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Abstract

If B is a minimal blocking set of size less than 3(¢+1)/2 in PG(2, ¢),
q is a power of the prime p, then Sz6nyi’s result states that each line
meets B in 1 (mod p) points. It follows that B cannot have bisecants,
i.e. lines meeting B in exactly two points. If ¢ > 13, then there is
only one known minimal blocking set of size 3(¢ + 1)/2 in PG(2,q),
the so called projective triangle. This blocking set is of Rédei type
and it has 3(¢ —1)/2 bisecants, which have a very strict structure. We
use polynomial techniques to derive structural results on Rédei type
blocking sets from information on their bisecants. We apply our results
to point sets of PG(2, ¢) with few odd-secants.

In particular, we improve the lower bound of Balister, Bollobas,
Fiiredi and Thompson on the number of odd-secants of a (g + 2)-set in
PG(2,q) and we answer a related open question of Vandendriessche.
We prove structural results for semiovals and derive the non existence
of semiovals of size ¢ + 3 when p # 3 and ¢ > 5. This extends a
result of Blokhuis who classified semiovals of size ¢ + 2, and a result
of Bartoli who classified semiovals of size ¢ + 3 when ¢ < 17. In the
q even case we can say more applying a result of Szényi and Weiner
about the stability of sets of even type. We also obtain a new proof to
a result of Gdcs and Weiner about (g + ¢,t)-arcs of type (0,2,¢) and
to one part of a result of Ball, Blokhuis, Brouwer, Storme and Sz&ényi
about functions over GF(g) determining less than (¢ + 3)/2 directions.
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REDEI TYPE BLOCKING SETS AND APPL.

1 Introduction

A blocking set B of PG(2,q), the Desarguesian projective plane of order ¢,
is a point set meeting every line of the plane. B is called non-trivial if it
contains no line and minimal if B is minimal subject to set inclusion. A point
P € B is said to be essential if B\{P} is not a blocking set. For a point set S
and a line ¢ we say that ¢ is a k-secant of S if £ meets S in k points. If k = 1,
k =2, or k = 3, then we call £ a tangent to S, a bisecant of S, or a trisecant of
S, respectively. We usually consider PG(2, ¢) as AG(2, q), the Desarguesian
affine plane of order ¢, extended by the line at infinity, ¢,,. Throughout the
paper ¢ will always denote a power of p, p prime. For the points of AG(2, q)
we use cartesian coordinates. The infinite point (or direction) of lines with
slope m will be denoted by (m), the infinite point of vertical lines will be
denoted by (o0). Let U = {(a;,b;)}!_; be a set of ¢ points of AG(2,q). The
see that B := U U Dy is a blocking set of PG(2,¢q) with the property that
there is a line, the line at infinity, which meets B in exactly |B| — ¢ points.
If |Dy| < g, then B is minimal. Conversely, if B is a minimal blocking set
of size ¢ + N < 2¢ and there is a line meeting B in N points, then B can
be obtained from the above construction. Blocking sets of size ¢ + N < 2¢
with an N-secant are called blocking sets of Rédei type, the N-secants of
the blocking set are called Rédei lines. If the g-set U does not determine
every direction, then U is affinely equivalent to the graph of a function f
from GF(q) to GF(q), i.e. U = {(z, f(x)): x € GF(q)}. Note that f(x) — cx
is a permutation polynomial if and only if (¢) is a direction not determined
by the graph of f, see [I4] by Evans, Greene, Niederreiter. A blocking set
is said to be small, if its size is less than ¢ + (¢ + 3)/2. Small minimal
Rédei type blocking sets, or equivalently, functions determining less than
(¢ + 3)/2 directions, have been characterized by Ball, Blokhuis, Brouwer,
Storme, Szényi and Ball, see [3, 2]. From these results it follows that such
blocking sets meet each line of the plane in 1 (mod p) points. This property
holds for any small minimal blocking set, as it was proved by Szényi in [25].

It follows from the above mentioned results that minimal blocking sets
with bisecants cannot be small. If ¢ is odd, then the smallest known non-
small minimal Rédei type blocking set is the following set of ¢ + (¢ + 3)/2
points (up to projective equivalence):

B:={0:1:a),(1:0:a), (—a:1:0): aasquare in GF(¢q)} u{(0:0:1)}.

In the book of Hirschfeld [17, Lemma 13.6 (i)] this example is called the
projective triangle. B has three Rédei lines and has the following properties.

set of directions determined by U is Dy := {( > 11 j}. It is easy to
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Through each point of B there passes a bisecant of B. If H < B is a set of
collinear points such that there passes a unique bisecant of B through each
point of H and there is a Rédei line ¢ disjoint from #, then the bisecants
through the points of H are contained in a pencil. In Theorem 2.4] we show
that this property holds for any Rédei type blocking set. In fact, we prove
the following stronger result. If Ry and Rs are points of B\, such that for
i = 1,2 there is a unique bisecant of 5 through R; and there is a point 71" € /,
such that TRy and T Ry meet B in at least four points, then for each M € ¢
the lines R1 M and Ry M meet B in the same number of points. The essential
part of our proof is algebraic, it is based on polynomials over GF(q). We
apply our results to point sets of PG(2,¢) with few odd-secants, which we
detail in the next paragraphs.

A semioval § of a finite projective plane is a point set with the property
that at each point of S there passes exactly one tangent to S. For a survey
on semiovals see [19] by Kiss. In PG(2, ¢) Blokhuis characterized semiovals
of size ¢ — 1 + a, a > 2, meeting each line in 0,1,2, or a points. He also
proved that there is no semioval of size ¢ + 2 in PG(2,q), ¢ > 7, see [6] and
[9], where the term seminuclear set was used for semiovals of size ¢ + 2. For
another characterization of semiovals with special intersection pattern with
respect to lines see [15] by Gécs. We refine Blokhuis’ characterization to
obtain new structural results about semiovals of size ¢ — 1 4+ a containing a
collinear points. As an application, we prove the non-existence of semiovals
of size ¢ + 3 in PG(2,q), 5 < ¢ odd when p # 3. For ¢ < 17 this was also
proved by Bartoli in [4]. When ¢ is small, then the spectrum of the sizes
of semiovals in PG(2, ¢) is known, see [23] by Lisonek for ¢ < 7 and [20] by
Kiss, Marcugini and Pambianco for ¢ = 9. When ¢ is even, then a stronger
result follows from [27] Theorem 5.3] by Sz6ényi and Weiner on the stability
of sets of even type.

In the recent article [I] by Balister, Bollobas, Fiiredi and Thompson,
the minimum number of odd-secants of an n-set in PG(2,q), ¢ odd, was
investigated. They studied in detail the case of n = ¢ + 2. In our last
section we improve their lower bound and we answer a related open question
of Vandendriessche from [28].

