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Abstract

The quark-gluon plasma is written by the non-Abelian gauge theory.
The dynamics of the gauge SU(2) are given by the Hamiltonian function,
which contains the quadratic part of the field strength tensor Faµν expressed
in Minkowski space. The homogeneous Yang-Mills equations are solved on
lattice Nd considering classical approximation, which exhibits chaotic dynam-
ics. We research the time-dependent entropy-energy relation, which can be
shown by the energy spectrum of Kolmogorov-Sinai entropy and the spectra
of the statistical complexity.

1 Introduction

In order to know the microscopic mechanisms of high-energy physics, non-
Abelian gauge theory provides an appropriate theoretical model. It plays an
important role in understanding non-equilibrium processes where energy and
momentum are in local equilibrium. Within the framework of perturbative
quantum field theory the equilibrium and transport processes are studied.

The quantum field theory introduction of quark-gluon plasma was de-
scribed by the Feynman path integral, which was derived using gauge trans-
formations for non-Abelian gauge fields in a continuous case. The solution of
the Yang-Mills equation was determined on a lattice by classical approaching,
the equations of motion contain a field strength tensor square.

The time evolution of this system showed to be chaotic[35, 3, 27]. This
dynamical quantity is well characterized by the Kolmogorov-Sinai entropy
depending on energy and time resp. the statistical complexity as a function
of energy and entropy.

The relation between average energy and Kolmogorov entropy was first
introduced in [21] for pure SU(2) Yang-Mills systems. The finite size extrap-
olated initial evolution and as a function of the scaled energy was researched
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in [19]. The Lyapunov exponent was determined by monodromy matrix
and extrapolated (N → ∞), the scaling properties were studied at a given
time range. The spectra of the maximal Lyapunov exponent were calculated
depending on the time and energy. The Kolmogorov-Sinai entropy was in-
vestigated by Pesin form. In this article, we derived the spectrum of this
quantity as a function of time and energy.

The idea of complexity has been presented several times recently as al-
gorithmic complexity (Kolmogorov) [25], the amount of information about
the optimal predicts the future according to the expected past (Crutchfield,
Young) [13, 8], finite series complexity (Lempel, Ziv) [29].

Effective entropy was published by P. Grassberger [20], taking into ac-
count the combination of order and disorder, regularity, and randomness,
since most systems do not have the highest Shannon information[40] (ran-
dom structure) or the lowest (ordered structures) alone.

The definition of statistical complexity is introduced by R. López-Ruiz,
L. Manchini, X. Calbet (LMC) [11, 32, 2] and J. Shiner, M. Davison, P.
Landsberg (SDL) [41].

The generalized statistical complexity measure (M. Martin, A. Palestino,
O. Rosso) [33] is based on the LMC concept, which describes the finite time
series of nonlinear systems together with the associated probability distri-
bution of the dynamic method. It was extended to Tsallis (Tq), Wootters,
Rényi (Rq) [38] entropy and Kulbach-Shannon, Kulbach-Tsallis, Kulbach-
Rényi, Jensen divergence. Tsallis suggested generalizing the degree of en-
tropy of the famous Shannon-Boltzmann-Gibbs (SBGS) entropy measure[43].
The new entropy function plays an important role together with its associ-
ated generalized thermostats (1998). The Euclidean distance was criticized
by Wootters [46], who studied this concept in a quantum mechanical con-
text. Since the related consideration is an internal statistical measure, this
concept can be applied to any probability space. Remark that SBGS, Tq,
Rq considered as special cases of the (h,ϕ) entropies [39] for the study of
asymptotic probability distributions. These quantities were generalized to
quantum information theory [39]. This includes the Neumann entropy [36]
and a quantum version of Tsallis’ and Renyi entropies, which have been ap-
plied for example to the detection of quantum entanglement [10].

In addition, we use information theory tools to analyze complex signals,
as entropies, distances, and statistical differences play a crucial role in fore-
casting, estimation, detection, and transmission processes. This concept has
been widely used in the chaotic field [15, 18], symbolic sequences [1], pseudo-
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random bit generator [22], number system [17].
We consider creating a quantitative statistical metric complexity. It is

based on a statistical description of the system imposing on the physical
model. Suppose the system has N available states {x1, . . . , xn} on a given
scale and determine the appropriate probabilities p1, . . . , pn of each state.

The LMC statistical measure of complexity[2] is described in two compo-
nents, i.e. entropy or information stored in the system and distance from the
equilibrium probability distribution, an imbalance giving its corresponding
asymptotic properties well-behaved measure of complexity.

This quantity is often characterized by a controversial situation an elab-
orate dynamics created from relatively simple systems. If the system itself
is already enough contained and it is consisted of many different parts, you
can support a complex dynamic without it appearance of typical character-
istic patterns[26]. Therefore a complex system does not necessarily produce
a complex output.

Statistical approaches are easier to implement than to solve equations of
motion, and in many cases offer a solution for treatment otherwise difficult
problems.

The structure of the article: In the second section we introduced the field
theory by Feynman path integral and considered the gluonic part of gauge
fields. These quantities play an important role in particle and statistical
physics. In the third section, we discretized these quantities on the lattice by
parallel transporter and Wilson action. In the fourth we study the maximal
Lyapunov spectrum and Kolmogorov-Sinai entropy energy relation. In the
fifth section, the statistical complexity is introduced on the probability space
and we consider the states sequence along the time-evolution of the gauge
field, where the state means all links of the lattice at a given time moment.

