 1977) which were later confirmed
by direct N-body simulations (Preto & Amaro-Seoane 2010;
Panamarev et al. 2019). For an isotropic system two-body
relaxation is much slower than VRR by the ratio of the
central mass to the individual stellar mass times N1/2, i.e.
MSMBH/(N1/2m), where N is the number of stars. It drives
mass segregation slowly both in semi-major axes and, as
shown by Mikhaloff & Perets (2017), it leads to mass segre-
gation in orbital inclinations and eccentricities in isolated
stellar discs. Recently, N-body modelling of Foote et al.
(2020) demonstrated vertical and eccentric mass segregation
in eccentric nuclear discs. It was not clear from this study
whether these effects were caused by two-body or resonant
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Stellar discs in galactic nuclei 3

relaxation or both. Anisotropic mass segregation was also
observed in direct N-body simulations of rotating globular
clusters (Szölgyén et al. 2019), where VRR dominates over
two-body relaxation for N � 104 (Meiron & Kocsis 2019).

Perets et al. (2018) showed that the collective effect
of stars in a spherical distribution (in their case a cusp of
stellar black holes) may lead to the formation of clumps,
warps and spiral arms in the stellar disc. They compared
results from direct N-body simulations of isolated stellar
discs, stellar discs embedded in a smooth potential, a hybrid
self consistent field modelling of disc – sphere interactions
(Meiron et al. 2014) and direct N-body integration of the
whole system. While isolated discs and discs embedded in a
smooth potential showed steady increase in disc thickness,
both hybrid and direct N-body models led to the formation
of clumps, warps and spiral arms. The qualitative agreement
between hybrid and direct models suggests that these effects
may be caused by resonant relaxation.

Mastrobuono-Battisti et al. (2019) used direct N-body
simulations to study the co-evolution of multiple stellar discs
embedded in an analytic stellar cusp and a discrete popula-
tion of stellar black holes. By introducing a new disc every
100 Myr, they found that the discs evolve towards a uni-
form distribution in orbital inclinations, but at the end of
their simulations (500 Myr) each of the discs showed differ-
ent morphologies and kinematics.

Kocsis & Tremaine (2015) and Giral Mart́ınez et al.
(2020) showed that the fluctuating anisotropy of a spherical
distribution leads to diffusion in angular momentum direc-
tion space in a nearly spherical system due to VRR. Thus, as
long as the gravitational interaction between disc particles
may be neglected, a spherical distribution drives the dis-
ruption of a stellar disc. Furthermore, two-body relaxation
may further accelerate rapid diffusion, rapidly increasing the
thickness of an initially very thin disc (Cuadra et al. 2008).
In the opposite limit of a strongly self-interacting thin stellar
disc with no two-body relaxation, the disc acts as a coupled
system of harmonic oscillators, counteracting the external
torques such that the disc remains intact and exhibits nor-
mal mode oscillations (Kocsis & Tremaine 2011). In this pa-
per we aim to study the interaction of a nuclear stellar disc
with a spherical nuclear star cluster around a central mas-
sive black hole self-consistently by means of direct N-body
simulations. We improve the physical realism and particle
number resolution over previous direct N-body models to
understand if stellar discs or black hole discs may be long
lived in nuclear star clusters.

The paper is organised as follows. In Sec. 2 we review
the Galactic centre time-scales. In Sec. 3 we describe the ini-
tial setup for our numerical models. Sec. 4 is devoted to the
analysis of isolated stellar discs without a spherical stellar
population, and Sec. 5 to the effects caused by the dynamical
interaction with the sphere. In Sec. 6 we apply our findings
to compare with the observed population of S -stars and,
finally, we summarise the paper in Sec. 7.

2 THE TIME-SCALES

In this section we review the relaxation processes in galactic
nuclei and the associated time-scales similar to Kocsis &
Tremaine (2011) and Rauch & Tremaine (1996).

Two-body relaxation. Two-body relaxation arises from the
fluctuating force acting on a subject star over the orbital
period. As the total impulses received by a star over the or-
bital period are uncorrelated, the relaxation rate occurs in
a random-walk fashion and is often called non-coherent re-
laxation. The two-body relaxation changes both the energy
and the corresponding angular momentum at the rate (see
e.g. Rauch & Tremaine 1996 or Binney & Tremaine 2008):

∆E
E

= α
m2N1/2

Mbh

(
t

torb

)1/2

,
∆L
L

= β
m2N1/2

Mbh

(
t

torb

)1/2

, (1)

where N is the total number of stars, Mbh is the mass of the
central massive black hole, E ∼ 2GMbh/R is the Keplerian
energy, m2 = 〈m2〉/〈m〉 is the effective mass and α ∼ β ∼

(ln Λ)1/2 within factors of order unity where ln Λ ' ln(Mbh/m)
is the Coulomb logarithm, m is the stellar mass and torb is
the orbital period.

The two-body relaxation time-scale for a spherical stel-
lar system with a central massive black hole can be com-
puted by (Binney & Tremaine 2008):

trelax = 0.34
σ3(r)

G2ρ(r)m2 ln Λ
=

M2
bh

β2m2
2N

torb, (2)

where σ is the one-dimensional velocity dispersion, ρ is the
stellar density.

Scalar resonant relaxation. Contrary to two-body relaxation,
SRR occurs in a coherent way over the apsidal precession
time-scale. In near-Kepler potentials, the orbit-averaged in-
teraction may be approximated as elliptic wires exerting mu-
tual torques. In this case the Keplerian energy is conserved,
but both the magnitude and the direction of angular mo-
mentum vectors L are changed at the following rate:

∆L
Lc

= ηs
m2N1/2

Mbh

(
tprect
t2
orb

)1/2

, (3)

where Lc = L/
√

1 − e2, ηs is a dimensionless coefficient of
order unity and tprec is the apsidal precession time. The total
relaxation rate occurs in a random walk fashion with the
apsidal precession time being the step size (duration of the
coherent phase). The long duration of the step size compared
to the orbital period makes this process more efficient than
two-body relaxation in near-Kepler potentials where tprec �

torb.
The SRR time in a spherical stellar system can be found

by:

trr,s =
4π|ω|
β2

sΩ
2

M2
bh

M(r)m2
, (4)

where ω = 2π/tprec is the apsidal precession rate (sum of New-
tonian and relativistic), Ω = 2π/torb is the orbital frequency
and βs is a dimensionless coefficient estimated by Eilon et al.
(2009) to be 1.05 ± 0.02.

Vector resonant relaxation. In spherical potentials where the
precession time is short, the stellar orbits may be approxi-
mated as annuli that exert mutual torques. In this case the
torques change the direction of orbital angular momentum
vectors at the rate:

∆L/Lc = ην
m2N1/2

Mbh

(
t

torb

)1/2

+ βν
m2N1/2

Mbh

t
torb

, (5)
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Figure 1. The time-scales of dynamical processes as a function of distance from the SMBH in our simulations of the Galactic centre.

Computed from analytical expressions presented in Sec. 2 using the data from the initial conditions of the models described in Sec. 3. All
thick lines show the time-scales related to the interaction of the stellar disc with a spherical component with a 3D density distribution

ρ ∝ r−1.75. All thin lines show the relaxation time-scales within the disc neglecting contribution from a spherical component. Black

lines illustrate two-body relaxation within the discs, purple lines show VRR within the discs. Different line styles correspond to density
distributions of the stellar discs with corresponding power-law density slope according to the legend.

where ην is a dimensionless coefficient which corresponds to
the contribution of two-body relaxation and SRR, and the
term with βν = 1.83 ± 0.03 represents the contribution from
the coherent phase of VRR (linear with t/torb) (Eilon et al.
2009). Kocsis & Tremaine (2015) found that VRR is slower
by a factor 3 due to rapid apsidal precession consistent with
earlier work (Rauch & Tremaine 1996). It is expected that
VRR may be the most efficient way to randomise the stellar
orbital inclinations as the step size of the coherent phase is
the largest among all relaxation processes.

For a spherical stellar system, the VRR time is (Eilon
et al. 2009):

trr,v =
Mbh

√
M(r)m2

torb

β2
ν

. (6)

Kocsis & Tremaine (2015) found that m2 is replaced by the
RMS mass for VRR.

Two-body relaxation in a stellar disc. Two-body relaxation
time-scale for a stellar disc can be computed by (Stewart &
Ida 2000):

trx,disc =

〈
e2

〉2

4.5Ω

M2
bh

m2Σr2 ln Λ
, (7)

where Σ is the surface density of the disc, Λ '
〈
e2

〉3/2
Mbh/m.

The formula assumes
〈
i2
〉1/2
' 0.5

〈
e2

〉1/2

Vector resonant relaxation in a stellar disc. VRR may also
occur in stellar discs. Since stars exert torques from the disc
plane leading to precession in the line of nodes at the rate
(Kocsis & Tremaine 2011):

ν '
Ω〈

i2〉1/2

Mdisc

Mbh
, (8)

the nodal precession will limit the step size for the coherent
phase of VRR. To compute VRR in a stellar disc, we replace
the apsidal precession rate in Eq. 4 by the nodal precession
rate and Mdisc by M(r):

tvrr,disc '
4π

Ω
〈
i2〉1/2

Mbh

m2
. (9)

This expression shows relaxation of the angular momentum
vectors which in this case is dominated by relaxation in
azimuthal components driven by the nodal precession (as
shown in Sec. 2 of Kocsis & Tremaine 2011). Note that VRR
in the vertical direction may be much slower due to kinetic
blocking (Fouvry et al. 2019a). Furthermore, tvrr,disc estimates
the timescale for the relaxation of a disc by neglecting the
fluctuating torques from the spherical component of the stel-
lar distribution.