Our Theorem yields a new proof to [I6, Theorem 2.5] by Gécs and
Weiner about (g + t,t)-arcs of type (0,2,t). In Section Bl we explain some
connections between Theorem and the direction problem.
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2 Bisecants of Rédei type blocking sets

Lemma 2.1. Let U be a set of q points in AG(2,q) and denote by Dy the
set of directions determined by U. Take a point R = (ag,by) € U and denote
the remaining q — 1 points of U by (a;,b;) fori =1,2,...,q— 1. Consider
the following polynomial:

q—1

F(¥) =] [((a: = a0)Y — (b — bo)) € GF(g)[Y]. (1)
=1

For m € GF(q) the following holds.

1. The line through R with direction m meets U in k,, points if and only
if m is a (kpy, — 1)-fold root of f(Y).

2. If (m) ¢ Dy, then f(m) = —1.
3. If (:0) ¢ Dy, then the coefficient of Y91 in f is —1.

Proof. We have (a; — ag)m — (bj — bg) = 0 for some j € {1,2,...,q — 1} if
and only if (m), R and (aj,b;) are collinear. This proves part 1. To prove
part 2, note that (a; — ag)m — (b; — by) = (ar — ag)m — (by, — bo) for some
J.kef{l,2,...,q—1}, j # k, if and only if (a; — ap)m — (b; — bg) = 0, i.e.
if and only if (aj,b;), (ak,br) and (m) are collinear. If (m) ¢ Dy, then this
cannot be and hence {(a; — ag)m — (b; —bg): i = 1,2,...,q — 1} is the set
of non-zero elements of GF(g). It follows that in this case f(m) = —1. If
(0) ¢ Dy, then {a; —ag: i =1,2,...,q — 1} is the set of non-zero elements
of GF(q), and hence Hg:_ll(ai —ag) = —1. [ |
Remark 2.2. For a set of affine points U = {(a;,b;) f:O the Rédei polyno-
mial of U is HfZO(X~I—aZ-Y—bZ-) = Z?;Lé hi(Y)Xk+H1=0 e GF(q)[X, Y], where
hi(Y) € GF(q)[Y] is a polynomial of degree at most j. Now suppose that
U is a g-set and (ag,by) = (0,0). Then hy—1(Y) = Z‘;;é i@ —b;) =
1—[3;11 (a;Y —b;) is the polynomial associated to the affine g-setU as in Lemma
2l This polynomial also appears in Section 4 of Ball’s paper [2].

Theorem 2.3. Let B be a blocking set of Rédei type in PG(2, q), with Rédei
line .

1. If there is a point in B\{ which is not incident with any bisecant of B,
then B is minimal and |[¢ n B| =1 (mod p).

2. If R,R' € B\l such that R and R’ are not incident with any bisecant
of B, then |RM n B| = |R'M n B| for each M € (.
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Proof. It is easy to see that if there is a point R € B\¢, such that there is
no bisecant of B through R, then |B n ¢| < ¢ — 1. First we show that B is
minimal. As B is of Rédei type, the points of B\¢ are essential in B. Take
a point D € B {. As there is no bisecant through R, it follows that DR
meets B in at least three points and hence there is a tangent to B at D, i.e.
D is essential in B.

We may assume that ¢ = ¢, and () ¢ B. Let R = (ag,by) be a point
of B\¢ which is not incident with any bisecant of B and let U = B\ly, =
{(as,b:)}’=; . Consider the polynomial f(Y) = [T} ((a; — ao)Y — (b; — bo))
introduced in (). Let m € GF(g). According to Lemma 2.1 we have the
following.

o If (m) € B, then f(m) =0,
o if (m) ¢ B, then f(m) = —1,
e the coefficient of Y41 in f is —1.

Now let £,\(Bu {(0)}) = {(m1), (m2),..., (my)} and consider the polyno-
mial

k
g(Y) == DY —my)T ! — k.

=1
For m € GF(q) we have g(m) = f(m). As both polynomials have degree at
most ¢ — 1, it follows that g(Y) = f(Y). The coefficient of Y9! is k in ¢
and hence p | k+ 1. Ask+ 1 =g+ 1—|Bn Ly, part 1 follows.

For (m) ¢ B the line through any point of ¢/ with slope m meets B in
1 point. For (m) € B the line through R with slope m meets B in k,, + 2
points if and only if m is a ky,-fold root of f(Y). As f(Y) = ¢g(Y), and the
coefficients of g(Y) depend only on the points of B n £y, it follows that k&,
does not depend on the initial choice of the point R, as long as the chosen
point is not incident with any bisecant of 5. This proves part 2. |

Theorem 2.4. Let B be a blocking set of Rédei type in PG(2, q), with Rédei
line £.

1. If there is a point in B\ contained in a unique bisecant of B, then
BNt #1 (mod p).

2. If R1, Ry € B\, each of them is contained in a unique bisecant of B
and there is a point T € £ such that RiT and RoT both meet B in at
least four points, then for each M € ¢ we have |M Ry nB| = |M Ry B].
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3. If Ry, Ry € B\{, each of them is contained in a unique bisecant of B
and the common point of these bisecants is on the line £, then for each
M € ¢ we have MRy n B| = |[M Ry n B|.

Proof. Let R be a point of B\¢ contained in a unique bisecant r of B. First
suppose |B n ¢| = gq. Then part 1 is trivial and there is no line through R
meeting B in at least 4 points, since otherwise we would get more than one
bisecants through R. Suppose that R’ is another point of B\¢ contained in a
unique bisecant 1’ of B and rnr’ € £. Let {Q} = (\B. Then RQ and R'Q are
tangents to B and [MRn B| = |[MR' n B| = 3 for each M € ({ n B)\{r nr'}.
From now on, we assume k :=q— [Bn/{| > 1

First we prove the theorem when B is minimal. We may assume ¢ = {,
and £,,\B = {(©0), (m1),...,(mg)}.

As in the proof of Theorem 23] let U = B\l = {(a;, b;) ;-];5 and define
f(Y) asin (). Take m € GF(q) and let ¢ be the slope of the unique bisecant
through R. From Lemma 2] we obtain the following.

-1 if (m) ¢ B,
f(m) =40 if (m) € B\{()},
F&)£0 ifm=t

Consider the polynomial

k

g(Y) = FO) + B lo| + D (Y =m) = )Y =) (2)
i=1

For m € GF(q) we have g(m) = f(m). As both polynomials have degree
at most ¢ — 1, it follows that g(Y) = f(Y). The coefficient of Y71
—|Bn ity — f(t) in g and —1 in f. Tt follows that p | |B n le| + f(t) —
and hence f(t)=1—|Bnly|=k+1 (mod p). If |Bnly| =1 (mod p),
then f(t) = 0, a contradiction. This proves part 1.