2 Path integral

Numerous representations of the field theory are known, Schrödinger wave
mechanics resp. Heisenberg operator algebra. One of the best-known meth-
ods of quantum production with the Feynman path integral. The advantage
of this method is that the analogy between statistical physics and particle
physics can be easily drawn. It is well applicable to the formulation of the
gauge theory and also accurately reproduces its symmetries. This method is
briefly described through quantum mechanics.
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2.1 Field theory

2.1.1 Feynman path integral

Using canonical transformations in classical and quantum mechanics, the ac-
tion is a general function of the canonical transformation. Dirac [14] applied
this procedure in the quantum mechanics to the Hamiltonian function H at
time t in the q ′ state, respectively. At the moment T for a system where the
transient amplitude is:

〈q ′
t|qT〉 ∼ exp

(

i

~

∫ t

T

Ldt

)

. (1)

On a finite time interval T − t, the range T − t is divided into N infinitesimal
time intervals, ta = t + aε, Nε = T − t. Let qa = qta for all ta. We apply
the

∫
dq|q 〉〈q| = 1 = 1 correlation then it is following:

〈q ′
t|qT〉 =

∫

dq1dq2 . . . dqN−1 〈q ′
t|q1〉 〈q1|q2〉 . . . 〈qN−1|qT 〉 .

The transient amplitude prescribed by the path integral for infinitesimal time
interval δt introduced by Feynman[16]:

〈q ′
t|qt+δt〉 = lim

( N→∞

Nε=konst.)
AN

∫ (N−1∏

i=1

dqi

)(

N−1∏

i=1

dpi

)

×

exp

(

−
i

~

∫ t

T

dtL(q, q̇)

)

, (2)

where AN is the normalization factor dividing this coefficient by a factor A

for each instant of time. This expression is equivalent to the integral of the
action function as follows

≡
∫

DqDp exp

(

−
i

~
S(t, T, q)

)

. (3)

The boundary conditions are the value of orbit at the initial and at the
final moment. The above expression gives the probability amplitude of the
particle, assuming that it was at t moment in q ′ state and at time T was in q

state. The transient amplitude is expressed as the sum of each of the possible
orbits, which begins in q at time T and ends in q ′ at time t, weighted by the
exponential expression (− i

~
S) for each trajectory.
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The expression of the transient amplitude for Hamiltonian systems can
be described as

〈q ′
t|qT 〉 =

∫

· · ·
∫

DqDp exp

(

i

∫ t

T

dτ

[

p
dq

dτ
−H(p, 〈q〉)

])

, (4)

where 〈q〉 is the average of q over a given interval.

2.1.2 Relation between statistical physics and particle physics

Statistical mechanics is closely related to the Feynman path integral of quan-
tum mechanics. Creutz showed in 1977 [12] that the transfer matrix method
simplifies the problem of quadratic functions operator diagonalization in
Hilbert space.

The Lagrange function of the free nonrelativistic particle, which measure
is m moving in potential V(x) (imaginaries time lattice):

L(x, ẋ) = K(ẋ) + V(x), K(ẋ) =
1

2
mẋ2.

The action function of any trajectory is following

S =

∫

dtL (ẋ(t), x(t)) , (5)

with which we can specify with the path integral:

Z =

∫

[dx(t)] exp(−S). (6)

The integral is for all trajectories x(t). The time component of the lattice is
discretized. Investigate the trajectories over the entire τ time interval, which
is decomposed into discrete time slices of length a = τ/N. The coordinate
for the i-th time slice is xi. The time derivative x is approximated with the
difference of the neighbors:

S = a
∑

i

[

1

2
m

(xi+1 − xi)
2

a2
+ V(xi)

]

. (7)
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Expression (6) is written with xi coordinates using the Z integral approxi-
mation:

Z =

∫ (∏

i

dxi

)

exp(−S). (8)

Equation (8) is no different then the shape of partition functions in a statis-
tical physical system.

The procedure that leads from the path integral to the expression of the
quantum mechanical Hilbert space in three steps is: First, we define the path
integral on a time-like lattice. We construct the transfer matrix in Hilbert
space. We finally take the logarithm of the transfer matrix, where the linear
term expresses the temporal evolution of the system. If the i-th eigenvalue
of the transfer matrix is λi, then Z =

∑
λN
i . Since the number of time

slices goes to infinity, therefore, the expression can be characterized by the
maximum self-values λ0:

Z = λN
0

[

1+O

(

exp

[

−N ln

(

λ0

λ1

)])]

.

2.2 Gauge fields

Several introductions of the gauge fields are known. The simplest way is
an extension of the Abelian gauge theory describing the electromagnetic
field. The components of the antisymmetric tensor are electromagnetic fields,
which are four-dimensional vectors:

Fµν = ∂µAν − ∂νAµ µ, ν = 0, 1, 2, 3.

The space-time indices are denoted by µ, ν, and the group generators by
α, β, γ. Yang and Mills [47] proposed (1954) to assign the isospin index to
Aµ and Fµν:

Aµ → Aα
µ Fµν → Fαµν α = 1, . . . , N,

a further antisymmetric term is added to the expression and the shape of Fµν
is:

Fαµν = ∂µA
α
ν − ∂νA

α
µ + g0C

αβγAβ
µA

γ
ν, (9)

where g0 is the bare coupling constant, Cαβγ is the structural constant of the
Lie algebra of a G Lie group. Here we use only uniter groups, the fundamental
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representation of the G group. We parameterize the elements of G with the
set of generators g = exp(iωαζα), where ωζ is the set of parameters and
λα is the set of Hermitian matrices that generalize the group. The structure
constants are defined by the following context:

[

ζα, ζβ
]

= iCαβγζγ.