We refer to Tremaine (1998) and Fouvry et al. (2018)
for the discussion and analysis of SRR in discs.

For the relaxation processes that occur much faster than
two-body relaxation, it is often useful to compare the time-
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scales with respect to the secular time, defined as:

tsec =
Mbh

Mtot
Pinner, (10)

where Pinner is the orbital period of the innermost star (in our
models determined by the inner edge of the stellar disc) and
Mtot is the total stellar mass of the system. This time-scale
sets the shortest apsidal precession time.

Fig. 1 shows the time-scales described above applied
to the Galactic centre using data from our simulations
(see Sec. 3). The spherical component corresponds to the
Bahcall-Wolf cusp (Bahcall & Wolf 1976) while stellar discs
feature various distributions of 3D densities and orbital pa-
rameters adopted in our simulations as described in the fol-
lowing section. The figure compares the time-scales of dy-
namical processes within the sphere (thick lines) and within
the discs (thin lines). As we see, VRR within the sphere
(thick red line) is the fastest process followed by VRR
in discs (although for some disc models 2-body relaxation
within the disc is comparable in some regions; see purple
and black lines). On the other hand, if the total mass of the
whole stellar system is increased by a factor of 30 (labelled
as 30X in the legend), while keeping the same number of par-
ticles, 2-body relaxation within the disc becomes the fastest
process (see the section below for a motivation on the 30X
models).

Note that the time-scales presented in the Figure 1 (and
the equivalent analytical expressions) are derived either ne-
glecting the contribution from the disc (time-scales within
the sphere) or from the sphere (time-scales within the discs),
but in reality the dynamics of a stellar disc embedded in a
sphere may be shaped by the contribution from both the
disc and the sphere. The torque acting on a test particle in
the presence of an isotropic cluster due to the fluctuating
stochastic anisotropy is of order (Kocsis & Tremaine 2015)

L̇sphere ∼ βν
N1/2

spheremrms,sphere

Mbh

Lc

torb
, (11)

while a stellar disc drives nodal precession at the rate of
order

L̇disc ∼
Ndiscmav,disc

Mbh

Lc

torb
. (12)

Here mrms,sphere = 〈m2〉1/2 and mav,disc = 〈m〉 for objects in the
spherical cluster and the disc, respectively. Thus, the ef-
fect of the disc dominates over the sphere if Ndiscmav,disc �

N1/2
spheremrms,sphere and the disc exhibits normal mode oscilla-

tions (Kocsis & Tremaine 2011), and in the opposite limit
the disc dissolves on the trr,v VRR timescale due to the sphere
(Kocsis & Tremaine 2015; Giral Mart́ınez et al. 2020). To ex-
plore the dynamics and the dominant relaxation process for
different systems, we perform direct N-body simulations of
stellar discs embedded in a spherical cusp of stars in the in-
termediate regime where Ndiscmav,disc and N1/2

spheremrms,sphere are
comparable as we describe in the following section.

3 SIMULATIONS

We adopt the following system of units for all the models:

G = Mbh = Rout = 1, (13)

where G is the gravitational constant, Mbh is the initial
SMBH mass, and Rout is the initial outer radius of the stellar
system which is defined as the orbital semi-major axis of the
outermost star in the system. When converting to physical
units we typically assume Rout = 0.5 pc, Mbh = 4× 106 M� un-
less indicated otherwise, and in some cases we adopt Rout = 1
pc, Mbh = 1.3 × 105 M�.

3.1 The code

We use a modified direct N-body code ϕ-grape (Harfst
et al. 2007) that uses 4-th order Hermite integration method
(Makino 1991; Makino & Aarseth 1992; Aarseth 2003) to
solve the equation of motion. The code was originally de-
signed for the GRAPE cards and now utilises an emulation
library to run on modern GPUs (Nitadori & Makino 2008).
The modified version of the original code includes the grav-
itational interaction with the massive central object imple-
mented as a fixed external point-mass potential and the ac-
cretion of stars onto the central object (Just et al. 2012; Li
et al. 2012; Zhong et al. 2014). The equation of motion is:

r̈i = −
∑
i, j

Gmjri j

(r2
i j + ε2

ss)3/2
−

GMbhri

r3
i

, (14)

where ri j = ri − r j with ri, r j the positions of stars i and j,
respectively, εss = 1.0×10−4 is the stellar softening parameter.
The value for the softening between stars is chosen to be
small enough to resolve relevant close encounters but large
enough to prevent formation of the compact binary systems.
Lower value for the softening may result in a larger number
of very close encounters between stars, but they are rare and
are not relevant on the resonant relaxation time-scales which
are the main focus of this work.

The central massive black hole can grow in mass by
consumption of stars. The criterion for the accretion is the
instantaneous distance to the star is less than the accre-
tion radius which was set to be equal to the tidal disruption
radius of a 2R� star by a 4 × 106 M� black hole. After the
accretion event the total mass of the star is instantaneously
added to the mass of the SMBH and the star is removed
from the simulation (Just et al. 2012; Li et al. 2012; Zhong
et al. 2014). The accretion radius sets the innermost reso-
lution of the simulations and, thus, allows not to soften the
interaction between stars and the SMBH (Khan et al. 2018).

The accuracy of the simulations is controlled by the
time-step factor η (Aarseth 1985; Makino & Aarseth 1992).
We choose η = 0.01 as a compromise between the accuracy
and the computing time. To ensure that η = 0.01 is the
optimal choice, one can measure the total energy exchange
between particles caused by two-body relaxation over the
apsidal precession time and compare it to the total absolute
energy error of the system over the same period of time.
For all of our models, the ratio of the absolute energy error
over the total energy exchange between particles does not
exceed 10−5 over the apsidal precession time for a given par-
ticle ensuring that η = 0.01 is the optimal choice. The total
relative energy error at the end of the simulations is of order
∆E =

E−E0
E0
≈ 10−4, the total angular momentum error is of

order ∆L =
|L−L0 |
|L0 |

≈ 10−3. Reducing the value for η improves
the error tolerance, but slows down the computations and
qualitatively shows the same results.
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6 Panamarev & Kocsis

3.2 Initial conditions

We study the gravitational interaction of a galactic nucleus
with three components: a central massive black hole, a spher-
ical cluster of old stars and a population of stars resembling
a disc.

We run one-to-one simulations meaning that one parti-
cle in the simulation represents one realistic star. This can
be achieved by modelling a system of 105 particles with an
average particle mass of 10−6 Mbh. Using a top-heavy initial
mass function (IMF, Eq. 15 below) and applying the param-
eters to the Milky Way Galaxy centre gives the total stellar
mass Mtot ' 2×105 M� for the inner 0.5 pc. This value is com-
parable to the total stellar mass inferred from observations:
Schödel et al. (2018) find M ' 1.3×104 M� within 0.1 pc and
M ' 1.0 × 106 M� within 1 pc.2 The most recent estimates
based on interferometric astrometry indicate that the total
extended mass within 0.1 pc does not exceed M ' 105 M�

(Gravity Collaboration et al. 2022).
We generate the initial positions and velocities for the

spherical stellar system to follow Keplerian orbits with spa-
tial density distribution resembling a Bahcall-Wolf cusp with
ρ ∝ r−7/4 where r is the distance from the SMBH (Bahcall &
Wolf 1976). The distribution of orbital parameters for the
spherical cluster is the same in all our models while we vary
the spatial density distribution and orbital parameters for
the disc stars as described in Sec. 3.2. In all the models we
keep the stellar disc embedded in a spherical component.

To model the mass spectrum of stars, we adopt the
Kroupa (2001) top-heavy IMF for the sphere:

dN
dm
∝ m−α, αsphere =


1.3, if 0.08 M� ≤ m < 0.5 M�

2.3, if 0.5 M� ≤ m < 1.0 M�

1.5, if m ≥ 1.0 M�

(15)

The top-heavy IMF is motivated by the expected mass seg-
regation in galactic nuclei (see e.g. Panamarev et al. 2019),
and the observed stellar mass function in the Galactic centre
following m−1.7±0.2 (Lu et al. 2013). After the IMF is gener-
ated we use the stellar evolution code (SSE, Hurley et al.
2000) to evolve the whole system up to 1 Gyr and use stel-
lar masses at 1 Gyr as the initial mass distribution for both
disc and spherical components. This allows us to ignore the
mass loss due to the stellar evolution in the code during the
dynamical evolution.

We use a slightly shallower slope for the heavier masses
but keep the same break points to generate the IMF for the
stellar disc motivated by observations (Bartko et al. 2010)3:

αdisc =


1.3, if 0.08 M� ≤ m < 0.5 M�

2.3, if 0.5 M� ≤ m < 1.0 M�

1.3, if m ≥ 1.0 M�

(16)

We explore several models for the distribution of orbital
parameters in the disc as summarised in Table 1. We con-
sider two main scenarios for the origin of the stellar disc. The
first one is the formation of the disc due to the star – disc

2 Note that these estimates do not include stellar remnants mean-

ing that the actual enclosed mass within the regions may be
higher.
3 Galactic center observations suggest an even more top-heavy

profile dN/dm ∝ m−0.45±0.3 (Bartko et al. 2010)

Table 1. List of simulations with a nuclear stellar disc and sphere

Fiducial models:

Mass factor Initial orbital Disc 3D density
parameters

1; 10; 30 stardisc 1.75
2.4

3.3

1; 10; 30 stardisc-random 2.4

1; 10; 30 thermal 2.4

Additional

models:

Nd Ns Md/Ms

104 105 0.14
103 105 0.04 (massive disc)

5 × 104 5 × 104 1.0

9 × 104 104 8.8

Notes. List of models with different initial conditions for stellar

discs. The default number of stars in the disc and the sphere are
Nd = 103 and Ns = 105, respectively; the radial number density

profile exponent of the sphere and the disc are -1.75 and γ = −2.4.