Now consider

k
dyg(Y Z )92 4 (b + 1)(Y — )12,
and

k
w(Y) —t) [ [V = mi)oyg(Y) =
i=1

k k
Z YV =m)T 'V =) [ [V =my) + (k+ D =) (Y —my).
i=1 j=1

Jj#i
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k
w(m)z—Z(m—t)H(m—mj + (k+1) Hm m;j).

i=1 j#i

Suppose that the line through R with direction m meets B in at least four
points. Then m is a multiple root of f(Y) and hence it is also a root of
w(Y). It follows that m is a root of

k k
DY) ==Y =) Y TV —=my) + (k+1) HY m;). (3)

i=1j#i

Note that Zle [[;zi(m —m;) = 0 and w(m) = 0 together would imply
(k+1) H?zl(m — my;) = 0, which cannot be since (m) ¢ {(m1),...,(mg)}
and p } k + 1. It follows that ¢ can be expressed from m and myq,...,my in
the following way:

e DITm - m)) "

Zizl Hj;éi(m —m;)

Now let Ry and Rs be two points as in part 2 and let 7" = (m). It follows
from (@) that the bisecants through these points have the same slope. Then,
according to (@), f(Y) = g(Y) does not depend on the choice of R;, for
1 = 1,2. The assertion follows from Lemma 2.1 part 1.

If Ry and Ry are two points as in part 3, then the bisecants through
these points have the same slope. It follows that f(Y) = ¢(Y) does not
depend on the choice of R;, for i = 1,2. As above, the assertion follows
from Lemma 2.1l part 1.

Now suppose that B is not minimal and R; € B\¢ is contained in a
unique bisecant of B. As B is a blocking set of Rédei type, the points of
B\¢ are essential in B. Let C' € B n ¢ such that B’ := B\{C'} is a blocking
set. In this case for each P € B\l the line PC is a bisecant of B and R;C
is the unique bisecant of B through R;. It follows that there is no bisecant
of B’ through Ry. Then Theorem 2.3 yields that [ n B'| =1 (mod p). As
|6~ B| = |0 nB'|+ 1, we proved part 1.

If R is another point of B\¢ such that Ry is contained in a unique
bisecant of B, then there is no bisecant of B’ through Ry and hence parts 2
and 3 follow from Theorem 23] part 2. |
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3 Connections with the direction problem

Let B be a blocking set in PG(2, ¢). We recall ¢ = p", p prime. The exponent
of B is the maximal integer 0 < e < h such that each line meets B in 1
(mod p°) points. We recall the following two results about the exponent.

Theorem 3.1 (Szényi [25]). Let B be a small minimal blocking set in
PG(2,q). Then B has positive exponent.

Theorem 3.2 (Sziklai [24]). Let B be a small minimal blocking set in
PG(2,q). Then the exponent of B divides h.

Proposition 3.3. Let B be a blocking set of Rédei type in PG(2,q), with
Rédei line £ . Suppose that B does not have bisecants. Then B has positive
exponent and for each point M € £ N B the lines through M different from ¢

meet B in 1 or in p' + 1 points, where t is a positive integer depending only
on the choice of M.

Proof. Theorem 23] part 1 yields that £ meets Bin 1 (mod p) points. Lines
meeting ¢ not in B are tangents to B. For any M € ¢ n B Theorem [2.3] part
2 yields that M R meets B\{ in the same number of points for each R € B\/(.
Denote this number by k. Then k divides |[B\¢| = ¢. As B does not have
bisecants, it follows that k& > 1 and hence k = p' for some positive integer ¢.
[ |

The following result is a consequence of the lower bound on the size of
an affine blocking set due to Brouwer and Schrijver [11] and Jamison [I§].

Theorem 3.4 (Blokhuis and Brouwer [7, pg. 133]). If B is a minimal
blocking set of size g+ N, then there are at least g + 1 — N tangents to B at
each point of B.

Theorem 3.5. Let f be a function from GF(q) to GF(q) and let N be the
number of directions determined by f. If any line with a direction determined
by f that is incident with a point of the graph of f is incident with at least
two points of the graph of f, then each line meets the graph of f in pt points
for some integer t and

q/s+1<N<(g—1)/(s—1),
where s = min{p’: there is line meeting the graph of f in p' > 1 points}.

Proof. If U denotes the graph of f, then B := U u Dy, is a blocking set of
Rédei type without bisecants. Proposition yields that each line meets
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U in p' points for some integer t, with ¢ = 0 only for lines with direction
not in Dy. Take a point R € U and let Dy = {Dy,Ds,...,Dy}. Then
|D;RnB| = s+1yields |B| = ¢+ N > Ns+1 and hence (¢—1)/(s—1) > N.
Take a line m meeting U in s points and let M = m n f¢y. According to
Proposition the lines through M meet &/ in 0 or in s points. Theorem
B4l yields that the number of lines through M that meet U is at most N — 1.
It follows that (N — 1)s > ¢ and hence N > ¢/s + 1. [ |

Applying Theorems and [3I] we can give a new proof to the following
result.

Theorem 3.6 (part of Ball et al. [3] and Ball [2]). Let f be a function from
GF(q) to GF(q) and let N be the number of directions determined by f. Let
s = p® be mazimal such that any line with a direction determined by f that
is incident with a point of the graph of f is incident with a multiple of s
points of the graph of f. Then one of the following holds.

1.s=1and (¢+3)2<N<q+1,
2. q/s+1<N<(g—1)/(s—1),
3. s=q and N = 1.

Proof. The point set B := U U Dy, is a minimal blocking set of Rédei type.
If s = 1, then B cannot be small because of Szényi’s Theorem B.1] and hence
N = (¢ +3)/2. If s > 1, then the bounds on N follow from Theorem 3.5 H

In [3] and [2] it was also proved that for s > 2 the graph of f is GF(s)-
linear and that GF(s) is a subfield of GF(q). Note that Theorem by
Sziklai generalizes the latter result.

4 Small semiovals

An owal of a projective plane of order ¢ is a set of ¢ + 1 points such that no
three of them are collinear. It is easy to see that ovals are semiovals. The
smallest known non-oval semioval, i.e. semioval which is not an oval, is due

to Blokhuis.

Example 4.1 (Blokhuis [6]). Let S be the following point set in PG(2,q),
3<qodd, S={(0:1:5),(s:0:1),(1:s:0): —s is not a square}. Then
S is a semioval of size 3(q — 1)/2.
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Conjecture 4.2 (Kiss et al. [20, Conjecture 11]). If a semioval in PG(2, q),
q > 7, has less than 3(q — 1)/2 points, then it has exactly g+ 1 points and it
1 an oval.

Let S be a semioval and ¢ a line meeting S in at least two points. Take
a point P € S n /. As there is a unique tangent to S at P, it follows that
|S\¢| = ¢ — 1, and hence |S| > |Sn¢|+q—1=> g+ 1. It is convenient to
denote the size of S by ¢ — 1 + a, where a > 2 holds automatically. Then
each line meets S in at most a points.

