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COMPOSITE RATIONAL FUNCTIONS AND
ARITHMETIC PROGRESSIONS

SZ. TENGELY

ABSTRACT. In this paper we deal with composite rational func-
tions having zeros and poles forming consecutive elements of an
arithmetic progression. We also correct a result published in [12]
related to composite rational functions having a fixed number of
zeros and poles.

1. INTRODUCTION

We consider a problem related to decompositions of polynomials and
rational functions. In this subject a classical result obtained by Ritt
[13] says that if there is a polynomial f € C[X] satisfying certain
tameness properties and

f=giogeo---0g, =hyohgo---0hg,

then r = s and {degg,...,degg,} = {deghy,...,degh,}. Ritt’s fun-
damental result has been investigated, extended and applied in various
wide-ranging contexts (see e.g. [4l 6] [7, @, 10, 1], 14, [15]). The above
mentioned result is not valid for rational functions. Gutierrez and
Sevilla [9] provided the following example

2’z +6)*(2* — 62 + 36)°
/= (x—3)3(22 43z +9)3 ’
x(x —12) . z(x +6)

f=gogog=210

r—3 x—3
w3(x+24) xz(2? — 62 + 36)

— hioh, —
J=lneoh =— —5—°— 5319

To determine decompositions of a given rational function there were
developed algorithms (see e.g. [I, 2, 3]). In [2], Ayad and Fleischmann
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implemented a MAGMA [5] code to find decompositions, they provided
the following example

! — 8z
f=—=
x5 +1
and they obtained that f(z) = g(h(x)), where
2 2 _
T +4x and Bt 2x.
x+1 r+1

Fuchs and Pethd [§] proved the following theorem.

Theorem A. Let k be an algebraically closed field of characteristic
zero. Let n be a positive integer. Then there exists a positive integer
J and, for everyi € {1,...,J}, an affine algebraic variety V; defined
over Q and with V; C A" for some 2 < t; < n, such that:

(i) If f,g,h € k(z) with f(x) = g(h(x)) and with deg g,degh > 2, g
not of the shape (A(z))™,m € N, X € PGLs(k), and f has at most n
zeros and poles altogether, then there exists for some i € {1,...,J}
a point P = (aq,...,an, B1,...,0,) € Vi(k), a vector (ky,..., k) €
7' with k1 + ko + ... + ki, = 0 depending only ll on V; , a partition
of {1,...,n} in t; + 1 disjoint sets Su, Sp,, ..., S, with Soe = O if
ki+ko+ ...+ Kk, =0, and a vector (Iy,...,l,) € {0,1,...,n — 1},
also both depending only on V;, such that

ti t;
fa) =[Jwi/we), glx)=]](x-B8)"
j=1 j=1
and
hz) = @-4—5—3' (j=1,...,t), ifki+ko+ ...+ k, #0
= % (1<j1<jo<t;), otherwise,
2 1
where
w; = H(QE‘—Ozm)lm, jzl,,tl
mEng
and

Woo = H (z — apy)'™.
meSso
Moreover, we have deg h < (n — 1)/ max{t; — 2,1} <n — 1.
(ii) Conversely for given data P € Vi(k), (K1, ..., k), Soos Spys - -5 58,
(I1,...,1,) as described in (i) one defines by the same equations ratio-
nal functions f, g, h with f having at most n zeros and poles altogether

for which f(x) = g(h(zx)) holds.

lin [8] it is written as ”or not depending”, this typo is corrected here.
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(i1i) The integer J and equations defining the varieties V; are effec-
tively computable only in terms of n.

Pethé and Tengely [12] provided some computational experiments
that they obtained by using a MAGMA [5] implementation of the al-
gorithm of Fuchs and Pethé [§].

If the zeros and poles of a composite rational function form an arith-
metic progression, then we have the following result.

Theorem 1. Let f, g, h be rational functions as in Theorem A. Assume
that the zeros and poles of f form an arithmetic progression, that is
o = g + Ed
for some ag,d € k and T; € {0,1,...,n—1}. If by + ko + ...+ ks # 0,
then either the difference d satisfies an equation of the form
dv =M

for some N € Z,M € Q or (Iy,...,l,) € {0,1,...,n — 1}" satisfies a
system of linear equations

b= 1, ije{l.. thi#]

TESﬁi SGS;;J.

[fk1+k2—|——|—]€t20 and1§j1 < g2 <Js <t, then

> Im > Im > .
d m1€SBj1 7 17d 111265’53_2 27d m3635j3 m3

satisfy a system of linear equations and f3;,, Bj,, Bj, satisfy a system of
linear equations.