The generators are orthonormal: tr(ζαζβ) = 1
2
δαβ. The simplest non-Abelian

theory uses the SU(2) group, which is generalized by Pauli matrices ζα =
1
2
τα, Cαβγ = εαβγ. The Maxwell equations can be derived from the Lagrange

density:

L =
1

4
FµνFµν + jµAµ,

where jµ is the external source as the electrodynamic fields. The non-Abelian
Lagrange density starts in the same way, except for the amount for isospin
and Fµν contains an additional member. The classical equation of motion
of electrodynamics is the equation ∂µFµν = jν. In the non-Abelian theory
(DµFµν)

α = jαν . Here are the covariant derivatives:

(DµFµν)
α = ∂µF

α
µν + g0C

αβγAβ
µF

γ
µν. (10)

The non-Abelian analog of current conservation following

Dµjµ = 0.

Second definition of gauge fields uses the local symmetry of the action func-
tion. Gauge symmetry of electrodynamics: Aµ + ∂µΛ, where the gauge
function Λ(x) is an arbitrary function of the space-time coordinates. In the
case of non-Abelian, Aµ is transformed as follows: Aµ → g−1Aµg+

i
g0
g−1∂µg,

where g is an element of a suitably chosen group of gauges. In electrodynam-
ics, this transformation is written by a simple phase: g(x) = exp(−ig0Λ(x))).
This is the so-called U(1) gauge theory of electrodynamics. Then, using the
transformation formula given above, the transformation of Fµν can be sim-
ply written: Fµν → g−1Fµνg. The gauge transformation of the covariance
derivative can be given in a similar form.

A third possible introduction to gauge theory is phase theory (Mandel-
stam (1962)[31], Yang (1975)).

In this article we mention the introduction of gauge theories to canonical
Hamiltonian formalism following Steven Weinberg (1965) [44].
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Group In this article, we apply some basic properties of the invariant inte-
gral introduced by Haar [23] in Wilson on compact Lie groups. Haar-measure
satisfies the following condition:

∫

G

f(U)dU =

∫

G

f(U−1)dU.

In the case of G = SU(2) the group elements can be parameterized in the
following way:

U = x01+ i~x~τ =

(

x0 + ix3, x2 + ix1

−x2 + ix1, x0 − ix3

)

.

The parameters xi must be sufficient to satisfy the condition:

detU = x2 = (x0)2 + ~x2 = 1.

that specifies the S3 key. In the case of numerical calculation, we used the
quaternion representation x0, x1, x2, x3, because the runtime is faster and the
memory requirement is smaller than the matrix representation.

3 Lattice field theory

Continuous gauge quantities are introduced on a lattice [34]. We consider
the Wilson action and the Yang-Mills theory by these discretized quantities.

3.1 Discrete parallel transporter

Consider hypercubic lattice of size a and the regularization of the continuous
Euclidean lattice. The scalar field φ(x) is interpreted on the lattice point.
Local gauge transformation is following:

φ(x) → φ ′(x) = Λ−1(x)φ(x).

In this case, the nearest non-zero lattice spacing a must be introduced on
the hypercube grid.

The elementary parallel transporters are closely connected by the links
b, which connect the neighboring points. Let x be an arbitrary point on the
lattice. Nearest neighbour points can be written in the form x + aµ̂, where
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µ = 1, 2, 3, 4 and µ̂ denotes the µ-th unit vector. The links from x to x+aµ̂

can be denoted by the following ordered pair: b = (x+ aµ̂, x) ≡ (x, µ). The
parallel transporter can be described by the link b:

U(b) ≡ U(x+ aµ̂, x) ≡ Uxµ ∈ G, (11)

where G is the gauge group. The link thus introduced satisfies the corre-
sponding properties of the parallel transporter. Arbitrary path C = bn◦bn−1◦
· · · ◦ b1 corresponds to the parallel transporter U(b) = U(bn) . . .U(b1) ≡∏

b∈CU(b) on lattice, which describes the link variables. These are denoted
by {U(b)}[30]. Transformation of link variables is following:

U ′(y, x) = Λ−1(y)U(y, x)Λ(x),

where Λ ∈ SU(N) and the size of matrix is N×N. We define the covariance
derivative:

Dµφ(x) =
1

a
(U−1(x, µ)φ(x+ aµ̂) −φ(x)).

The term of derivatives are substituted by covariate derivatives in the kinetic
expression:

1

2

∑

x

a4DµφDµφ = −a2
∑

〈xy〉

φ(x)U(x, y)φ(y) + 4a2
∑

x

φ(x)2.

The smallest closed loop on the lattice is called a plaque. A plaque is enclosed
by 4 links and it contains the following points: x, x + aµ̂, x + aµ̂ + aν̂, x +

aν̂, denoted by p = (x;µν). The corresponding parallel transporter can be
written in the following form:

Up ≡ Ux;µν ≡ U(x, x+ aν̂)U(x+ aν̂, x+ aµ̂+ aν̂)×
U†(x+ aµ̂+ aν̂, x+ aµ̂)U†(x+ aµ̂, x), (12)

which we call the plaque variables. Wilson’s suggestion [24, 45] is to write
the theoretical definition of a simple lattice gauge with the plaque variables:
S[U] =

∑
p Sp(Up), that is, the action is summed for all p, i.e.