Theorem 4.3 (Blokhuis [6]). Let S be a semioval of size qg—1+a, a > 2, in
PG(2,q) and suppose that each line meets S in 0, 1, 2, or in a points. Then
S is the symmetric difference of two lines with one further point removed
from both lines, or S is projectively equivalent to Example [4.1]

If § is a semioval of size ¢ + 2, then each line meets S in at most three
points, thus Theorem yields the following.

Theorem 4.4 (Blokhuis [6]). Let S be a semioval of size g+ 2 in PG(2,q).
Then S is the symmetric difference of two lines with one further point re-
moved from both lines in PG(2,4), or S is projectively equivalent to Example

[41] in PG(2,7).

We also recall the following well-known result by Blokhuis which will be
applied several times. For another proof and possible generalizations see
[26] Remark 7] by Sz6nyi, or [12 Corollary 3.6] by Csajbdk, Héger and Kiss.

Proposition 4.5 (Blokhuis [6, Proposition 2|). Let S be a point set of
PG(2,q), ¢ > 2, of size ¢ — 1 + a, a = 2, with an a-secant (. If there is a
unique tangent to S at each point of NS, then these tangents are contained
i a pencil. The carrier of this pencil is called the nucleus of £ and it is
denoted by Ny. For the sake of simplicity, the nucleus of a line ¢; will be
denoted by N;.

If A and B are two point sets, then AAB denotes their symmetric dif-
ference, that is (A\B) u (B\A).

Example 4.6 (Csajbdk, Héger and Kiss [12, Example 2.12]). Let B’ be a
blocking set of Rédei type in PG(2,q), with Rédei line £. Suppose that there is
a point P € B\l such that the bisecants of B’ pass through P and there is no
trisecant of B’ through P. For example, if B’ has exponent e and p® = 3 (cf.
Section[3), then B’ has no bisecants or trisecants and hence one can choose
any point P € B'\L. Take a point W € I\B' and let S = ((AB')\{W, P}.
Then S is a semioval of size ¢ — 1 + a, where a = [{ N S].

10
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Remark 4.7. The blocking set B’ in Ezample [J.0 is necessarily minimal.
To see this consider any point R € B'\(¢ U {P}). As the bisecants of B’ pass
through P, it follows that there is no bisecant of B' through R and hence
Theorem part 1 yields that B' is minimal. |

Lemma 4.8. Let S be a semioval of size g — 1+ a in PG(2,q) and suppose
that there is a line ¢ which is an a-secant of S. Denote the set of tangents
through the points of S\l by L and let B = {Ny} v (SAl). Then one of the
following holds.

1. S is an oval.

2. L is contained in a pencil with carrier C. Then C € £ and B := B\{C}
is a blocking set of Rédei type with Rédei line £. In this case S can be
obtained from B’ as in Example .0 with P = Ny and W = C.

3. L is not contained in a pencil. Then B is a minimal blocking set of
Rédei type with Rédei line ¢ and

(a) pfa,
(b) for any R € S\ the line RNy is not a tangent to S,

(¢) if R1, Ry € S\{ and there is a point T € ¢ such that R;T meets
S U {Ny} in at least three points fori = 1,2, then for each M € ¢
we have |RiM n (S U {N})| = |RaM n (S U {Ny})|,

(d) if R1, Ry € S\l and the tangents to S at these two points meet
each other on the line £, then for each M € ¢ we have |R1M n
(S VAN = [R2M (S w {N})].

Proof. First we show that B is a blocking set of Rédei type. Take a point
R e S\l. As there is a tangent to S at R it follows that ¢ meets S in at most
g points and hence ¢ is blocked by B. Lines meeting ¢ not in S are blocked
by B since /\S < B. If a line m meets £ in S, then either m is a tangent to
S and hence Ny € m, or m is not a tangent to S and hence there is a point
of §\/ contained in m. As {N;} u (§\¢) c B, it follows that m is blocked by
B and hence B is a blocking set. The line ¢ meets B in |B| — ¢ points, thus
B is of Rédei type and /¢ is a Rédei line of B.

If a = 2, then S is an oval. From now on we assume a > 3. First suppose
that £ is contained in a pencil with carrier C. If C' ¢ ¢, then |£| < ¢+ 1—a,
but [£] = |S\{| = ¢ — 1. It follows that C € /.

Let B = B\{C}. In this paragraph we prove that B’ is a blocking set. It
is enough to show that the lines through C' are blocked by B’. This trivially

11
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holds for the ¢ — 1 lines in £. First we show that B’ blocks ¢ too. Suppose
to the contrary that /\(S U {C}) = & and hence a = q. As a > 3, we have
g = 3 and hence there are at least two points in S\¢. Take R,Q € S\¢ and
let M = RQ n¥. Since M # C, we have M € §. Then there are at least
two tangents to S incident with M and this contradiction shows that ¢ is
blocked by B’. Now we show C N, ¢ L. Suppose to the contrary that C N, is
a tangent to S at some V € S\¢. Then V(' is a trisecant of B. If there were
a bisecant v of B through V', then, by the construction of B, v would be a
tangent to S at V. This cannot be since the unique tangent to S at V is
VO, which is a trisecant of B and hence v # V. For any V' € S\({ U {V}),
there is a unique bisecant of B through V', namely V/C. We have shown
that there is a point in B\¢ not incident with any bisecant of B and there are
points in B\¢ incident with a unique bisecant of B. This cannot be because
of Theorem part 1 and Theorem 24 part 1. It follows that C'Ny is not
a tangent to S. As C'Ny is blocked by B’ and the other ¢ lines through C,
¢ and the lines of £, are also blocked, it follows that B’ is a blocking set. It
is easy to see that £ is a Rédei line of B’.

We show that there is no bisecant of B’ through the points of S\¢. Take
a point R € S\¢ and suppose to the contrary that there is a bisecant b of B’
through R. Then, by the construction of ', the line b is a tangent to S at
R. This is a contradiction since b # RC'. It follows that if B’ has bisecants,
then they pass through Ny. If there were a trisecant t of B’ through Ny,
then let V=1t n S. It follows that ¢ is a tangent to S at V. But we have
already seen that there is no line of £ incident with N,. This finishes the
proof of part 2.

Now suppose that S is as in part 3. If B were not minimal, then the
line set £ would be contained in a pencil with carrier on ¢, a contradiction.
Take a point R € S\¢. If RNy is the tangent to S at R, then there is no
bisecant of B through R, thus p | a (cf. Theorem part 1). If RNy is not
the tangent to S at R, then there is a unique bisecant of B through R (the
tangent to S at R), thus p } a (cf. Theorem [Z4] part 1). It follows that if
any of the lines of £ is incident with Ny, or if p | a, then the whole line set
L is contained in the pencil with carrier Ny, a contradiction. This proves
parts (a) and (b). Parts (c¢) and (d) follow from Theorem 2.4 parts 2 and 3,
respectively. |

Remark 4.9. The properties (a)-(d) in part 3 of Lemma[].§ also hold when
S is as in Example[{.0 From the properties of the point P in Example [{.0
it follows that for R € S\l the line RP is not a tangent to S and this proves
(b). As for any two points Ry, Ry € S\ there is no bisecant of B’ incident

12
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with Ry or Ry, properties (a), (c) and (d) follow from Theorem [2.3. [ |

Theorem 4.10. Let S be a semioval of size ¢ — 1+ a, a > 2, which admits
an a-secant £, and let m # £ be a k-secant of S.