We will apply the above theorem to determine composite rational
functions having 4 zeros and poles. We prove the following statement.

Proposition 1. Let k be an algebraically closed field of characteristic
zero. If f,g,h € k(x) with f(x) = g(h(z)) and with deg g,degh > 2, g
not of the shape (A(z))™,m € N, X € PGLy(k), and f has 4 zeros and
poles altogether forming an arithmetic progression, then f is equivalent
to the following rational function

(x — )™ (z — g — d)*2 (2 — ap — 2d)* (z — g — 3d)™,
for some ag,d € k and ki, ky € Z, k1 + ko # 0.

In this paper we correct results obtained in [I2], where the com-
putations related to the case ky + ko + ... + k # 0,5 = 0 are
missing. The following theorem is the corrected version of Theorem

1 from [12], where part (c¢) was missing. We define equivalence of ra-
(1)

tional functions. Two rational functions f;(z) = szl(x—az(})) v and
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fo(z) = TT0_ (x — ai?) ¥ are equivalent if there exist a,, € Q,u €
{1,2,...,n},v e {1,2,...,n+ 1} such that

o = g0l + 002+ .+ 02+
forall w € {1,2,...,n}.

Theorem 2. Let k be an algebraically closed field of characteristic zero.
If f,9,h € k(x) with f(x) = g(h(x)) and with degg,degh > 2,g not
of the shape (A\(x))™,m € N,\ € PGLy(k), and f has 3 zeros and
poles altogether, then f is equivalent to one of the following rational
functions

(a) (o) (@41/d—aq )2 for some oy € k and ky, ko € Z, ki + ko # 0,

(x 1/4 041)2]‘1 +2ko

(b) (=l 2™ for Some an, 0z € k and ki, ks € 7,k +

k2 7é Oa
(c) (z— %)%1 (x — ap)*2(x — au)*2 for some oy, € k and
ki,ko € Z, k1 + ko 7é0

Remark. The MAGMA procedure CompRatFunc.m can be downloaded
from http://shrek.unideb.hu/~tengely/CompRatFunc.m. All sys-
tems in cases of n € {3,4,5} can be downloaded from
http://shrek.unideb.hu/~tengely/CFunc345.tar.gz.

Remark. It is interesting to note that in the above formulas the zeros
and poles form an arithmetic progression

1 1
(a): o ——, 09,09 + 1 difference: T

4
(b): 1, a9, —ag + 2a9  difference: ay — oy,
a1 + Qo . Qg — O
(¢): oy, 5 Q2 difference: :

2. AUXILIARY RESULTS

We repeat some parts of the proof of Theorem A from [8] that will
be used here later on. Without loss of generality we may assume that
f and g are monic. Let

n

fl@) =] — )t

i=1

with pairwise distinct «; € k and f; € Z for ¢ = 1,...,n. Similarly, let

=[-8~
7=1
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with pairwise distinct 3; € k and k; € Z for j = 1,...,t and t € N.
Hence we have

n

[[(x = = f(z) = g(h(2)) = [ (hl=) — 8;)".

i=1 j=

[y

We shall write h(z) = p(z)/q(x) with p,q € k[z], p, ¢ coprime. Fuchs
and Pethé [8] showed that if ki + ko + ... + k¢ # 0, then there is a
subset Sy, of the set {1,...,n} for which

gz) = [] (& - am)™

mESeo

and there is a partition of the set {1,...,n} \ S in ¢ disjoint non
empty subsets Sg,,...,Ss, such that

1 l
(1) M) =6+ o T =o'

mGng

where [, € N satisfies [,,k; = f,, for m € Sg;, and this holds true for
every j = 1,...,t. We get at least two different representations of h,
since we assumed that ¢ is not of the special shape (A(z))™. Therefore
we get at least one equation of the form

(2) @.+L H(x—ozr)“zﬁfr% IT @ —a-.

q(I) TESﬁ.
If ki +ko+...4 ks =0, then we have

(p(x) = Biq(x))" = H (z — am)’™.

mEng

Now we have that ¢t > 3, otherwise ¢ is in the special form we excluded.
Siegel’s identity provides the equations in this case. That isif 1 < j; <
J2 < j3 < t, then we have

(3) Uj1gags + Vsiirge + Viasain = 0,

where

Vj1,52,53 = (5]'1 - ﬁjz) H (ZE — Oém)lm.

mEngS
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3. PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. If ki + ko + ... + k; # 0 and there exist r; €
Sg;; 51 € Sp; for some i # j such that I, # 0 and [, # 0, then it
follows from (2) that

HSESﬁj (aTl - O{s>ls

[lmes., (@ — am)m’
Hresﬁi(o‘m — )"
l_Imesoo (g, — Qv )l
for any appropriate a,, € Sp, and «j, € Sg;. Hence we obtain that

lr=>, l
ZTESBi T ZsESBj S

Cl(i,j,rl,sl):d y
where C (i, j, 71, 51) € Q. If there exist S, and S, for which Zresgi l,—
Y ose Ss. ls # 0, then the possible values of d satisfy equations of the form
2V = M. Otherwise we get that

b= 1, djef{l,.. thi#]

TESBi 86353.