∑
p =∑

x

∑
1≤µ,ν≤4 means. The action is written on the elementary plaque (showing

only one direction):

Sp(Up) = β

{

1−
1

N
RetrUp

}

. (13)
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3.2 Wilson action, lattice Hamiltonian

Wilson action is gauge invariant quantity because trU ′
p = trUp is appropri-

ately chosen for group SU(N), further real and positive. We consider the
Yang-Mills action by the Wilson action. We introduced the vector poten-
tial: Aµ(x) = −igAb

µ(x)Tb. Lie-algebra value vector field was defined on the
lattice:

U(x, µ) ≡ exp(−aAµ(x)) = 1− aAµ(x) +
a2

2
Aµ(x)

2 + . . .

we apply Aν(x+aµ̂) = Aν(x)a∆
f
µAν(x) where ∆f

µf(x) =
1
a
(f(x+aµ̂)−f(x)).

The Campbell-Baker-Hausdorff expression:
exp(x) exp(y) = exp(x+ y+ 1

2
[x, y] + . . .) therefore we get:

Ux;µν = exp
(

−a2Gµν(x)
)

, where Gµν(x) = Fµν(x) +O(a)

Fµν(x) = ∆f
µAν(x) − ∆f

νAµ(x) + [Aµ(x), Aν(x)].

Therefore

1−
1

N
Re trUp = 2tr1+ a4tr(Fµν(x))

2 +O(a5),

where Re tr means the real value of the trace Up, since trGµν(x) = 0 and∑
p tr(Fµν(x))

2 = 1
2

∑
x;µν tr(Fµν(x))

2. We get the following expression of the
Wilson action:

S = −
β

4N

∑

x

a4trFµν(x)F
µν(x) +O(a5). (14)

Because, the leading member coincides with the Yang-Mills action for small
a if β = 2N

g2
and g correspond to the bare coupling constant of the lattice

theory. We split the action into time-space components

S =
2

g2

∑

pt

(N− trUpt) −
2

g2

∑

ps

(N− trUps), (15)

where g is the continuous limitation value of the coupling constant, the (-)
sign is derived from the Minkovski space-time structure. The Taylor series
of Upt is explained in time-dependent term

Upt = U(t)U†(t+ at) = UU† + atUU̇† +
a2
t

2
UÜ† + . . . ,

10



The expressions appear in the Wilson Action:

N− trUpt = −
a2
t

2
tr(UÜ†) O(a3

t) correction.

Since UU† = 1, trace disappears N. It follows from the first derivative of this
term that tr(UU̇†) = 0 and the second derivative is ÜU†+ 2U̇U̇†+UÜ† = 0.
Therefore the Hamiltonian lattice action is following:

∆SH =
2

g2

(

a2
t

2

∑

i

tr
(

U̇iU̇
†
i

)

−
∑

ij

(N− tr (Uij))

)

. (16)

The generalized discretized ansatz can be written:

S = at

∑

t

a3
s

∑

s

L.

The scaled Hamilton density is able to write in the following form.

atH =
2

g2

(

a2
t

2

∑

x,i

tr
(

U̇x,i, U̇
†
x,i

)

+
∑

x,ij

(N− tr (Ux,ij))

)

, (17)

namely

H = a3
s

∑

s

(

tr

(

U̇,
∂L

∂U̇

)

− L

)

.

On the lattice, the gauge field can be specified by configuring the link vari-
ables. The expected value of the quantity denoted by the {U(b)} ≡ U and
Θ({U(b)}) link variables:

〈Θ〉 = 1

Z

∫ ∏

b

dU(b)Θ exp(−S(U)), (18)

where Z =
∫∏

b dU(b) exp(−S(U)) and S(U) are Wilson actions. If we
introduce φ(x) the field "material" is given by the corresponding integral:

〈Θ〉 = 1

Z

∫ ∏

b

dU(b)
∏

x

dφ(x)Θ exp(−S(U,φ)).

In these expressions, the integration measures dU(b), must be chosen to be
gauge invariant. During the gauge transformation it is written:

U ′(x, y) = Λ−1(x)U(x, y)Λ(y)

because the action is invariant: dU = dU ′, S(U) = S(U ′).
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3.3 Lattice Yang-Mills theory

In the following, we use Hamiltonian formulation of the classical lattice SU(2)

gauge theory [4]. The Hamilton function is considering:

H ′ =
g2aH

4
=

∑

x,i

a2

4
tr
(

U̇†
x,i, U̇x,i

)

+
∑

x,ij

[

1−
1

2
trUx,ij

]

,

where Ux,i is the group element SU(2), this term means the x+aei link point-
ing in the i direction starting at x = (x1, x2, x3) on the lattice. Ux,ij denotes

the elementary plaque which is expressed by link Ux,ij = Ux,iUx+i,jU
†
x+j,iU

†
x,j

lying in the plane stretched by the elementary vectors i and j starting at x.
We apply the link variables only in the expressions H:

H =
∑

x,i

[

1

2
〈U̇x,i, U̇x,i〉+

(

1−
1

4
〈Ux,i, Vx,i〉

)]

, (19)

where the complement link variable Vx,l(U) is following:

Vx,l =
1

4

∑

((l,s):{(i,j),(k,j),(−i,j),(−k,j)} )

Ux+l,sU
†
x+l+s,−lU

†
x+l,−l, where

i, j, k are the unit vectors of the three-dimensional lattice.
In the gauge field section (2.2) we introduced the quaterinon representa-

tion, which is defined in the following way on a lattice:

U = u01+ i~τ~u U =

(

u0 + iu3, iu1 + u2

iu1 − u2, u0 − iu3

)

.