For the stardisc initial conditions we also adopted two additional
γ values as shown. For each of these main models, we adopted

three different mass factors to scale the stellar mass distribution

as shown to accelerate the code (see text). In total, for the main
models we have 9 stardisc models, 3 stardisc-random and 3 ther-

mal models. For the additional models the mass factor is 30, the

disc radial density profile slope is γ = 2.4 and initial orbital pa-
rameters are thermal.

interactions in an active galactic nucleus. Panamarev et al.
(2018) showed that the gaseous accretion disc may capture
stars from the surrounding star cluster with the captured
stars following the disc-like shape resembling the shape of
the underlying gaseous accretion disc (see also Bartos et al.
2017). The formed stellar disc is in steady state balanced
by the accretion of stars onto the SMBH and capturing new
stars by the accretion disc. To generate the initial positions
and velocities, we take data from Panamarev et al. (2018)
at 1 relaxation time (enough to form the steady state disc)
and make statistical bootstrapping to increase the number
of stars (in Panamarev et al. 2018 the authors had to use
the super-particle approach where 1 particle represented a
group of stars). First, we convert positions and velocities to 6
Keplerian orbital parameters (this is a good approximation
for orbits deep inside the influence radius of the SMBH),
then generate a larger number of objects corresponding to
the distribution function of orbital parameters, and finally,
we convert the orbital parameters back to positions and ve-
locities. This way we generate 1000 particles for our mod-
els from the original ≈100 particles taken from Panamarev
et al. (2018). We refer to the initial orbital parameters of the
disc stars derived this way as the stardisc initial conditions.
Fig. 2 (blue lines in both panels) shows notable features:
nearly circular orbits for most of the stars and low orbital
inclinations. There is also a linear dependence of the orbital
inclination, eccentricity and semi-major axis which resem-
bles the outer warp of the stellar disc (see the left panel of
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the Fig. 3 that shows the correlation between the inclination
angles and eccentricities).

As this type of initial conditions may seem specific to
the underlying accretion disc model used in Panamarev et al.
(2018), we explored another family of the stardisc initial con-
ditions where we kept the same distributions of the orbital
parameters as in Fig. 2, but randomised the inclination –
eccentricity – semi-major axis relation as shown in the mid-
dle panel of Fig. 3. We refer to these initial conditions as
the stardisc-random initial conditions. In the stardisc initial
condition models we vary the 3D density power-law slope
for semi-major axes as described in Sec. 3.2.

In addition to the stardisc and stardisc-random initial
conditions, we also explore the case where the stellar disc
follows a thermal eccentricity distribution, uniformly dis-
tributed orbital inclinations between cos 10◦ and cos 0◦, and a
3D power-law density slope for the semi-major axes ρ ∝ r−2.4

implying that dN/da = a−0.4. Orange lines in both panels of
Fig. 2 and the right panel of Fig. 3 highlight the differences
between the models. We refer to these initial conditions as
thermal initial conditions. The remaining Keplerian orbital
elements, namely longitudes of the ascending nodes, argu-
ments of periapsis and mean anomalies are drawn from a
uniform distribution within the whole range of their allowed
values.

We perform a set of simulations with Ns = 105 total
number of stars in the sphere, Nd = 103 total number of stars
in the disc and average mass ratio of m∗/Mbh = 5×10−7. Given
the slightly different mass functions for the disc and for the
sphere the total mass fraction of the disc is Md/Ms ' 0.015.
To explore the effects of the initial orbital parameters distri-
bution we use 3 sets of models: stardisc, stardisc-random and
thermal, as described above. For the stardisc model we vary
the power law slope for the 3D density distribution ρ ∝ r−γ

with γ = 1.75 to represent the standard Bahcall-Wolf cusp
(Bahcall & Wolf 1976), γ = 2.4 to match the observed den-
sity distribution of the clockwise stellar disc in the Galactic
centre (Yelda et al. 2014) and γ = 3.3 – the steepest density
profile in our models which originates from the star – disc
simulations of Panamarev et al. (2018), for other models we
fix γ = 2.4. This gives us 5 different models which are referred
as 1X models. Due to the high numerical cost, these types of
simulations can be advanced up to 5-10 Myr when applied
to the Galactic centre corresponding to the observed age of
the nuclear stellar disc and S -stars (Habibi et al. 2017).

To study long term evolution of the system, we increase
the total stellar mass of the system by factors of 10 and
30 respectively while keeping the same number of particles.
This gives 10 more models. We refer to these models as 10X
and 30X models. As we saw in Sec. 2, the dynamical time
scales are reduced for a larger total stellar mass. Due to the
fact that the scaling with mass is different for the resonant
relaxation and for the two-body relaxation (see Eq. 6 and
Eq. 2), we can study the contribution from these relaxation
processes by comparing the 1X, 10X and 30X models. Table 1
lists all the models and their parameters.

The bottom part of the Table 1 lists several additional
models that we simulated with the thermal initial condi-
tions and γ = 2.4 disc density exponent. First we include ad-
ditional variants of the 30X models, which are numerically
the least expensive and allow us to explore the parameter
space of the system. In particular, we run additional models

with (i) a larger number of stars in the disc Nd = 104; and (ii)
with the same number of stars in the disc but increased total
mass of the disc. Furthermore, we examine two additional
models where the number of stars in the disc was equal to
the number of stars in the sphere and where the number of
stars in the disc was 90% of the total number of particles
with the total number of particles N = 105 in both runs. In
addition, in order to study the effect of the sphere on the
dynamics of stars within the disc, we run the fiducial 1X,
10X and 30X models without the sphere, with only a stellar
disc of Nd = 103 stars around the supermassive black hole.
We refer to these models as the isolated disc models.

4 DYNAMICS OF THE ISOLATED STELLAR DISCS

In this section we describe the evolution of isolated stellar
discs rotating around a SMBH with 100% of stars initially
on prograde orbits and no spherical stellar component. As
reference models we choose the thermal models with the
power-law density slope of the disc γ = 2.4 and the mass
factors 1, 10 and 30. We examine how the total stellar mass
(with fixed number of particles) affects the dynamics of the
relaxation processes.

The dynamical relaxation processes are expected to
change the distribution of orbital inclination angles by warp-
ing, twisting, and affecting the thickness of the disc. The left
panel of Figure 4 shows the 10%, 50%, and 90% cumulative
distribution levels of orbital inclination angles as a func-
tion of semi-major axis. The innermost stars tend to have
higher orbital inclinations, which is explained by the shorter
relaxation time-scales at smaller distances from the SMBH
(see Sec. 2). The right panel of the figure shows the average
inclination angle as a function of mass indicating that the
high-mass stars (black holes) have systematically lower incli-
nations forming a thin disc. This effect develops in all models
with an isolated stellar disc. The time instances correspond-
ing to the 1X, 10X and 30X models in Fig. 4 are chosen to
have the same average inclination angle for the light stars
(m ≤ 10 M�)

4, implying that the curves in the right panel of
Fig. 4 overlap for light stars by construction. The inclination
versus semi-major axis shows very similar trends in the left
panel of the figure implying that all models are at the same
level of relaxation.

In the top panels of Fig. 5, we compare the distribution
of cosines of the orbital inclinations for massive (m ≥ 10 M�)
and light (m ≤ 10 M�) stellar objects. Each panel corresponds
to the model with different mass factors (1X, 10X and 30X)
at the same time as in Fig. 4. While the distribution of
low mass stars are identical by construction, the 1X model
clearly shows the strongest effect in vertical mass segregation
compared to 10X and 30X models. Bottom panels of the
same figure demonstrate that the isolated stellar discs also
feature mass segregation in the eccentricity distribution as
seen from the normalised distribution of orbital eccentricities
for light and massive stars. But in this case the higher-mass
models show stronger mass segregation than the 1X model.

4 This choice is somewhat arbitrary, but as we see from the right
panel of Fig. 4 the value m = 10 M� is in the mass-gap produced

by the stellar evolution and all objects with higher masses in the

simulation are stellar mass black holes.
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Figure 2. Left panel: Initial distribution of eccentricities for the stellar disc. Blue histogram shows the initial conditions originating from
the stardisc simulations (Panamarev et al. 2018) of active galactic nuclei while the orange histogram represents thermal eccentricity

distribution. Right panel: Distribution of cosines of inclination angles for the stellar disc. Blue shows the stardisc initial conditions and

orange line corresponds to the thermal model: uniform distribution in cos(i) corresponding to angles between 0 and 10◦
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Figure 3. Scatter plot of stellar disc eccentricities and inclination angles for the three types of initial conditions adopted. Left panel, labelled

stardisc, shows the relation between eccentricity and inclination angle arising from previous stardisc simulations in AGNs (Panamarev
et al. 2018). Middle panel, labelled stardisc-random, shows the model in which the correlation is removed by independently assigning

inclinations and eccentricities from the stardisc model, and the right panel shows the thermal model (see text).