1. For each R € S\{, the line RNy is not a tangent to S.

2. If k = 3, then the tangents to S at the points of m are contained in a
pencil with carrier on L.

3. If k> (a—1)/2, then k = a and Ny € m, or k = [a/2] and Ny ¢ m.

Proof. Part 1 follows from Lemma [L§ part 3 (b), and part 2 follows from
Lemma .8 part (c) with 7' = m n £.

To prove part 3 first suppose k > (a + 1)/2 and N; ¢ m. Let m nS =
{R1,Ro,...,R;}. The lines R;N, for i = 1,2,...,k cannot be bisecants
of S U {N,} since they are not tangents to S. Thus each of these lines
meets S U {Ny} in at least three points. Let B; = ¢ n R; Ny, then we have
|R;B; " (SU{Ny})| =3 forie{l,2,...,k}. We apply LemmalLY part 3 (c)
with 7' = ¢ n'm (note that k > (a +1)/2 > 2). For j € {2,...,k} we obtain
|R1Bj n (SU{Ni})| = |R;B;j n (S U {Ng})|, thus also [R1Bj n (S U {Ni})| =
3 for j € {2,3,...,k}. We have N, € RiB; and hence N, ¢ RB; for
j€{2,3,...,k}. It follows that RyBy U R1Bs U ... Ry By U m contains at
least 2(k — 1) + k = 3k — 2 points of S. As there is a unique tangent to S
at Ry, we must have a + (¢ — 1) — (3k — 2) = ¢ — k. This is a contradiction
when k > (a + 1)/2. It follows that lines meeting S in more than (a + 1)/2
points have to pass through N,.

Now suppose that m is a k-secant of S with (a — 1)/2 < k < a and
Nyem. Take a point Re mnS. As k < a, there is at least one other line
m’ through R meeting S in at least three points. Let R’ € (m’ n S)\{R}.
Lemma [ part 3 (¢) with T'=m/ n £ and M = m n ¢ yields that the line
joining R" and m n ¢ meets S in [(SuU {N¢}) nm| =k+1> (a+1)/2 points.
Then, according to the previous paragraph, this line also passes through Ny,
a contradiction. It follows that either k& = a and hence N; € m, or N; ¢ m
and hence (a —1)/2 <k < (a+1)/2. [ |

Lemma 4.11. Let S be a semioval of size ¢ — 1+ a in PG(2,q). For each
point R € S the number of lines through R meeting S in at least three points
18 at most a — 2. |

Theorem 4.12. Let S be a semioval of size ¢ — 1 + a, a > 2, in PG(2,q).
If § has two a-secants, then one of the following holds.

13
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1. S is the symmetric difference of two lines with one further point re-
moved from both lines.

2. S is projectively equivalent to Example[4.1]

Proof. Let /1 and /5 be two a-secants of S and let 8" = S\ (¢1 Ul3). Theorem
A1 yields Ny € 5 and Ny € £1. If &' = &, then S < 1 U (5 and it is easy to
see that S is as in part 1. If 8’ # ¢, then take any point R € S’. We show
that the tangent to S at R passes through P := {1 n/l3. As a > 2, there is a
line r through R meeting S in at least 3 points. According to Theorem [£T10]
part 2, the tangents to S at the points of r 1S pass through a unique point
of /1, and also through a unique point of ¢5. It follows that these tangents
pass through the point P.

We show that S8’ is contained in the line ¢3 := Ny N,. Suppose, contrary
to our claim, that there is a point R € §"\¢3. There is a line r through R
meeting S in at least three points. Since R ¢ {3, r cannot be incident with
both Ni and Ny. We may assume Ny ¢ r. Let M = r n /1. Note that
M ¢ S U {Ny, P}. Take a point Q € {5 1 S. Since the unique tangent to S
at @ is QNo, it follows that QM is a bisecant of S and it contains a unique
point of §’. Denote this point by R’. The tangents to S at R and R’ pass
through the same point of 1, namely P, and hence we can apply Lemma [Z.§
part 3 (d). It follows that 2 = [MR' n (SU{N1})| = [MRn (SU{N1})| = 3.
This contradiction shows &’ © /3. Lines meeting each of /1, {5 and /3 meet
S in at most two points. Take any point H € S n f3. Since the tangent to
S at H is PH, and the other lines through H are not tangents, we obtain
2a = [t 0S|+ |f2 nS| = qg—1 and hence a = (¢ — 1)/2. The size of S is
g—14+a=2a+|S51,s0 |S| =a = (¢g—1)/2. Tt is easy to show that S
is projectively equivalent to Example Il For the complete description of
semiovals contained in the sides of a vertexless triangle see the paper of Kiss
and Ruff [21]. [ |

A (k,n)-arc of PG(2,¢q) is a set of k points such that each line meets the
k-set in at most n points.

Theorem 4.13. Let S be a semioval of size g+ 3 in PG(2,q), q is a power
of the prime p. Then q =5 and S is the symmetric difference of two lines
with one further point removed from both lines, or ¢ = 9 and S is as in
Ezample[{1, orp=3 and S is a (¢ + 3,3)-arc.

Proof. It is easy to see that the points of S fall into the following two types:

e points contained in a unique 4-secant and in ¢ — 1 bisecants,

14
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e points contained in two trisecants and in ¢ — 2 bisecants.

If S does not have 4-secants, then the number of trisecants of S is (¢ +3)2/3,
thus 3 | ¢. Now suppose that S has a 4-secant, £. Theorem [I0 with a = 4
yields that S does not have trisecants. The assertion follows from Theorem
4,12 |

5 Small semiovals when ¢ is even

We will use the following theorem by Szényi and Weiner. This result was
proved by the so called resultant method. We say that a line ¢ is an odd-
secant (resp. even-secant) of S if [¢ N S| is odd (resp. even). A set of even
type is a point set H such that each line is an even-secant of H.

Theorem 5.1 (Szényi and Weiner, [27]). Assume that the point set H in
PG(2,q), 16 < q even, has § odd-secants, where § < ([\/GJ +1)(g+1— [\/QJ)

Then there exists a unique set H' of even type, such that |HAH'| = [% .

As a corollary of the above result, Szényi and Weiner gave a lower bound
on the size of those point sets of PG(2,¢), 16 < ¢ even, which do not have
tangents but have at least one odd-secant, see [27]. In this section we prove
a similar lower bound on the size of non-oval semiovals.

Lemma 5.2. Let S be a semioval in 11, that is, a projective plane of order
q. If |S| = g+ 1 + ¢, then S has at most |S|(1 + €/3) odd-secants.