(4) Bi — ﬁj =

(5) Bi—Bi = —

Let us consider the special case when [, = 0 for all r € Sp,. If [; =0
for all s € Sg;, then we get that

1 1
hz) =B+ —=08+——.
D= I
Hence 3; = B; for some i # j, a contradiction. Thus we may assume
that there exists s; € Sp; for which [, # 0. In a similar way as in the
above case it follows that

6) Bi—f = [Lees,, (On — o) 1
Z ’ HmESoo (Qr, — )t HTTLESoo (v, — )l
1
(7)) Bi—B; - :
’ HmESoo (s, — O‘m)lm
Therefore

. ls
dZéESBj - C12 (Za ja 1, Sl)a
where Cs(i, j,71, s1) € Q. Since s; > 0 we have that Zsesﬁ. ly # 0, that
J

is d satisfies an appropriate polynomial equation.
If ky+ko+...4+k; = 0, then there are at least 3 partitions and for any
appropriate 1y € Sp, , 79 € Sp, , 73 € Sp;, (that is I, # 0,i = 1,2,3)
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equation (3] implies that
(BJB - le) H (047,3 - Oémz)lm2 + (sz - ng) H (aT’g - Qmy )lml =0

m2655j2 m1€5'5j1
lm lmy
B = Bix)  TI (s = amg)™s + (B, = 835) [ (ors —amy)™ = 0
m3€5gj3 m1€ng1
(5 T 52) (aT’l — Qm )lmB + (5 - 51) (047’1 - amg)lm2 = 0,
J J 3 J3 J
m3€5’5j3 ngngQ

that is a system of linear equations in dy, ds, d3, where d; = d 15, 1€

{1,2,3} and the statement follows. In a very similar way we obtain a
system of equations if [, = 0 for all » € Sg,_, the last two equations
are as before, while on the left-hand side of the first one there is an
additional term §;, — 3;,. O

Proof of Theorem 2. In [12] all cases are given with ky+ko+...+k; =0
and also with ky + ko + ... + k; # 0, S, # 0. Therefore it remains to
deal with those cases with k; + ko + ... + ki # 0,5, = 0. First let
t = 2. There are 18 systems of equations. Among these systems there
are two types. The first one has only a single equation, e.g. when
Sp, = {1,2}, 55, = {3}, (1, l2,l3) = (1,0, 1), this equation is as follows

ar—az— P+ 2 =0.
Hence
h(z) =B+ (x —a1) = B2+ (7 — a3)
is a linear function. A system from the second type is given by Ss, =
{1,2}, 85, = {3}, (I1,12,13) = (1,1,2) and equations as follows

a1 + ag — 20&3 =0
(g —a3)®> =B+ B = 0.
That is we obtain that

2
o) = pat (2= 2222

g(x) = (iﬂ — P2 — (az ; a1)2> ’ (x = Ba)*,

a1 + Qo

f) = (o= >2k1($—a1)k2(93—a2)k2-

It is a decomposition of type (c) in the theorem. Let ¢t = 3. There are
6 systems of equations, all of the same type, e.g. Sz, = {1},S55, =
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{2}a 553 = {3}7 (l1>l2>l3) = (17 1a 1) and
o —az—pF1+8; = 0
ay—oag—Po+ B3 = 0.

Hence the degree of h is 1, that yields a trivial decomposition. U

4. PROOF OF PROPOSITION (I

Proof of Proposition[l. In this section we apply Theorem 1 to deter-
mine composite rational functions having zeros and poles as consecu-
tive elements of certain arithmetic progressions. We need to handle the
following cases

(I) : n=4andte{2,3,4} k1 +ko+...+k #0,5, =0,
(IT) : n=4andte€ {2,3}, ki +ka+...+ ki #0,S, #0,
(IIT) : n=4dandte {3,4}, k1 +ho+...+k =0,5. = 0.

In the proof we use the notation of Theorem 1, that is we write
a; = Qg + Ed7

where ag,d € k and {T1,T5, 13,174} = {0,1,2,3}.
(I) -t =2,{|91, 9,1} = {1,3}. We may assume that Sz, = {1}, 53,
{2,3,4}. We obtain that
h(z) = B+ (z—ar)",
h(z) = Bo+ (z—ag)?2(z — as)®(x — ay)™.