To examine the time dependence of mass segregation in
inclination and eccentricity and its dependence on the 1X,
10X, 30X models, we track the time evolution of the root-
mean-square (rms) inclination angles and eccentricities for
all the models as a function of secular time. Fig. 6 confirms
the expectation that vertical mass segregation is strongest
for the 1X models and the weakest for the 30X models while
mass dependence in eccentricities is the opposite.

To explore the long-term evolution of isolated stellar
discs, we focus on the 30X model which is numerically the
least expensive. Fig. 7 shows that massive and light stars
develop a different rms inclination and eccentricity during
the first stages of the evolution and continue with the same
pace after a few thousand secular times. As a result, mass
segregation effects are expected to be present in such systems
(see Fig. 8).

Vertical mass segregation in galactic nuclei may be
caused by vector resonant relaxation as shown first by Szöl-

gyén & Kocsis (2018) and later confirmed by other studies
(Fouvry et al. 2022; Magnan et al. 2022; Máthé et al. 2022).
On the other hand, angular momentum conservation dur-
ing pairwise interactions implies that two-body relaxation
may also cause vertical mass segregation in the long-run es-
pecially in highly anisotropic systems (Ernst et al. 2007;
Tiongco et al. 2021). The mass segregation in eccentricities
may be caused by both scalar resonant relaxation (Fouvry
et al. 2018; Gruzinov et al. 2020) and two-body relaxation.
As shown by Alexander et al. (2007), the rms eccentricity of
a stellar disc is related to its velocity dispersion as:

erms =
√

2
σ

vK
, (17)

where vK is the Keplerian orbital speed. Following this logic,
Mikhaloff & Perets (2017) showed that the evolution of rms
eccentricities is different for light and heavy stars as a result
of two-body interactions.

To explore which relaxation process drives anisotropic
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Figure 4. Left panel: moving average of inclination angles in semi-major axes for the thermal isolated disc models (see Table 1) with mass
factors according to the legend. Right panel: moving average of inclination angles in mass for the same models. Both panels correspond

to the same time snapshot. Blue, red and green colours indicate 1X, 10X and 30X thermal isolated disc models, respectively. Faded

lines (points) of the same colour show 90 and 10% quantiles. The time snapshots for each model are chosen such that average orbital
inclinations match for the low mass stars (this corresponds to 56, 5 and 0.9 Myr for 1X, 10X and 30X models respectively; see dotted

lines in Fig. 6). For the 10X and 30X models (red and green lines in the right panel) we show m/10 and m/30 respectively so that the

mass ranges overlap. The window for the moving averages was chosen to be 100 data points.
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Figure 5. Normalised histograms of orbital inclinations and eccentricities for light and massive particles. Top panels show the cosines of

orbital inclinations for 1X, 10X and 30X models. Bottom panels show eccentricities for the same models. Solid and dashed lines indicate

massive (m ≥ 10 M�) and light (m < 10 M�) particles respectively. The histograms correspond to the same time snapshots as in Fig. 4.
The shaded histogram in the bottom right panel shows the initial eccentricity distribution for all of these models.
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Figure 6. Evolution of root-mean-square inclination angles and eccentricities for the same thermal isolated disc models as in Fig. 4 and
Fig. 5 a function of secular time (defined in Eq. 10). Solid and dashed lines indicate massive and light particles respectively. Dotted

vertical lines show the time at corresponding to the snapshots of Fig. 4 and Fig. 5.

mass segregation predominantly in our models of isolated
stellar discs with no spherical component, we perform the
correlation curve analysis (Rauch & Tremaine 1996; Eilon
et al. 2009; Kocsis & Tremaine 2015). We measure changes
in energies and angular momenta for each particle to com-
pute the rate of diffusion in energy – angular momentum for
the whole system (see Appendix A for details). Fig. 9 shows
the rms change in Keplerian energy (to track two-body re-
laxation), angular momentum magnitude (to track SRR),
angular momentum vector direction (to track VRR) and
the Z-component of the angular momentum vector (VRR in
vertical direction) relative to the initial state. Clearly, VRR
strongly dominates in the 1X models: the relative change in
angular momentum vector direction occurs faster than the
change in other quantities (the red line is always above).
However, due to the strong nodal precession, the change is
predominantly along the azimuthal component of the angu-
lar momentum vector, while the orbital inclination is nearly
constant. The mixing of orbital inclination angles is repre-
sented by the change in the Z-component of the angular mo-
mentum vectors (shown as a black line in Fig. 9). This is sup-
pressed initially compared to the change in the energy, but
becomes more prominent after 102 orbital periods. For 10X
and 30X models two-body relaxation is the most efficient re-
laxation process, at least during the first 103 periods. Fig. 9
also shows the comparison of the efficiency of the relaxation
processes for massive (dashed lines of the same colour) and
light (dotted lines of the same colour) stars. As light stars
represent the majority of the system, they are almost in-
distinguishable from the overall cluster properties. On the
other hand, the difference between the change in energy and
angular momentum for massive stars indicates that the dif-
fusion in energy and angular momentum for the massive

stars is less efficient. Since relaxation is driven by VRR in
the 1X model, this explains the strongest vertical mass seg-
regation compared to 10X and 30X models discussed above
(see Fig. 6). On the other hand, energy and angular momen-
tum changes in the 10X and 30X models are mostly driven
by two-body relaxation. This explains the more prominent
mass segregation effect in the eccentricities in 10X and 30X
models compared to the 1X model. Since the contribution
from SRR is the least significant for the studied models (es-
pecially the 10X and 30X models, see green lines in Fig. 9),
we conclude that the anisotropic mass segregation effects in
thermal isolated discs are caused by both VRR and two-body
relaxation.

5 INTERACTION OF A NUCLEAR STELLAR DISC
WITH A SPHERICAL CUSP OF STARS

We analyse the shape and thickness of the stellar disc using
the quadrupole moment matrix (see e.g. Roupas et al. 2017,
Szölgyén et al. 2021) defined as follows:

Qαβ =

∑N
i=1 LiαLiβ∑N
i=1 |Li|

2
, (18)

where Li is the angular momentum vector of the i-th star,
α and β are the corresponding Cartesian components.

The largest eigenvalue of the matrix corresponds to the
shape of the disc while the corresponding principal eigenvec-
tor describes the orientation of the system

Qαβν = λν. (19)

In this normalisation, the trace of the matrix satisfies TrQ =
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Figure 7. Long-term evolution of the root-mean-square inclination
angles and eccentricities for the 30X model. Top lines in each

panel show light particles.

1 meaning that equal eigenvalues λ1 = λ2 = λ3 = 1
3 represent

a sphere with zero angular momentum, and a razor-thin disc
has (λ1, λ2, λ3) = (1, 0, 0). Thus, the largest eigenvalue which
takes the values 1/3 ≤ λ ≤ 1 quantifies the thickness of the
stellar disc.

In this section, the inclination angles of the disc stars
refer to the mean inclinations with respect to the principal
eigenvector of the disc. This way, the orbital inclinations are
always computed relative to the instantaneous mid-plane of
the disc in angular momentum space even if the disc as a
whole is tilted with respect to its initial position.

5.1 Secular evolution of the embedded nuclear stellar discs

We follow the same steps as in Sec. 4 to study the dynamics
of discs embedded in a spherical cusp of stars on secular
time-scales. But in this subsection we use the stardisc models
with the power-law slope γ = 3.3 and compare the isolated
disc, the disc embedded in a sphere and the 30X model of
the same disc embedded in a sphere. The semi-major axes –
inclination dependence (left panel of Fig. 10) is qualitatively
similar for all 3 models, but the models with a spherical
component extend to higher inclinations in the innermost
part.

The right panel of Fig. 10 shows a striking difference
in the average inclinations as a function of mass for high-
mass stars: while the isolated disc model shows lower in-
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Figure 8. Normalised histograms of the cosines of orbital inclina-
tions and eccentricities for light and massive particles. For the

30X models at the moment of 28000 tsec.

clination angles with increasing mass, there is almost no
correlation between stellar mass and orbital inclinations for
models with an isotropic spherical component. Similar to
Fig. 4, the time instances shown in Fig. 10 have the same
average inclination angle for the low-mass stars (m ≤ 10 M�)
by construction. While the vertical mass segregation effect
vanishes, the dependence of the inclination on the semima-
jor axis is more prominent. The latter effect develops faster
and extends to higher inclinations, and some stars even flip
to counter-rotating orbits (i > 90◦).

The top panels of Fig. 11 show the normalised distri-
butions of light and massive particles respectively at the
time-snapshots of Fig. 10 demonstrating that the relative
difference in high mass stars at low orbital inclinations is
not more than 10% than that for the light stars for the
models with an isotropic spherical component. The bottom
panels of Fig. 11 provide a comparison for the distribution
of orbital eccentricities for massive and light stars between
the three reference models. As in the case of orbital inclina-
tions, mass segregation in eccentricities vanishes when the
same stellar disc interacts with a spherical nearly isotropic
distribution of stars. The time-evolution of the rms incli-
nations and eccentricities (Fig. 12) shows that massive and
light stars relax at the same rate.