The equations of motion are derived from the Hamiltonian function:

U̇ = P,

Ṗ = V − 〈U,V〉U− 〈P, P〉U, (20)

where 〈P, P〉 = 1
2

∑
j PjP

j.
The lattice equation of motion [5] follows:

Ut+1 −Ut−1 = 2h(P⋆

t − εU⋆

t ), (21)

Pt+1 − Pt−1 = 2h(V(U⋆

t ) − µU⋆

t + εP⋆

t ), where

12



ε =
〈U⋆

t , P
⋆

t 〉
〈U⋆

t , U
⋆

t〉
, µ =

〈V(U⋆

t ), U
⋆

t〉+ 〈P⋆

t , P
⋆

t 〉
〈U⋆

t , U
⋆

t〉
, and

U⋆

t = aUt+1 + bUt + cUt−1.

The quantities ε, µ denote the Lagrange multipliers. The energy of the
Hamiltonian system was constant and Gaussian law is satisfied [7] during
the movement. A periodic boundary condition was used to solve the system
of equations. The color charge was defined following:

Γi =
∑

l+

PlU
†
l −

∑

l−

U†
lPl, i = 1, . . .N

The measure of change is written by this term:

Γ̇i =
∑

l+

(VU† − 〈V,U〉 1),

where P1 = QU1 and P1 = QU1 and Pn = U
†
n−1Pn−1Un, 1 < n < N. The

condition of neutrality formulated as

Q− F†QF = 0, trQ = 0,

from which it follows

Q =
q

2
(F† − F), where F =

N−1∏

i=1

Ui oriented product

the initial color charge is Q and the final state is −F†QF.

4 Nonlinearity

In this section, we numerically determined the Lyapunov spectrum on the
three-dimensional lattice of the SU(2) Yang-Mills field. The spectra of Kolmogorov-
Sinai entropy are studied by the eigenvalues of the monodromy matrix from
the classical chaotic dynamics to extrapolate on a lattice with a large size
limit.
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Monodromy matrix We consider a periodic orbit of the energy E, with
initial phase space coordinates (p = p0, x = x0) and final coordinates (p = p0,
x = x0). We study the behavior of the neighborhood path of the periodic
orbits, how these trajectories develop in the case of small transverse pertur-
bation.

This means the same situation when considering the deviation of flow on
the Poincare surface of the section transverse to the path. Then the relation
between the initial {δy0i, δp0i} and final state {δyi, δpi} deviation is following:

δyi =

d−1∑

j=1

(

∂yi

∂y0i

)

δy0j +

(

∂yi

∂p0i

)

δp0j =

d−1∑

j=1

Aijδ0j + Cijδp0j

and

δpi =

d−1∑

j=1

(

∂pi

∂y0i

)

δy0j +

(

∂pi

∂p0i

)

δp0j =

d−1∑

j=1

Cijδ0j +Dijδp0j

It is written by matrix form:
(

δy

δp

)

=

(

A, B

C, D

)(

δy0

δp0

)

= M

(

δy0

δp0

)

, (22)

where δy and δp are 1× (d− 1) dimensional column matrices, and A,B, C,
D are (d − 1) × (d − 1) dimensional square matrices where Aij, Bij, Cij Dij

matrix elements. This (2d − 2) × (2d − 2) dimensional square matrix M

means the monodromy matrix according to the equation motion [37].
The shape of the monodromy matrix by the lattice equations of motion

[19] is following

M =

(

∂U̇
∂U

∂U̇
∂P

∂Ṗ
∂U

∂Ṗ
∂P

)

. (23)

We write down each partial derivative by the equation of motion:

∂U̇a

∂Ub = 0, ∂U̇a

∂Pb = δab,

∂Ṗa

∂Ub = ∂Va

∂Ub −
(∑N

c=1 Uc
∂Vc

∂Ub

)

Ua − VbUa −
∑N

c=1 (UcV
c + PcP

c) δab,

∂Ṗa

∂Pb = −2PbUa, where
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∂V
αq

k

∂Uβq
=

N∑

l=1

∂V
αq

k (U1, . . . , UN )

∂U
βq

l

, where N = 12, αq, βq = 0, 1, 2, 3.

The shape of the characteristic equation is then:

det

[(

0 1

∂Ṗ
∂U

∂Ṗ
∂P

)

−Λi1

]

= 0. (24)

We showed the stability of the trajectories along the trajectory in the vicin-
ity of any point on the (U, P) phase space. The time evolution of a small
(δU, δP) perturbation is determined by the monodromy matrix. Among the
eigenvalues of the stability matrix, real and positive quantities indicate an ex-
ponential departure of adjacent trajectories, i.e., motion is unstable. At the
long-term limit, the Lyapunov exponents are obtained from the eigenvalues.

4.1 Spectrum of the maximal Lyapunov exponent

We investigated the ergodization of the SU(2) lattice gauge theory due to
classical chaotic dynamics [19]. We get a good approximation to the real
maximum Lyapunov spectrum by monodromy matrix of time-evolving field
configurations. The lattice size was chosen to be N = 2, 3, 4, 5, 6, 7. The ini-
tial configurations are randomized we choose according to the Haar measure
and the total energy constraint.