Proof. Take P € S, then there passes exactly one tangent and there pass
at most € other odd-secants of S through P. In this way the non-tangent
odd-secants have been counted at least three times. |

Corollary 5.3. If S is a semioval in PG(2,q), 16 < g even, and |S| <
q+3 [\/GJ — 11, then S is an oval.

Proof. If § denotes the number of odd-secants of S, then Lemma yields:

0 < (q+3[val =1yl = 3) < (lVal + V(g = [val + 1).

By Theorem [B.Il we can construct a set of even type H from S by modifying

(add to S or delete from S) [%] < |v/@] + 1 points of PG(2,q).
If P € S is a modified (and hence deleted) point, then the number of

lines through P which are not tangents to S and do not contain modified

)

m] — 1). These lines are even-secants of H and

points is at least g — ([
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hence they are non-tangent odd-secants of S. It follows that the size of S is
at least 1+ 2(q — |,/g]), a contradiction.

Thus each of the modified points has been added. Suppose |S| > ¢ + 1.
As there is a tangent to S at each point of S, we have 2 < [q%] Let A and
B be two modified (and hence added) points. If the line AB contains another
added point C, then through one of the points A, B, C there pass at most
(|IS| —1)/3 + 1 tangents to S. If AB does not contain further added points,
then AB cannot be a tangent to S and hence through one of the points A,
B there pass at most |S|/2 tangents to S. Let A be an added point through

which there pass at most |S|/2 tangents to S and denote the number of
)

these tangents by 7. Through A there pass at least ¢+ 1 —7 — ([qu_l] — 1)

lines meeting S in at least two points. Thus from 7 < |S|/2 and from the

assumption on the size of S we get

q+3 Ve —11 = 7+2(¢+1-7—|/q]) = 2(¢—[/a]+1)—(¢+3|/a| —12)/2.

After rearranging we obtain 0 > ¢ — 13 [\@J + 38, which is a contradiction.
It follows that |S| < ¢+ 1, but also |S| = ¢+ 1 and S is an oval in the case
of equality. [ |

6 Point sets with few odd-secants in PG(2, ¢), ¢ odd

Some combinatorial results of this section hold in every finite projective
plane. As before, by II, we denote an arbitrary projective plane of order q.

Definition 6.1. Fiz a point set S < 1l,. For a positive integer i and a
point P € S we denote by t;(P) the number of i-secants of S through P. The
weight of P, in notation w(P), is defined as follows.

w(P) = Y t;(P)/i.
i odd

For a subset P = S, let w(P) = X pep w(P). Suppose that w(P) is known
for Pe{P|,Py,...,Pp} =8 n L, where { is a line meeting S in at least m
points. Then the type of £ is

[w(Py),w(Ps), ..., w(Py)]

Suppose that the value of t;(P) is known for a point P € S and for 1 <i <
q+ 1. Let {ay,a9,...,a;} = {i: t;(P) # 0}, then the type of P is

[altal(P)J a2ta2(P)7 . 7aktak(P)]'
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Example 6.2 (Balister et al. [I]). Let S = C u {P}, where C is a conic
of PG(2,q), q odd, and P ¢ C is an external point of C, that is, a point
contained in two tangents to C. Then the type of P is [1(q_1)/2, 22, 3(g—1)/2]
and w(P) = (q—1)/2+ (¢—1)/6. If Ty and T are the points of C contained
in the tangents to C at P, then the type of T; is [2441] and w(T;) = 0 for
i =1,2. Each point of C\{T1,T>} has type [11,24-1,31] and weight 4/3. The
number of odd-secants of S is 2q — 2.

Theorem 6.3 (Balister et al. [I Theorem 6]). The minimal number of
odd-secants of a (q + 2)-set in PG(2,q), q odd, is 2q — 2 when q < 13. For
q =T, it s at least 3(q + 1)/2.

Conjecture 6.4 (Balister et al. [I, Conjecture 11]). The minimal number
of odd-secants of a (¢ + 2)-set in PG(2,q), q odd, is 2q — 2.

The following propositions are straightforward.

Proposition 6.5. The number of odd-secants of S is w(S) = > peg w(P).
|

Proposition 6.6. Let S be a (g + 2)-set in 11, and let P be a point of S.
The smallest possible weights of P are as follows:

e w(P) =0 if and only if the type of P is [24+41],

e w(P) =4/3 if and only if the type of P is [11,24-1,31],

e w(P) =2 if and only if the type of P is [12,24—2,41],

o w(P) = 8/3 if and only if the type of P is [1a,24—3,32],

e w(P) =16/5 if and only if the type of P is [13,24—2,51],

e w(P) =10/3 if and only if the type of P is [13,24-3,31,41]. [ ]

Proposition 6.7. Let S be a point set of size ¢ + 2 in II; and let P be a
point of S.

1. If P is contained in a k-secant, then w(P) =k — 2,
2. if P is contained in at least k trisecants, then w(P) = %k.

Proof. In part 1, the number of tangents to S at P is at least ¢—(¢+2—k)
k—2. In part 2, P is incident with at least g+1—k—(¢+2—(2k+1)) =
tangents to S, thus w(P) > k/3 + k.

H = |
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Theorem 6.8 (Bichara and Korchmaros [5, Theorem 1]). Let S be a point
set of size ¢ +2 in PG(2,q). If q is odd, then S contains at most two points
with weight 0, that is, points of type [24+1].

Lemma 6.9. Let S be a point set of size ¢ + k in PG(2,q) for some k = 3.
Suppose that {1 is a k-secant of S meeting S only in points of type (24, k1].
Then the k-secants of S containing a point of type [24, k1] are concurrent.

Proof. Let 5,03 be two k-secants of & with the given property and let
R; € 4; n'S be a point of type [24, k1] for i = 2,3. It is easy to see that
B := ¢AS is a blocking set of Rédei type and Ry, R3 are not incident with
any bisecant of B. It follows from Theorem part 2 that /o nl3€ /1. N

Definition 6.10. A (q + t,t)-arc of type (0,2,t) is a point set T of size
(g +t) in PG(2,q) such that each line meets T in 0,2 ort points. In honor
of Korchmdros and Mazzocca such point sets are also called KM-arcs in the
literature.

Let T be a (q + t,t)-arc of type (0,2,t). It is easy to see that for ¢t > 2
there is a unique t-secant through each point of 7. It can be proved that
2 <t < ¢ implies ¢ even, see [22] by Korchméros and Mazzocca. As the
points of T are of type [24,t1], the following theorem by Gécs and Weiner
also follows from Lemma For recent results on KM-arcs we refer the

reader to [13].

Theorem 6.11 (Gécs and Weiner [16, Theorem 2.5]). Let T be a (q+t,t)-
arc of type (0,2,t) in PG(2,q). Ift > 2, then the t-secants of T pass through
a unique point. [ |

The proof of our next result is based on the counting technique of Segre.
A dual arc is a set of lines such that no three of them are concurrent.