To understand which relaxation process dominates in
these systems we examine the correlation curves for the rel-
ative changes in energies and angular momenta as for the
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Figure 9. The RMS change in the Keplerian energy (blue) and angular momentum (green, red, black) as a function of time for the thermal
isolated disc models. The angular momentum vector magnitude (green), angular momentum vector direction (red) and Z-component of
the angular momentum vector (black) are shown as defined in Eqs. (A1). Solid, dashed, and dotted lines show all stars, massive stars

(m ≥ 10 M�), and light stars (m ≤ 10 M�), respectively. The Y-axis shows the quantities in the legend, the X-axis shows the dimensionless

time normalised to the orbital period (Eq. A2). The top panels show the average change in the argument of periapsis (∆ω) and the
longitude of the ascending node (∆Ω); the coherence time of SRR and VRR are related to the apsidal and nodal precession periods.
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Figure 10. Similar to Fig. 4 but also showing models with and without a spherical component. Left panel: moving average of inclination

angles in semi-major axes. Colours show models with different mass factors (see legend). Faded lines (points) of the same colour show
90 and 10% quantiles. The time snapshots shown are chosen such that the average orbital inclination are identical for the low mass stars
(this corresponds to 40, 2.6 and 0.033 Myr for 1X only disc model, the 1X disc+sphere and 30X disc+sphere models respectively; see

dotted lines in Fig. 12). Blue lines in both panels indicate the isolated disc with the stardisc initial conditions and the power-law density
slope γ = 3.3. Red and green lines show the same disc embedded in the spherical stellar cusp with the power-law slope of γ = 1.75 for 1X

and 30X models, respectively (see Sec. 3 for detailed description of the models).
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Figure 12. Time-evolution of RMS eccentricities and inclination angles for 1X isolated disc, 1X disc + sphere, and 30X disc + sphere

models as a function of secular time for massive (solid lines) and light (dashed lines) particles for the same models as in Fig. 10 and 11.

case of an isolated disc discussed above (see Appendix A for
details). Fig. 13 shows that the isolated disc case (the left
panel) is initially dominated by two-body relaxation. This is
unsurprising as the initial condition for stardisc models fea-
ture low eccentricities and low inclinations implying faster
two-body relaxation initially (see Eq. 7 and Šubr & Haas

2014). As the isolated disc system is highly anisotropic, we
see that the internal dynamics leads to anisotropic mass seg-
regation which in this case is driven by two-body relaxation
(cf. Fig. 9 for the thermal model showing less prominent en-
ergy diffusion). The middle panel of Fig. 13 shows the energy
and angular momentum correlation curves for the disc em-
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Figure 13. Similar to Fig. 9 but also showing models with and without a spherical component. Left panel shows the stardisc isolated disc

model with γ = 3.3, the middle and right panels show 1X and 30X models of the same disc embedded in an isotropic stellar component.
The values are measured only for the stars that initially belong to the disc.

bedded in a dominant isotropic spherical component. Here
we do not observe any differences between the curves of the
massive and light stars. Contrary to the case of the isolated
disc, the 1X model with a spherical component shows that
two-body relaxation dominates only in the initial phase of
evolution (first 103 periods) after which VRR takes over. Af-
ter 104 periods VRR fully dominates the evolution. We note
that only the innermost particles contribute to the curves
after τ = 104 showing that the inclination – semi-major axis
anticorrelation presented in the left panel of Fig. 10 is mostly
driven by VRR.

Applying this to the Milky Way galactic centre, 104 or-
bital periods corresponds to less than 5 Myr for the stars
with semi-major axes a < 0.05 pc meaning that the S -stars
are subject to an efficient VRR. The upper panels of the
Fig. 13 show the average change in the argument of peri-
apsis (ω) and longitude of the ascending node (Ω). As also
expected from theory (Rauch & Tremaine 1996), the figure
shows that the coherent phase of SRR occurs on the apsi-
dal precession time-scale. Further, as we suggested in Sec. 2,
for stellar discs embedded in a spherical component, the co-
herent phase of VRR takes place on the nodal precession
time-scales. We refer to Appendix A for a detailed analy-
sis of the VRR efficiency. Contrary to the 1X model, the
30X models are dominated by two-body relaxation which
takes place in 103 orbital periods. Since the 30X models in
our simulations are equivalent to dwarf galaxies with central
black holes with masses of order Mbh ' 105 M�, we conclude
that these systems are dominated by two-body dynamics.
We explore such systems further in Sec. 5.3.

5.2 Comparison to previous models

To understand why stellar discs with an isotropic spherical
component do not show a vertical mass segregation, while
previous studies with nearly spherical initial conditions did
show this effect (Szölgyén & Kocsis 2018; Magnan et al.
2022; Máthé et al. 2022), we examine the dimensionless VRR

energy and angular momentum in our models which deter-
mine the VRR equilibria as shown in Máthé et al. (2022):

Etot = −

∑
i j
∑`max
`=2 Ji j`P`

(
L̂i · L̂ j

)
∑

i j
∑`max
`=2 Ji j`

, Ltot =

∣∣∣∑N
i=1Li

∣∣∣∑N
i=1 |Li|

. (20)

Here L̂i, L̂ j are units vectors in angular momentum direction
for the ith and jth particles, ` is the multipole index, Ji j` are
pairwise coupling coefficients that depend on eccentricities
and semimajor axes and P`(x) are Legendre polynomials.
Here, (Etot, Ltot) = (0, 0) represents an isotropic distribution,
while (−1, (1+κ)−1) corresponds to a razor thin disc where a κ
fraction of stars orbit in one sense and 1− κ in the other. We
refer to Máthé et al. (2022) and Kocsis & Tremaine (2015)
for details.

In our simulations, (Etot, Ltot) are of order (−10−4, 10−4)
for the models with a spherical component which are clearly
very nearly isotropic. In comparison, the most isotropic case
presented in Máthé et al. (2022) had (Etot, Ltot) = (−0.03, 0.16)
which is relatively more anisotropic. Moreover, the models
with dominating disc (presented in Sec. 5.4) which are highly
anisotropic do show vertical mass segregation. Thus, we con-
clude that the absence of anisotropic mass segregation in our
models with an isotropic spherical component does not con-
tradict previous studies of VRR, but it indicates that the
final state of vertical mass segregation depends strongly on
the deviation from isotropy. Note that two-body relaxation
may also drive anisotropic mass segregation on the longer
two-body relaxation timescale, but similarly to VRR, only
in cases with an initial anisotropy in angular momentum
vector space (see Tiongco et al. 2021; Livernois et al. 2022,
for related studies in globular clusters). Thus, we conclude
that vertical mass segregation is absent in our models with
a disc+spherical component due to a very low net initial
anisotropy; and our models of isolated discs (Sec. 4) exhibit
anisotropic mass segregation as found in Máthé et al. (2022).
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5.3 Long-term evolution of embedded nuclear stellar discs

The long-term evolution is shaped by two-body interactions
which may lead to the exchange of energy and angular mo-
mentum between the particles in the disc and sphere. In this
subsection we focus on the 30X models which are dominated
by two-body interactions and are numerically relatively in-
expensive to study the long-term evolution on the two-body
relaxation timescale. As we have shown in previous sections,
two-body relaxation is relatively subdominant in the Galac-
tic centre and the 30X models are not appropriate in that
case. The 30X models represent one-to-one simulations of
nuclear star clusters in dwarf galaxies with SMBHs of mass
Mbh = 4 × 106 M�/30 = 1.3 × 105 M� (see Nguyen et al. 2019
for examples of galaxies hosting nuclear star clusters with
massive black holes below 106 M�). In the analysis below, we
simulate the system with this SMBH mass and nuclear star
clusters extending up to 1 pc. We estimate the two-body
relaxation time using the half-mass relaxation time of the
spherical component (Eq. 2) using data from our simula-
tions.

Fig. 14 illustrates the exchange of the z-component of
the angular momentum between the disc (Lz,disc, blue curves)
and the sphere (Lz,sphere, red curves) showing their time-
evolution normalised to the total angular momentum of the
entire system (Ltot) for the 30X models (see Table 1) nor-
malised to the total angular momentum of the entire system.
The sphere has a nonzero initial Lz,sphere due to shot-noise-
type stochastic deviation from isotropy, i.e. the initial value
of Lz,sphere/Lz,disc is drawn from a uniform distribution between
±〈Nm2〉

1/2
sphere/〈Nm〉disc = (N1/2

sphere/Ndisc)(〈m2〉
1/2
sphere/〈m〉disc) where m

is the stellar mass. The disc tends to give away its angular
momentum until it is completely mixed with the spherical
component, i.e. when the net Lz per particle is equal for the
two components, i.e.

Lz,disc

Ltot
→

〈
Lz,tot

〉
Ndisc

Ltot
,

Lz,sphere

Ltot
→

〈
Lz,tot

〉
Nsphere

Ltot
. (21)

Although, none of the simulations reached complete mixing,
Fig. 14 demonstrates that Lz,disc approaches the equilibrium
value of Eq. (21) for all models.

Fig. 15 illustrates the alignment of the respective total
angular momentum vectors of the disc and spherical com-
ponents in our simulations. Alignment occurs if the stellar
disc is massive enough, Ndisc〈m〉disc � N1/2

sphere〈m
2〉

1/2
sphere, and if

so, alignment takes place within the vector resonant relax-
ation time-scale shown by a vertical dotted line. For lower
disc masses, Ldisc and Lsphere end up in the same hemisphere
(cosine of the mutual inclination angle is positive) even if
they were counter-rotating initially as seen in Fig. 14 where
both the disc and the sphere attain a net positive angular
momentum.