The Lyapunov exponent Li is introduced with eigenvalues Λi of mon-
odromy matrix:

Li = lim
T→∞

∫T

0
Λi(t)dt

T
i = 1, . . . , f, (25)

where Λi(t) is the solution of the characteristic equation:

det[Λi(t)1−M(t)] = 0, (26)

in which M is the linear stability matrix, f is the number of degrees of
freedom. Conservative dynamical systems satisfy the Liouville theorem:∑f

i=0 Li = 0. In numerical calculations, we use the definition of the discrete
Lyapunov spectrum

L ′
i = 〈Λi〉(n) =

1

n

n∑

j=1

Λi(tj−1), i = 1, . . . , f, (27)
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where tj is the time series during the trajectory evolution of the gauge field
configuration.

The quantities L ′
i are extrapolated to a long-term (N → ∞) limit with

fixed time steps. We assumed it converges to the Li Lyapunov exponent in
noncompact configuration space.

The eigenvalues of the monodromy matrix were determined along the
time-evolution of a single gauge trajectory which allows us to know the be-
havior of the Lyapunov spectrum as a function of time.

In the numerical simulation the total number of degrees of freedom f =

4 × 3 ×N3 = 12 × N3, where the group element SU(2) is represented by 4
real quaternions (thus the phase space has a dimension of 2f = 24N3). Due
to the conditions of survival (unity, orthogonality), the number of physically
relevant degrees of independent freedom decreases [6].

The spectrum of the 2f×2f stability matrix although rare is large enough
to determine the eigenvalue with sufficient accuracy. Since it requires O(f2)

memory to calculate eigenvalues, N = 7 (2f = 24N3 = 8232 dimensional
phase space) was the maximum size of the system, which could be examined
by the capacity of the computer, which is due to the fact that the Hamiltonian
system is conservative (energy is time-independent).

In the literature, it has been shown that in the semiclassical limit the
real-time Hamiltonian dynamics of SU(2) gauge theory exhibits deterministic
chaos on a spatial lattice [35]. The largest Lyapunov exponent of the gauge
field was calculated as a function of energy density. Numerical integration
of the equations of motion has been applied considering the conservation of
energy and Gaussian law. The exponential divergence of two trajectories
was studied on the lattice gauge field configuration. The gauge-invariant
metric is proportional to the absolute local difference in the magnetic energy
of two different gauge fields. The nearest neighboring configurations were
chosen randomly and along the time-evolution, the distance between the
two trajectories increased exponentially until it is saturated. This process is
known as the rescaling method.

In this paper, we determine the maximum value of the Lyapunov expo-
nent along with the real-time evolution of a single long trajectory using the
monodromy matrix. Our goal is to calculate the spectrum of maximal Lya-
punov exponent depending on the energy resp. time and we consider the
scaling behavior of this system.

Therefore the first step we extrapolated the real maximal Lyapunov ex-
ponent (N → ∞) to the thermodynamical limit from the dataset, which is
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taken for N = 2, 3, 4, 5, 6, 7 at the different energies g2aE ∈ [0.0, 0.7] range
considering the finite-size scaling.

Figure (1) shows the real maximal Lyapunov exponent’s aL0 dependence
on scaling time t/a and scaling energy g2aE, where a is a lattice size and g

means the strong coupling constant (Section 3.).
The scaling of the maximal Lyapunov exponent as a function of scaling

energy has been studied [19]. In the past, the research on the scaling behavior
of maximal Lyapunov exponent has been debated whether it is linear or not
in the long-time limit[19]. According to some research results, this would

be L0 ∼ E
1
4 relation. It has been shown that linear scaling at low energy is

acceptable using the rescaling method in the long-term boundary case.
In the Figure (1) the scaling of the maximal Lyapunov exponent at short

time range t/a = 0.0005 satisfies the linear L0 ∼ E relation before the curve
saturates. In the long-time limit at t/a = 0.003 the scaling becomes log-

arithmic rather than L0 ∼ E
1
4 relation [19]. It can be considered that too

long a trajectory and the compactness of the configuration space create the
calculated eigenvalues, which is the Hamiltonian lattice field theory artifact.
In the following, we imply linear scaling.

The extrapolation of the maximum Lyapunov exponent values was plotted
on the Figure (1) i.e. the thermodynamic limit N → ∞ at different energies.
The finite-size scaling of this quantity to be almost linear:

L0 ∼
1√
f
∼ N− 3

2 .

This corresponds to sampling ergodic states [9].

4.2 Spectrum of Kolmogorov-Sinai Entropy

The relation between average energy and Kolmogorov-Sinai entropy was first
published in [35] for the simple SU(2) Yang-Mills system.

We define the Kolmogorov-Sinai entropy by the term Pesin:

hKS =
∑

i

LiΘ(Li), (28)

where the value of the function Θ(x) equals 1 if the argument is positive and
0 otherwise. The dimension of the quantity hKS is a rate (1/time). Therefore,
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aL0

t/a

g2aE

Figure 1: Maximal Lyapunov spectrum aL0 as a function of the scaling time
t/a and scaling energy g2aE.

the entropy can be given on an N3 lattice by normalizing quantity:

S =
hKS

Re(L0)N3
. (29)

The state equation can be derived from the simulations of the dynamics.
The finite-size scaling is extrapolated to infinity ( 1

N
→ 0) on the lattice. We

consider the Kolmogorov-Sinai entropy as a function of time and energy. This
leads to the state equation, which is the relation of entropy-energy S(E) in
the thermodynamic limit of infinite volume.

The normalized Kolmogorov-Sinai entropy is derived from the extrapo-
lated Li data, which depends only slightly on the initial values and scaling
linearly according to the energy.