Theorem 6.12. Let S be a point set of size ¢ + k in PG(2,q), q odd.

1. If k = 1, then the tangents to S at points of type [11,24] form a dual
arc.

2. If k = 2, then there are at most two points of type [24+1].

3. If k = 3, then the k-secants of S containing a point of type [24, k1]
form a dual arc.
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Proof. Suppose the contrary. If £k = 1, then let A, B and C be points
of type [11,2,] such that the tangents through these points pass through a
common point D. If k = 2, then let A, B and C be three points of type
[24+1] and take a point D ¢ (Su AB U BC u CA). If k > 3, then let A, B
and C' be points of type [2,, k1] such that the k-secants through these points
pass through a common point D ¢ (AB u BC' u C'A). In all cases, A, B,
C and D are in general position, thus we may assume A = (o0), B = (0,0),
C =(0)and D = (1,1). Let 8’ = S\{4, B,C}. Note that AB, BC and C A
are bisecants of S and C'A is the line at infinity, thus S’ is a set of ¢ + k — 3
affine points, say S’ = {(a;,b )}q+k 3 Forie{l,2,...,q+k— 3} we have
the following.

e The line joining (a;,b;) and A meets BC' in (a;,0),
e the line joining (a;,b;) and B meets AC in (b;/a;),
e the line joining (a;,b;) and C meets AB in (0,b;).

The lines AD, BD and CD meet 8’ in k — 1 points. The lines AP for
P € S"\AD meet S’ in a unique point. Since the first coordinate of the
points of AD n &’ is 1, it follows that {al}q% ® is a multiset containing
each element of GF(q )\{0 1} once, and containing 1 k£ — 1 times. Thus

Hquk 34; = —1. Similarly, the lines through B yield Hq+k 3b; ija; = —1,
and the hnes through C' yield Hq+k 3b; = —1. It follows that
q+k—3 q+k—3 b q+k—3
1=(=1)(-1) = ( I a,-> ( I1 > H bi =
i=1 i=1
a contradiction for odd gq. [ |

The following immediate consequence of Theorem [6.12] and Lemma
will be used frequently.

Corollary 6.13. Let S be a point set of size g+ k, k = 3, in PG(2,q). If
there exist three k-secants of S, (1, £y and {3, such that the points of /1 NS
are of type (24, k1] and both 3 NS and {3 NS contain at least one point of
type (24, k1], then q is even.

Proof. Lemma[6.9 yields ¢5 n {3 € £1, but then Theorem [6.12] implies g even.
[ |
For the definition of a nucleus NV; of a line ¢; see Proposition
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Lemma 6.14. Let S be a set of ¢ — 1 + a points, a = 3, in PG(2,q), where
q is a power of the prime p. Suppose that {1 and {5 are a-secants of S such
that there is a unique tangent to S at each point of S N ¥;, for i =1,2.

1. FEither Ny € {5 and Ny € {1, or

2. N1 = No, p | a and for each R € S if there is a unique tangent r to S
at R, then r passes through the common nucleus.

3. Let U3 be another a-secant of S such that there is a unique tangent to
S at each point of S n 3. If q or a is odd, then 3 = N1Ns, thus in
this case {3 is uniquely determined.

Proof. If {1 n {3 € S, then |S| = 2a + ¢ — 3, which cannot be since a > 3.
First assume N; # N, and suppose to the contrary No ¢ £1. Then B :=
{N1} U (¢1AS) is a blocking set of Rédei type. There is a unique bisecant of
B at each point of S n ¢5 (the tangent to S). This is a contradiction since
these bisecants should pass through the same point of ¢; (apply Theorem
24 part 2 with T' = ¢4 N £3).

If Ny = Ny =: N, then we define B in the same way. Then there is no
bisecant of B through the points of B N fy. Theorem 23] yields p | a. Take a
point R € §\(¢1 U £2) incident with a unique tangent r to S. If N ¢ r, then r
is the unique bisecant of B through R, a contradiction because of Theorem
24 part 1.

Suppose that £3 is an a-secant with properties as in part 3. Then either
3 = N1Ny and N3 = £1 nly, or N3 = Ny = Ny =: N and p | a. In the
latter case Corollary applied to S U {N} and to the lines ¢1, 5 and /3
yields p = 2. |

Lemma 6.15. Let S be a set of ¢+ 2 points in PG(2,q), q is a power of the
odd prime p, and suppose that £ is a trisecant of S of type [4/3,4/3,4/3].

1. If p = 3, then the tangents at the points of S with weight 4/3 pass
through Ny. There is at most one other trisecant of S of type [4/3].

2. Ifp # 3, then the trisecants of type [4/3,4/3] pass through Ny. Suppose
that there is another trisecant ¢y of type [4/3,4/3,4/3]. Then there is
at most one other trisecant of type [4/3,4/3], which is NyNy. If NyNy
is a trisecant of type [4/3,4/3], then the tangents at the points of NyNy
with weight 4/8 pass through € n ¢y.

Proof. Let B denote the Rédei type blocking set ((AS) U {Ny}.
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First we prove part 1. Take A € S\¢ such that w(A) = 4/3 and denote
the tangent to S at A by a. If Ny ¢ a, then there is a unique bisecant of
B through A, thus Theorem 24 yields p # 3, a contradiction. Denote the
trisecant through A by ¢;. If there were a trisecant ¢y of type [4/3] different
from ¢ and {1, then Corollary [6.I3] applied to S U { N} and to the lines ¢, ¢;
and /5 would yield ¢ even, a contradiction.

Now we prove part 2. First suppose to the contrary that there is a
trisecant ¢ of type [4/3,4/3] with Ny ¢ ¢5. Let A, B € {5 n' S such that
w(A) = w(B) = 4/3. Denote the tangents to S at these two points by a
and b, respectively. We have Ny ¢ a and Ny ¢ b, since otherwise we would
get points not incident with any bisecant of B, a contradiction as p # 3
(cf. Theorem [Z3]). It follows that NyA and N;B are 4-secants of B. Let
M = NyA n (. Then Theorem 24 part 2 (with T' = £ n l3) yields that M B
is also a 4-secant of B and hence a trisecant of S (we have Ny ¢ M B). A
contradiction, since M B # {5. 1t follows that N, € £5.

Let ¢1 be trisecant of S of type [4/3,4/3,4/3] and let {5, A, B, a and
b be defined as in the previous paragraph. It follows from Lemma
that Ny € £1 and Ny € £. It also follows from the previous paragraph that
Ni € 05 and Ny € o, thus fo = N1 N,;. Theorem [2.4] applied to B and to
((1AS) U {N;} yields that a and b pass through a unique point of ¢ and
through a unique point of ¢1, thus they pass through ¢ n /5. |

Let S be a set of ¢ + 2 points of PG(2,¢q), ¢ odd. Since ¢ + 2 is odd,
each point P ¢ S is incident with an odd-secant of S. It follows that the
odd-secants of S cover the points of PG(2,q) except for the points of S
with weight zero. For partial covers of PG(2,q) we refer the reader to [8|
Proposition 1.5]. The lower bound on the size of an affine blocking set
[11L [18] yields the following result. Its proof can be found in [I0] at the top
of page 211, as part of a more complex argument. For a proof in the dual
setting see [Il Lemma 10].