Fig. 16 shows the evolution of the shape of the stellar
disc quantified by the largest eigenvalue of the quadrupole
moment matrix (defined in Eq. 18) as a function of time.
Generally, the angular momentum transfer from the stellar
disc to a spherical component results in the thickening of
the disc. Eventually, the disc appears to evolve towards a
spherical shape.
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Figure 14. Z-components of the angular momentum vectors of the

disc (blue lines) and the sphere (red lines) normalised to the to-

tal angular momentum of the whole system. Bottom X-axis shows
time in units of half-mass two-body relaxation time of a spherical

component. Line styles correspond to different models of the stel-

lar disc according to the legend. Shows only 30X models which
are equivalent to a dwarf galaxy hosting a 1.3×105 black hole and

a nuclear star cluster extended to 1 pc.
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Figure 15. Orientation of the total angular momentum vectors of
the stellar disc and sphere, respectively, for the 30X models as in
Fig. 16, i.e. the cosine of the angle between the respective total
angular momentum vectors as a function of time in units of half-

mass two-body relaxation time of the spherical component. Line
colours correspond to different disc models as indicated in the

legend. The dotted vertical line represents the vector resonant
relaxation time due to the spherical stellar cusp (Eq. 6).

5.4 Effect on the sphere

As we have seen in the previous subsection, the stellar disc
tends to evolve towards an isotropic distribution while in-
teracting with the isotropic spherical star cluster. At the
same time, as the spherical component absorbs the angu-
lar momentum of the disc, it preserves its original shape as
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Figure 16. Time-evolution of the thickness of the stellar disc (top

solid lines) in units of half-mass two-body relaxation time of a

spherical component quantified by the largest eigenvalue of the
quadrupole moment matrix (see Eq.18). ν = 1 describes the razor-

thin disc while ν = 1/3 indicates the spherically symmetric distri-

bution. The bottom dashed lines show the corresponding eigen-
value of the sphere. Line colours are the same as in Fig. 15

with additional blue and red lines corresponding to the disc-

dominated models with number of stars in the disc Nd = 5 × 104

and Nd = 9 × 104.

long as it is much more massive than the disc (dashed lines
in Fig. 16). This is the case for relatively low-mass stellar
discs (at most 15% of the total stellar mass in our models),
but in the case of the disc dominated models (Nd = 0.5Ntot

and Nd = 0.9Ntot) the angular momentum vector distribution
flattens significantly for the initially isotropic sphere on the
two-body relaxation time-scales. The upper limit for the de-
gree of flattening attained by a spherical component may be
determined from the total angular momentum budget of the
whole system (see Eq. 21). A similar conclusion was reached
in Mastrobuono-Battisti & Perets (2013, 2016) for simula-
tions of globular clusters which also flatten due to angular
momentum transfer from a stellar disc, especially in case the
disc mass exceeds ∼25% of the total mass of the cluster.

Finally, Fig. 17 demonstrates that when the disc is mas-
sive enough to cause flattening of a spherical component
both the disc and spherical components feature vertical mass
segregation. This is in line with expectations from VRR dy-
namics: the total energy – total angular momentum pairs
for the dominating disc models (evaluated using Eq. 20) are
(Etot, Ltot) = (−0.24, 0.46) and (Etot, Ltot) = (−0.65, 0.87) for the
models with Nd = 0.5 Ntot and Nd = 0.9 Ntot implying a large
amount of initial anisotropy. However, note that these 30X
models are predominantly driven by two-body relaxation.
Furthermore, these models also develop a mass segregation
in eccentricity space (top panel in Fig. 17). These models
show that two-body relaxation also plays an important role
in driving anisotropic mass segregation.

0.0 0.2 0.4 0.6 0.8 1.0
e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

N
/N

to
t

1.0 0.5 0.0 0.5 1.0
cosi

0.0

0.1

0.2

0.3

0.4

N
/N

to
t

light sphere
massive sphere
light disc
massive disc

Figure 17. Normalised histograms of eccentricities (top panel) and

cosines of orbital inclinations (bottom panel) for the dominating
disc model with Nd = 9 × 104. Solid lines show the distribution of

the massive stars, dashed lines correspond to the light stars. Blue

lines show the stars in the sphere and red lines show the stars
that were originally in the disc. Shown at t/trelax ' 0.3.

6 APPLICATION TO THE GALACTIC CENTRE
S -STARS

Recent observations of the S -stars5 in the Galactic centre re-
vealed that the kinematic structure of the stars with known
orbital parameters appears to resemble two orthogonal discs
(Ali et al. 2020; Peißker et al. 2020) labelled as “red” and
“black” discs. The discs can be identified from the distribu-
tion of the position angles of the semimajor axes projected
on the sky which in turn is reflected in the distribution of the
longitudes of ascending nodes (LaNs) of the orbits. Fig. 18
shows the distribution of LaNs of the black and red discs in
the form of two normalised histograms separately for each of
the discs as classified by Ali et al. (2020). The peaks around
0, 180 and 360◦ correspond to one plane of the black disc
while two peaks around 100 and 270◦ show that the red disc
is almost orthogonal to the black one.

We compare the observed properties of the S -stars
with the orbital parameters in three of our 1X simulations:
stardisc γ = 3.3, stardisc γ = 2.4 and the thermal model
(see Table 1). We examine the simulation snapshots at 5
Myr. The stardisc initial conditions represent the case when

5 Here we define S -stars as all the stars in the Galactic Centre

with known full orbital solutions around the SMBH as reported

by Ali et al. (2020) and Peißker et al. (2020).
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Figure 18. Longitudes of the ascending nodes of the observed S -

stars with known orbital elements. The black and red histograms

represent the black and red discs according to Ali et al. (2020).
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Figure 19. Longitudes of the ascending nodes for the inner stars

(a < 0.05 pc) in simulations at 5 Myr (blue, red and green lines)
compared to the S -stars (shaded). The histogram for the S -stars
shows both red and black discs. The reference direction for the

longitudes of the ascending nodes in the simulations is chosen to
match the peak in S -stars.

the stars formed from the fragmenting gaseous accretion
disc and the stars residing inside 0.05 pc migrated from
the outer regions due to gas-driven planetary-type migration
(Levin 2007). This leads to nearly circular orbits matching
the stardisc initial conditions. Alternatively, massive stars
could form by accreting matter from AGN discs (Levin
2007; Davies & Lin 2020; Cantiello et al. 2021). Another
way to form the disc of stars is by disruption of a molecular
cloud resulting in high orbital eccentricities (see e.g. Genero-
zov 2021). This formation scenario is closer to our thermal
model.

To compare the observed distribution of inclination an-
gles of the S -stars we convert the data provided by Ali et al.
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Figure 20. Correlation of the longitudes of the ascending nodes for

the inner stars (a < 0.05 pc) with semi-major axes for the model

stardisc γ = 2.4 at 1.1 Myr. Right panel shows the correspond-
ing normalised histogram where the dashed line represents the

distribution of stars from the ”black” disc from Ali et al. (2020).
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Figure 21. Distribution of cosines of inclination angles of stars

with respect to the principal eigenvectors. Shaded histogram cor-
responds to the S -stars and the coloured histograms show stars in

the inner region of the stellar disc (a < 0.05 pc) from the simula-
tions at 5 Myr (except for the green dotted line which corresponds
to 10 Myr).

(2020) and Peißker et al. (2020) to the coordinates with re-
spect to the principal eigenvector of the system (Eq. 19).
This way the inclination angles are independent of the choice
of the reference plane of the coordinate system. To define the
longitude of ascending nodes in our simulations, we orient
the x−y axes such that the peak of the distribution matches
that of the S-stars. We select stars from the inner region of
the stellar disc (a < 0.05 pc) and compare their properties
to the observational data of the S -stars. Due to the obser-
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Figure 22. Eccentricity distributions for the inner stars (a < 0.05

pc) in simulations at 5 Myr (blue, red and green lines) compared

to the S -stars (shaded).

vational limits, only the stars with masses m ≥ 3M� can be
detected, however we did not use the mass criterion to select
the S -stars from our simulations. This is because we previ-
ously showed that stellar discs embedded in a spherically
symmetric and isotropic stellar component have no vertical
or eccentric mass segregation. If in reality the distribution of
low mass S -stars will be different (when they are detected)
from high mass S -stars, this would point to a larger amount
of initial anisotropy of the background (old) stellar popula-
tion surrounding the S -stars than assumed in our models.

We start by comparing LaNs (Fig. 19). The shaded his-
togram in Fig. 19 shows the observed S -stars without di-
viding them into two discs. As we can see, all three of our
models feature a peak around 100◦ matching with the S -
stars by construction. This anisotropy is caused by the fluc-
tuating torques from the spherical component. However, we
cannot clearly detect the second peak corresponding to an-
other disc (black disc) nor the opposite peak corresponding
to a counter-rotating component of the disc (red disc) in the
same plane (Ω ∼ 250◦).

We note that two distinct peaks in LaNs form in the
stardisc γ = 2.4 model at 1.1 Myr, but this feature is tran-
sient and dissolves in less than 0.5 Myr. Fig. 20 shows a
scatter plot of LaNs versus semi-major axes for this model
indicating that each peak in the distribution correspond to
different semi-major axes. Comparison with the data from
Ali et al. (2020) yields similar properties with the “black”
disc (shown as a dashed line in the histogram in Fig. 20).