〈S〉 ∼ b lg(g2Ea) + c,

where b, c ∈ R. This is an appropriate estimation of the inverse temperature:

1

T
=

∂ 〈S〉
∂E

∼
0.5

E
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Thus the equipartition, i.e. the energy per degree of freedom:

E =
1

2
kT.

In the Figure (2) the entropy spectrum S depending on the scaling timet/a
and scaling energy g2aE is plotted on the ranges t/a ∈ [0, 0.004], g2aE ∈
[0, 0.7]. The closest relation of the entropy S as a function of scaling en-
ergy g2aE is the ideal gas S ∼ lg E within the interval of scaling time t/a

[0.001,0.004]. In the short range of the scaling time t/a [0, 0.001] the lattice
artifact appears.

Since the Kolmogorov-Sinai entropy was determined from the Lyapunov
exponents with the Pesin form, the lattice artifact experienced in the numeri-
cal calculation of the Lyapunov exponents manifests in the Kolmogorov-Sinai
entropy spectrum.

It has been shown that the entropy of the SU(2) lattice gauge field has
a first-order phase transition [42]. The entropy as a function of energy was
expressed by the action on the microcanonical ensemble (section 2.1.2).

In our case lattice SU(2) system S(E) curve would show a first-order
two-phase structure containing a break somewhere or crossover (two-phase
structure) at the range of time [0.001,0.003] on the interval of the energy
[0.1,0.6]. To decide this, we need to filter out lattice artifacts and reduce
entropy fluctuations to give a clear answer. The numerical error can be
derived by maximal Lyapunov exponents determination, resp. calculation of
the eigenvalue of rare matrices.

5 Spectrum of Statistical Complexity

5.1 Statistical Complexity

The family of statistical complexity measures C is introduced by the func-
tional product form C = H ·Q for difference disorder H and disequilibrium
Q measures on the probabilistic space[33].

The information measure L is able to be described by a given probability
distribution P = {pj, j = 1, . . . , n}, and this quantity corresponds to the
measure of uncertainty of a physical system. The amount of disorder H is
defined:

H[P] = L[P]/Lmax, (30)
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S

t/a

g2aE

Figure 2: Entropy spectrum S depends on the scaling time t/a and scaling
energy g2aE.

where Lmax = L[Pe] and Pe = {1/n, . . . , 1/n} is the uniform distribution
which maximizes the information measure (0 ≥ H ≥ 1).

To take into account the idea of statistical complexity, a disequilibrium
Q needs to be identified.

The measure of this quantity is examined at some distance D to the equal
probability distribution Pe.

Q[P] = Q0D[P, Pe], (31)

where Q0 is a normalization factor (0 ≤ Q ≤ 1). This concept describes
the structure of systems as larger than zero if there are possibly more steady
states among the possible situations.

Therefore, we take the following functional form for the statistical com-
plexity measure:

C[P] = H[P] ·Q[P]. (32)

This quantity C[P] characterizes the amount of information stored and its
disequilibrium in this system altogether [32]. The definition of this concept
can be divided into three categories: (c1) this quantity increases monotoni-
cally as the function of entropy;

20



(c2) it is a convex function that contains the maximum value of Cmax for
the probability distribution Pe and the minimum value of Cmin that occurs
at the extreme values of entropy, i.e. H = 0 or H = 1;

(c3) the third type decreases monotonically with increasing entropy [32].
The two extreme situations can be understood as follows:
(i) Each set of sequences has the same probability distribution. All of

them accept the information stored in an equal measure similar to the ideal
gas[28].

The probability distribution is the same for all series. All of them accept
the information stored in the equivalent measure as the ideal gas [28].

(ii) If we research a system with certain symmetry properties and dis-
tance, then this object is able to write by minimum information as a mineral
or symmetrical in quantum mechanics or the system is completely disordered.

The statistical complexity is characterized by the scale because it was
introduced in a finite system. At each scale of measurement, a new set of
available simulated series occurs with its appropriate probability distribution
P; so the complexity is changing.

In statistical mechanics, isolated systems often occur that have arbitrary
initial conditions and a discrete equal probability distribution [11]. It was
concluded that in the case of time-evolving isolated systems and their statis-
tical complexity, the measurements should not take arbitrary values in the
CLMC as a function of H. These constrain the bounds of complexity to certain
limits of minimum and maximum value.

We use the Shannon entropy measure and Euclidean distance on the
probability space as the statistical complexity was investigated by Lopez-
Ruiz, Manchini, and Calbet (LMC)[32].

Information measure We consider the Shannon logarithmic information
measure on the P ≡ {p1, . . . , pn} discrete probability distribution in this
article as follows:

L[P] = −

n∑

j=1

pj log(pj) (33)

The maximal value Lmax is calculated by the uniform probability Pe ={
1
n
, . . . , 1

n

}
fulfilling this criterion

∑n
j=1 pj = 1 so, Lmax = lnn. If L[P] = 0,

it means that the possible outcomes j whose probabilities are given by pj
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will currently take place. The knowledge of the advantaged process is cor-
responded by the probability distribution, in this case, is maximal. Anyway
this quantity turns into largest for a uniform distribution, when L[P] =

Smax. These two extreme criteria correspond to the (i) perfect order and
(ii)maximum randomness as trivial ones.