Lemma 6.16 (Blokhuis and Mazzocca [10]). Let S be a set of ¢+2 points of
PG(2,q), q odd. If S has d € {1,2} points with weight zero, then the number
of odd-secants of S is at least 2q — d.

Theorem 6.17. Let S be a point set of size ¢ + 2 in PG(2,q), 13 < q odd.
Then the number of odd-secants of S is at least [%q + 15—2]

Proof. Let d denote the number of points of S with weight zero. Theorem
of Bichara and Korchméros yields d < 2. If d € {1, 2}, then Lemma [6.10]
yields w(S) = 2q — 2, which is at least [%q + 1—52] when ¢ > 11. From now
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on we assume d = 0. Consider the following subsets of S:
B:={Pe€S: P is contained in a trisecant of type [4/3,4/3,4/3]},

C:={PeS:w(P)+#4/3, P is contained in a trisecant of type [4/3]}.

Denote the size of C by m and let C = {Py, P, ..., Py}. Fori =1,2,...,m,
let
Vi={QeS: w(Q)=4/3 and QPF; is a trisecant} U {P;}.

Also, let Dy := V; and D; := VZ\(U;_:llVJ) for i € {2,3,...,m}. Of course
the sets D1, Ds,...,D,, are disjoint and P, € D; < V;. The point set
D := U™, D; contains each point of S\B with weight 4/3. Note that each
point of D; has weight 4/3, except P;. We introduce the following notion.
For a point set U = S let a(U) denote the average weight of the points in U,
that is, a(U) = w(U)/|U|. First we prove o(D;) = 8/5 for i =1,2,...,m. If
ts(P;) = k (cf. Definition [6.]), then

|D;| < |Vi| <2k + 1. (5)

If & = 1, then Proposition yields w(P;) = 10/3 (since w(P;) # 4/3),
hence in this case we have
10/3 + (|D;| — 1)4/3 2
=4/3 +
| Dil | D]

a(D;) = > 2. (6)

If k > 2, then Proposition [6.7] yields w(P;) = 4k/3, thus

4k/3 + (|D;]| = 1)4/3 _

(k-1 _,
| D

D) > >2-
(D) D] 2% + 1

4/3 +

> 8/5. (7)

We define a further subset of S, £ := S\(B u D). Note that w(D) >
ID|2 and w(€) > |€]2, since each point of € has weight at least 2 (see
Porposition [6.0). The point sets B, D and £ form a partition of S, thus
w(S) = w(B) + w(D) + w(€). We distinguish three main cases.

1. There is no trisecant of S of type [4/3,4/3,4/3]. Then we obtain
w(S) = (q+2)8.

2. There is at least one trisecant of S of type [4/3,4/3,4/3] and p #
3. Denote the number of trisecants of S of type [4/3,4/3,4/3] by s.
LemmaB TN yields s < 3. If s = 1, then w(s) > 33+ (¢—1)2 = ¢¥+22.
If s = 2, then according to Lemma there is at most one other
trisecant of type [4/3,4/3]. Thus in ([B) we have |D;| < |Vi| < k + 2,
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where k = t3(P;). If k = 1, then similarly to (6) we obtain «(D;) > 2.
If k > 2, then similarly to (@) we obtain a(D;) > 2. It follows that
w(S) =63 + (¢ —4)2 = ¢2 + 3. If s = 3, then according to Lemma
there is no other trisecant of type [4/3,4/3]. Thus in (Bl we have
|D;| < |Vi| < k+1. If k = 1, then similarly to () we obtain a(D;) > £,
if k > 2, then similarly to (7)) we obtain a(D;) = %. It follows that
w(S) =95+ (¢—TE =q¢f -2

3. There is at least one trisecant ¢ of S of type [4/3,4/3,4/3] and p = 3.
It follows from Lemma that the number ¢ of further trisecants
of type [4/3] is at most one. First suppose ¢ = 0. As D is empty,
we obtain w(S) > 33 + (¢ —1)2 > 2¢ + 2. If g = 1, then let r # ¢
be the other trisecant of S of type [4/3]. Let t € {1,2,3} be the
number of points with weight 4/3 in r n S. It follows that w(S) =
B+t)s+(B—t)3+(¢—4)2>63+ (¢—4)2=2q. u

For a line set £ of AG(2,q), ¢ odd, denote by w(L) the set of affine
points contained in an odd number of lines of £. [28, Theorem 3.2] by
Vandendriessche classifies those line sets £ of AG(2, ¢) for which |£|+w(L) <
2q, except for one open case (|28, Open Problem 3.3]), which we recall here.
For applications in coding theory we refer the reader to the Introduction of
the paper of Vandendriessche and the references there.

Example 6.18 (Vandendriessche [28, Example 3.1 (i)]). £ is a set of ¢ +k
lines in AG(2,q), q odd, with the following properties. There is an m-set
S cly with4d <m < qg—1 and an odd positive integer k such that exactly
k lines of L pass through each point of S and w(L) = q — k.

Proposition 6.19. Example [6.18 cannot exist.

Proof. The dual of the line set £ in Example[G.I8]is a point set B of size ¢+ k
in PG(2,¢q), such that there is a point O ¢ B (corresponding to {4 ), with
the properties that through O there pass m k-secants of B, (1,0, ..., lp,
and the number of odd-secants of B not containing O is ¢ — k (¢, m and k
are as in Example [6.18]).

As g+ k is even and k is odd, it follows for i € {1,2,...,m} and for any
R € 0;\(B u {O}) that through R there passes at least one odd-secant of B,
which is different from ¢;. As the number of odd-secants of I not containing
O is q — k, and |[(;\(B U {O})| = q — k, it follows that there is a unique
odd-secant of B through each point of B n ¢;, namely ¢;. But |[B\(;| = ¢,
thus lines not containing O and meeting ¢; in B are bisecants of B (otherwise
we would get tangents to B not containing O at some point of ¢; " 3). Then
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for i € {1,2,...,m} the points of B n ¢; are of type [24,k1]. As m >3 and
the lines ¢4,..., ¢, are concurrent, Theorem [6.12] yields a contradiction for
odd gq. [ |

Remark 6.20. Together with other ideas, our method yields lower bounds
on number of odd-secants of (q + 3)-sets and (q + 4)-sets as well. We will
present these results elsewhere.

Acknowledgement. The author is grateful to the referees for their
useful comments, in particular for the insight that a previous version of
Theorem [4.12] can be improved.
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