Fig. 21 shows the distribution of the cosines of the or-
bital inclinations with respect to the principal eigenvector in
the observations and in our simulations. The observed red
disc and black discs correspond to the peaks at cos i = ±1
and at 0, respectively. In contrast, the simulations have a
more prominent peak at cos i = 1 and do not show a peak at
cos i ' −1 indicating a lack of retrograde stars in the same
plane. Furthermore, the simulations do not display a peak
at cos i = 0. Our models also show significantly higher rela-
tive number of stars in the mid-plane of the disc (cos i = 1),
indicating less diffusion took place from the initial condition

in the simulations than observed. This suggests that the or-
bits of the observed S -stars are at a later stage of angular
momentum relaxation. The dotted line in Fig. 21 shows the
distribution of cosines of orbital inclinations for the thermal
model at 10 Myr. Because the thermal model is the most
efficient in terms of VRR (see also Appendix A), this im-
plies that even 10 Myr is not enough to fully randomise the
orbital inclinations.

Massive perturbers such as a cusp of stellar black holes
or an intermediate-mass black hole (IMBH) may boost both
two-body and resonant relaxation (Perets et al. 2007; Koc-
sis & Tremaine 2011, 2015). Let us estimate the mass of an
IMBH required to speed up VRR by a certain factor κ. Fol-
lowing Eq. (6) and applying the definition of the effective
mass, gives

mIMBH =

√√(
κ2 − 1

) N∑
i=1

m2
i =

(
κ2 − 1

)1/2
N1/2〈m2〉1/2, (22)

where mi is the mass of ith star and N is the total number
of stars (in our case within 0.05 pc), and N ' 4500 and
〈m2〉1/2 = 5.33 M� in our models in this region. For example,
to speed up VRR by a factor of κ = 2 one needs an IMBH
of mIMBH ' 620 M�. In Appendix A we show that VRR for a
stellar disc embedded in a spherical component is quenched
by a factor βT,s/βT,d. For the stardisc γ = 2.4 model, to speed
up VRR so that an IMBH balances the quenching from the
disc one needs κ = β2

T,s/β
2
T,d ' 2.23 , i.e. an IMBH of mIMBH '

710 M�. Under certain conditions an IMBH may also produce
counter-rotating stars in the same plane and give rise to a
second stellar disc (Panamarev, Zou, Kocsis, in preparation).

Finally, Fig. 22 shows the distribution of eccentricities,
indicating that the observed sample of S-stars exhibits two
distinct peaks near 0.4 and 0.8 (Ali et al. 2020). In contrast,
neither of our simulations show two peaks, but interestingly
the stardisc models match the peak at e = 0.4 while the
thermal model matches the peak at e = 0.8. However, note
that the observed sample of S -stars from Ali et al. (2020)
contains only a small sample of ∼ 40 stars where the sig-
nificance of the two peaks are greatly decreased by Poisson
fluctuations.

Thus, if the S -stars formed in a disc, the simulations
suggest that the distribution of their orbital angular mo-
mentum vectors should have retained a stronger peak up to
at least 10 Myr since their formation, and to match the ob-
served distribution the root-sum-squared mass in the same
region should be (

∑
i m2)1/2 = 820 M� which is possible with

an initial stellar disc of Nd = 103 stellar objects and remnants
and an IMBH of mass 500−1000 M�, or with a massive cusp
of stellar black holes.

7 SUMMARY AND DISCUSSION

We performed a set of direct N-body simulations of nuclear
stellar discs with a massive black hole at the centre. We
examined cases with and without a spherical star cluster
in the same region. We presented the first one-to-one direct
N-body simulations of the inner 0.5 pc of the Milky Way nu-
clear star cluster featuring a realistic total stellar mass and
a top-heavy mass function. Furthermore, we ran simulations
which represent the conditions at the centres of ultracom-
pact dwarf galaxies. Our main findings are as follows.
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• The relaxation processes in isolated stellar discs lead to
vertical and eccentric mass segregation meaning that mas-
sive stars settle to lower orbital inclinations and more cir-
cular orbits than the light stars. This is caused by both
resonant and two-body relaxation. On the other hand, the
interaction with an isotropic spherical distribution of stars
quenches mass segregation in inclinations and eccentricities.

• The interaction of a stellar disc with a spherical com-
ponent leads to the thickening of the stellar disc. The rate
of this process depends strongly on the semimajor axis. The
stars in the inner region relax faster in terms of inclination
angles leading to a anticorrelation between orbital inclina-
tions and the distance from the SMBH. Our simulations
showed that for conditions in the Milky Way, the orbital
inclinations change predominantly due to VRR, despite the
fact that VRR is quenched by nodal precession due to the
torques from within the stellar disc.

• The nuclei of dwarf galaxies hosting stellar discs and
massive black holes of order 105 M� are dominated by two-
body relaxation. These systems approach full mixing on
the two-body relaxation timescale, where an initially thin
disc becomes spherical if embedded in a much more massive
spherical cusp. The spherical component does not develop a
significant flattening if the disc mass is less than 15% of the
spherical cluster, but very massive discs (comparable with
the mass of the sphere and more massive) cause flattening
of the initially spherical distribution and drive anisotropic
mass segregation.

• The dynamics of the S -stars at the Galactic centre from
their formation up to 5 Myrs is dominated by VRR. This
results in an anticorrelation of orbital inclinations with dis-
tance from the SMBH meaning that the thickness of the disc
increases with decreasing radius which is confirmed in re-
cent observations (von Fellenberg et al. 2022). The stochas-
tic deviations from an isotropic distribution in the spherical
component of old stars gives rise to a non-zero net torque
which leads to an overdensity of angular momentum vec-
tors in a given direction, hence a peak in distribution at a
particular value. However, this does not explain the distri-
bution of longitudes of the ascending nodes presented by Ali
et al. (2020) which they interpret as two orthogonal counter-
rotating discs.

• Our simulations led to less diffusion of angular momen-
tum vector directions from a thin stellar disc in 10 Myr
than currently observed for the S -stars. This suggests that
if the S -stars initially formed in a stellar disc, the root-
sum-squared mass of stellar objects and remnants in this
region should be of order 820 M� within 0.05pc to repro-
duce the observed scatter at present in angular momen-
tum vector directions, suggesting that the S -stars co-exist
with a cusp of stellar black holes or with an IMBH of mass
mIMBH = 500−1000 M� (see Gravity Collaboration et al. 2020
and references therein for limits on an IMBH in the Galactic
centre).

Our simulations of the inner part of the Milky Way nu-
clear star cluster featured a realistic number of stars within
0.5 pc, but one of the assumptions for the spherical stel-
lar component was a nearly exactly isotropic distribution of
angular momentum vectors (deviations at the level of 10−4)
which is expected to be responsible for the absence of vertical
mass segregation in our models. Thus, one of the next steps

to explore the evolution of stellar nuclear discs is to study
the interaction with stellar systems with anisotropy and/or
rotation. This is reasonable as observations show that the
Milky Way nuclear star cluster has net rotation and flatten-
ing (Feldmeier et al. 2014). Moreover, recent observations
suggest that 7% of the stars in the inner parsec exhibit faster
rotation (Do et al. 2020; Arca Sedda et al. 2020). Theoreti-
cal studies of the VRR indicate that initial anisotropy in the
distribution of stellar angular momenta strongly affect the
final equilibrium distribution of multi-mass stellar systems
(Szölgyén & Kocsis 2018; Máthé et al. 2022; Magnan et al.
2022). Furthermore, N-body simulations of rotating globular
clusters show that vertical mass segregation may also occur
in globular clusters (Szölgyén et al. 2019; Tiongco et al. 2021,
2022).

The explored initial conditions included the results of
previous stardisc simulations of active galactic nuclei (Pana-
marev et al. 2018) leading to relatively old stellar population
within the disc, but this is not the case in the Galactic cen-
tre (Levin & Beloborodov 2003). One way to form young
stars matching the initial conditions explored in this paper
is to form the stars from the gaseous accretion disc. This
type of formation scenario was studied by Levin (2007) pre-
dicting innermost stars on circular orbits. One way to im-
prove our models and to account for young stars would be
to perform simulations with stellar evolution assigning two
different populations for the disc and the sphere. As the stel-
lar evolutionary mass loss is high for the most massive stars,
this may affect the resulting kinematic signatures of massive
stars.

We did not take into account the effect of the outer
galaxy in the simulations. This is justified because we mod-
elled the innermost part of the galactic nucleus where the
potential is highly dominated by the SMBH, while the con-
tribution from the galactic components like bulge, disc or
halo becomes important at larger scales, outside the influ-
ence radius of the SMBH.

The configuration of the ϕ-grape code used in this
study was designed to avoid formation of binary stars in the
explored stellar systems. But it was shown that binary stars
may significantly alter the observed orbital elements of the
stars in the young stellar disc at the Galactic centre (Naoz
et al. 2018). Moreover, one of the formation scenarios of the
S -stars is the Hills mechanism which involves tidal disrup-
tions of binaries by the SMBH (Hills 1975; Perets et al. 2007;
Fragione & Sari 2018; Generozov 2021). S -stars formed as a
result of the Hills mechanism are expected to feature initially
high eccentricities contrary to the in-situ formation studied
in this paper. Therefore, a next step to improve our models
is to incorporate formation and evolution of binaries start-
ing with the stellar disc with a fraction of stars in binary
systems. Moreover, this will allow us to study the effect of
binaries on the efficiency of resonant relaxation processes in
galactic nuclei hosting stellar discs. Simulations including bi-
naries with and without stellar evolution may be done using
nbody6++gpu code (Wang et al. 2015) with the most re-
cent updates of the stellar evolution (Kamlah et al. 2022a,b).