Disequilibrium Evidently, the Euclidean statistical distance is taken to
give the quantity D, i.e., the quadratic distance between the probability
distributions of each state to the equiprobability. If D means the Euclidean
norm in R

n, we find

DE[P, Pe] =‖ P − Pe ‖=
n∑

i=1

(pi − pe)
2, (34)

where pe = 1/n. The maximum disequilibrium is gained for overwhelming
simulation sequences with pi ∼ 1 and D → 1 for increasing n, as long as
this quantity disappears D ∼ 0 for pi ∼ 1/n for all i. In other probabil-
ity distribution, the value of the disequilibrium D will vary between these
two extreme rates. Then, the expression of the normalization factor of the
Euclidean statistical distance fulfills Q0 =

n
n−1

.

5.2 Complexity of the lattice Yang-Mills equation

In the section (5.1) we introduced the statistical complexity which is based
on the probability distribution providing a statistical estimation of the series
of dynamical systems. There are n finite different elements on the sequence
{x1, x2, . . . , xn} corresponding to the set of discrete probability distribution
P ≡ {p1, p2, . . . , pn}, where pi := P(xi), (

∑n
i=1 pi = 1), and pi > 0 for all i.

We study the real-time evolution of the gauge field by the Yang-Mills
equation on the lattice. Random initial values are chosen which fulfill the
constraint (unitarity, orthogonality, and energy). The length of trajectory is
taken as n = 10000, the subsequent along the orbit is m = 2. The lattice
size was chosen N = 2, 3, 4, 5, 6, 7.

The state of the gauge field at time t contains all Ux,i links on a lattice of
size a. The number of links is dim∗N3. The lattice gauge field configuration
characterizes the state at a given time instant by the links altogether.

The value of entropy (30), disequilibrium (31), and the statistical com-
plexity (32) can be calculated by the simulation unambiguously. Since the
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probability distribution of element is discontinuous in three-dimensional lat-
tice gauge space, some complexity and disequilibrium values do not appear
for certain entropy quantities.

In the Figure (3) the complexity C as a function of scaling energy g2aE

and entropy H is presented and the lattice size is N = 7. The spectrum of
complexity C was calculated for 8 different energy values, g2aE = 0.075, 0.11,

0.17, 0.22, 0.33, 0.4, 0.5, 0.7. The spectrum of complexity C is finite and
limited but not necessarily a unique function of entropy H and there exists
a convex boundary and larger internal structure between the minimal value
Cmin and the maximal value Cmax for different energy range [0.075,08]. The
minimal and maximal boundary is increasing as the energy is growing.

The eight different spectra of the statistical complexity C as a function
of entropy H and energy g2aE are determined with the same dynamics, i.e.
their internal structure leads to a similar probability distribution along time-
evolution.

The inner structure can be seen better in Figure (4), where the complexity
C dependence on the entropy H is shown for eight different energy rates. The
value of the complexity C becomes to zero at H ∼ 0 and H ∼ 1 and the curve
is convex on the interval H ∈ [0, 1]. This behavior of complexity belongs to a
class (c2). In the immediate neighbour of the Cmax ∼ 0.07 values for entropy
H ∼ 0.5, i.e. near to the equilibrium distribution Pe, the values of complexity
are more strongly scattered than in the case of H ∼ 0 or H ∼ 1.

As we have seen in these Figures their lower boundary Cmin shows slightly
scattered curves with decreasing entropy values, where the maximum value
of each curve increases in proportion to the energy in the range entropy H

[0.5,1.0]. The upper bound values of the complexity C are widely scattered
in the neighbor of equilibrium distribution Pe. On the interval of the entropy
[0,0.5], the figure does not show any internal structure, where Cmax and Cmin

belonging to the dynamics of the Yang-Mills system assume almost the same
value.

In the Figure (5) the complexity C as a function entropy H and dise-
qulibrium D is plotted. Because the number of points on a long trajectory
is finite, C is a function H shows scaling behavior, i.e., the bigger complexity
appears at less entropy with a larger discrete probability distribution. Due
to the symmetry SU(2) of the non-Abelian gauge field and the constraint of
the total energy and Gaussian law, the system does not reach all states of
phase space. In constract to the ideal gas [28], where all state of phases space
was available, the internal structure evenly filled in the range between the
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Cmax and Cmin boundary.
The statistical complexity of the non-Abelian gauge theory was studied

for a long time evolution along the trajectory n. It is showed internal struc-
ture in the immediate vicinity of the equilibrium distribution Pe, the further
research allows us to narrow the energy range to be examined for the immedi-
ate vicinity of the entropy, because the S(E) curve would present a first-order
two-phase structure i.e. having a break somewhere within a certain energy
range, that the lattice artifact could be filtered out.

6 Summary

In this article, we considered the Hamiltonian function on lattice gauge the-
ory in especially the maximal real Lyapunov spectrum of the non-Abelian
gauge theory. The spectra of Kolmogorov-Sinai entropy were studied as a
function of energy and lattice size approaching the thermodynamical limit for
SU(2) lattice gauge theory. Long time evolution of the equation of motion
of gauge fields was characterized by statistical complexity in a probability
space. The inner structure of this quantity as a function of entropy allows
a more accurate determination of the phase transition in non-Abelian SU(2)
lattice space theory using a monodromy matrix with appropriate parameter
range on growing lattice size by eliminating the effect of the lattice artifact.
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Figure 3: left:Complexity spectra C as a function of the H and 0 < g2aE < 1

(0.075,0.11,0.17,0.22,0.33,0.4,0.5,0.7) and the lattice size N = 7,m = 2.
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Figure 4: C depends on H on the lattice size N = 7,m = 2 for eight different
energy rates.
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Figure 5: left:Complexity C as a function of the H and D, 0 < g2aE < 1 on
the lattice size N = 7,m = 2 for eight different energy rates.
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