Another way to improve our models is to combine direct
N-body modelling with self-consistent field models (Meiron
et al. 2014) to account for the dynamical effects of the em-
bedding galaxy on the nuclear stellar disc. An example of
this approach is the direct integration of all the disc parti-
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cles and the innermost particles in the sphere (e.g. within
0.1 pc) and hybrid integration of the outer stars (r > 0.5
pc). This would speed up the simulations and allow to reach
larger masses and number of particles (up to 106) within the
inner 0.5 pc in the Milky Way and potentially to model nu-
clei of more massive galaxies hosting SMBHs, nuclear star
clusters and stellar discs.
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Šubr L., Haas J., 2014, ApJ, 786, 121

APPENDIX A: MEASURING THE EFFICIENCY OF
RELAXATION PROCESSES

To measure the efficiency of relaxation processes we fol-
low the steps described in Rauch & Tremaine (1996); Eilon
et al. (2009); Meiron & Kocsis (2019). We compute the rel-
ative change in Keplerian energy, angular momentum vec-
tor magnitude, angular momentum vector direction and z-
component of the angular momentum vector defined as:

δE =
E − E0

E0
, δLs =

|L| − |L0|

Lc
, δLv =

|L −L0|

Lc
, δLz =

|Lz −Lz,0|

|Lz,0|

(A1)

with respect to the normalised time defined as:

τ =
t − t0

torb
. (A2)

Where t0 is the initial moment in time which was chosen to
correspond to t = 0, E0, L0 and Lz,0 correspond to the time
t = t0. The defined above quantities are computed for each
particle corresponding to a relevant bin in the normalised
time τ. After that, we compute rms for all particles in each
bin. The rms of energies and angular momenta are plotted
in Fig. 9 and Fig. 13.

Together with changes in energies and angular mo-
menta, we track changes in the arguments of periapsides
and the longitudes of the ascending nodes.

δω = arccos (ω − ω0) , δΩ = arccos (Ω −Ω0) . (A3)

Table A1. Measured values of βT and βEKA for simulations with a
disk and spherical component

sphere disc disc disc
stardisc stardisc thermal

γ 1.75 3.3 2.4 2.4

βT 1.44 0.44 0.96 1.33

βEKA 0.99 0.30 0.66 0.92

Notes. List of the values for βT for the spherical and disc compo-

nents in different models for the discs according to the definition
from Kocsis & Tremaine (2015) in comparison with the definition

used in Eilon et al. (2009). First column shows the value obtained

for the stars in a spherical component, the remaining columns in-
dicate the values for the disc stars corresponding to different disc

models with different γ radial density profile exponents.

The top panes in Fig. 9 and Fig. 13 show the mean change
in these quantities with respect to τ.

To measure the rate of relaxation, we assume the fol-
lowing relations (Rauch & Tremaine 1996; Meiron & Kocsis
2019):

rms(δE) = α
m2

Mbh

√
N
√
τ , (A4)

rms(δLs) = ηs
m2

Mbh

√
N
√
τ , (A5)

rms(δLv) =
m2

Mbh

√
N(ην

√
τ + βντ) . (A6)

We focus on the coherent part of VRR, where the effi-
ciency is linear with τ and is given by (following Eq. A6):

βν =
d rms(δLv)

dτ
Mbh

m2
√

N
(A7)

The definition of βν is somewhat different in different studies
(Rauch & Tremaine 1996; Gürkan & Hopman 2007; Eilon
et al. 2009; Kocsis & Tremaine 2015), we use the definition
of Kocsis & Tremaine (2015) where βν is replaced by:

βT =
βνm2

rms(m)
√

3 − γ
, (A8)

where γ is the power-law density slope of the system,
rms(m) = 4.95 M� is the root-mean-square of stellar masses
and m2 = 12.17 M� is the effective mass.

In Fig. A1, the coherent phase of VRR is clearly seen
in the range of 100 < τ < 500. We perform a linear fit in this
range.

To measure the effect of the stellar disc on the efficiency
of VRR, we measure βT (Eq. A8) separately for the stars that
are initially arranged in the disc (βT,d) and for the stars that
belong initially to the spherical component (βT,s). However
for a crude estimate, in both cases we use the rms mass and
m2 and γ factor of the spherical component in Eq. (A8) even
when calculating βT,d since the spherical component is ex-
pected to dominate the evolution of disc stars. We perform
the measurement of βT,d and βT,s for three 1X models that we
used to compare with the S -stars in Sec. 6: thermal, stardisc
γ = 2.4 and stardisc γ = 3.3. As a result, we find that for the
stardisc models VRR is more efficient for stars in the spheri-
cal component, while for the stars that initially reside in the

MNRAS 000, 000–000 (0000)

http://dx.doi.org/10.3847/1538-4357/ab9c1c
https://ui.adsabs.harvard.edu/abs/2020ApJ...899...50P
http://dx.doi.org/10.1086/510377
http://adsabs.harvard.edu/abs/2007ApJ...656..709P
http://dx.doi.org/10.1088/0004-637X/697/2/2096
http://adsabs.harvard.edu/abs/2009ApJ...697.2096P
https://ui.adsabs.harvard.edu/abs/2018arXiv180200012P
http://dx.doi.org/10.1088/2041-8205/708/1/L42
http://adsabs.harvard.edu/abs/2010ApJ...708L..42P
http://dx.doi.org/10.1016/S1384-1076(96)00012-7
https://ui.adsabs.harvard.edu/abs/1996NewA....1..149R
http://dx.doi.org/10.3847/1538-4357/aa7141
https://ui.adsabs.harvard.edu/abs/2017ApJ...842...90R
http://dx.doi.org/10.1051/0004-6361/201730452
https://ui.adsabs.harvard.edu/abs/2018A&A...609A..27S
http://dx.doi.org/10.1086/508994
https://ui.adsabs.harvard.edu/abs/2006AJ....132.2539S
http://dx.doi.org/10.1086/591935
https://ui.adsabs.harvard.edu/abs/2008ApJ...687..997S
http://dx.doi.org/10.1006/icar.1999.6242
https://ui.adsabs.harvard.edu/abs/2000Icar..143...28S
http://dx.doi.org/10.1103/PhysRevLett.121.101101
https://ui.adsabs.harvard.edu/abs/2018PhRvL.121j1101S
http://dx.doi.org/10.3847/1538-4357/ab50bb
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..123S
http://dx.doi.org/10.3847/1538-4357/ac13ab
https://ui.adsabs.harvard.edu/abs/2021ApJ...919..140S
http://dx.doi.org/10.3847/1538-4357/aab268
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..113T
http://dx.doi.org/10.1093/mnras/stab1968
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.4488T
http://dx.doi.org/10.1093/mnras/stac643
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.1584T
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.1584T
http://dx.doi.org/10.1086/117548
https://ui.adsabs.harvard.edu/abs/1995AJ....110..628T
http://dx.doi.org/10.1086/300567
https://ui.adsabs.harvard.edu/abs/1998AJ....116.2015T
http://dx.doi.org/10.3847/2041-8213/ac68ef
https://ui.adsabs.harvard.edu/abs/2022ApJ...932L...6V
http://dx.doi.org/10.1093/mnras/stv817
http://adsabs.harvard.edu/abs/2015MNRAS.450.4070W
http://dx.doi.org/10.1088/0004-637X/783/2/131
http://adsabs.harvard.edu/abs/2014ApJ...783..131Y
http://dx.doi.org/10.1088/0004-637X/792/2/137
https://ui.adsabs.harvard.edu/abs/2014ApJ...792..137Z
http://dx.doi.org/10.1088/0004-637X/786/2/121
https://ui.adsabs.harvard.edu/abs/2014ApJ...786..121S


22 Panamarev & Kocsis

101 103 105
10 3

10 2

10 1

100

rms( Ls)
rms( Lv)

101 103 105 101 103 105

0

100

 [
]
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Figure A1. Similar to Fig. 9 and Fig. 13 but only for 1X models with a spherical component. Left panel shows the model with thermal

disc with γ = 2.4, mid and right panels show the stardisc models with γ = 2.4 and γ = 3.3 respectively. The dash-dotted lines on all
panels show the curves corresponding only to the stars that initially belong to the disc; solid lines show values for the stars that initially

belong to a spherical component. Upper panels show change in argument of periapsis (which demonstrates the apsidal precession rate)

and longitude of the ascending node (demonstrates the nodal precession rate).

disc, VRR is less efficient. As we see from Fig.A1, the coher-
ent accumulation of torques of VRR is limited by the nodal
precession time (orange lines in top panels) after which we
see a random walk growth. This is clearly seen for the disc
stars (dashed-dotted lines in Fig. A1). Note that the least
efficient VRR regime is in the stardisc γ = 3.3 model, where
VRR is quenched by a factor of βT,s/βT,d ' 3.27. This is ex-
plained by the fact that due to the steep density profile, the
inner part of the whole system is largely dominated by the
stellar disc leading to fast nodal precession rate. The model
stardisc γ = 2.4 slows down the vector angular momentum
relaxation rate by a factor of 1.5, but VRR in the thermal
model is quenched only by '10%. We summarise the mea-
sured values for βT,d and βT,s in Table A1 and compare them
with βEKA – the definition of βν used in Eilon et al. (2009)
which is related to βT as βT = 0.69βEKA (Kocsis & Tremaine
2015).
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