Substituting © = aw, as, ay yields (assuming lyl3ly # 0)

(Oég - Oél)ll = (Oég - Oél)ll = (Oé4 — Oél)ll.

Since the zeros and poles form an arithmetic progression one gets that
either d = 0 or [y = 0. In the former case the zeros and poles are not
distinct, a contradiction. In the latter case the degree of h is less than
2, a contradiction as well. If two out of I, l3, [, are equal to zero, then
it follows that [y = 1, hence the degree of h is 1, a contradiction. If
exactly one out of ls, [3, 4 is zero, then [; = 2 and the corresponding f
has only 3 zeros and poles. As an example we consider the case I, = 0.
We obtain that

o + o g — 2
ap = 22 ° and 52251+< 22 3)-

It follows that f(z) = (z — %)2 fi(x), where deg f; = 2.
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(I) -t =2,{|59,1, |98, |} = {2}. Here we may assume that Sz, = {1, 2}, S, =
{3,4}. We get that

hz) = Bi+ (v —a)(z —ag),
h(z) = Bo+ (z—a3)(x—ay)k.
It follows that (assuming that 0 ¢ {l1,l,(3,14})

(a1 — a3)® (o1 — )™ = (2 — 3)" (2 — oug)™
and
(Oég — Oél)ll (Oég — Oég)l2 = (Oé4 — Oél)ll (Oé4 — Oég)l2.

Using the fact that the zeros and poles form an arithmetic progression
it turns out that one has to deal with 80 cases.

e There are 8 cases with (Iy,[s,03,04) = (1,1,1,1). We obtain

) Y )

equivalent solutions, so we only consider one of these. Let ay =
g, g = o + 3d. It follows that 8, = 3; — 2d%. That is we have

g(x) = (z—Bi)( — B+ 2d%),
h(z) = B+ (x—ap)(z — oy — 3d),
f(x) = (x—ap)(r—ap—d)(x — ag— 2d)(z — g — 3d).
e There are 16 equivalent cases with ({1, ls, l3,14) € {(1,1,2,2),(2,2,1,1)}.
One obtains that d* = 1 and 8, = 1 + 1. One example from
this family is given by
g(x) = (z—B)(z—fi—1),
hz) = B+ (z—ap—V2/2)%x — ap — V2)?

f(z) = (r— ) (m—ao—§> (. — ap — V2)? (I—Oéo—#) fa(x),

where fo(z) is a quadratic polynomial such that f has more
than 4 zeros and poles. We remark that if we use the equations
related to $ we have

g(x) = (z—PF2)(z—PBa+1),
hz) = Bo+ (z—ap)(z —ap—3V2),

flz) = (x— ) (m—ao—g> (a:—ozo—\/i) (x—ao—%ﬂ>,

that is we obtain a ”solution” covered by the family given by
the case (l1,12,13,04) = (1,1,1,1).

)Y )
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e There are 8 equivalent cases with (I1,ls,13,14) =

(2,2,2,2). All

of these cases can be eliminated in the same way. From the

equation

(a1 — a3)®(ay — ay)™* = —(az — 1) (a3 — ay)

it follows that

(Th = T3)"(T) — To)

dl1+12—l3—l4 _
—(Tg — Tl)ll (Tg — Tg)l2 ’

where {17, 15, T3, T, } = {0,1,2,3}. The left-hand
and the right-hand side is -1, a contradiction.
e There are 16 equivalent cases with (11, ls,l3,14) € {

As an example we handle the one with (I, ls,13,14) = (3, 3,

and

a1 = Oy,

ay = o+ 3d,
a3 = ag+ 2d,
oy, = Oog+ d.

Equation (8) implies that either d = 0 or d* =
then we get

= (z—=pB)(x—Bi+1),
= B+ (z— )@ —ay—3vV2/2)3,

2

l2

sideis d® =1

(1,1,3,3),(3,3,1
3,3,1,1)

LI =

1
29

D}

= (z—a)? (l’—ao—@) (x— g —V?2) (x—ao—M> f3(),

where f3(z) is a quartic polynomial resulting an f having more

than 4 zeros and poles. If d? = —%, then we get

= (z—=B)(xz— B —1),
= Bi+(z— )z —ay—3vV-2/2)3,
V-2

— (l’—ao)g(x—ao—?) (:):—ozo—\/—_Q)(

3v—2

Ty -

where f; is a quartic polynomial and we get a contradiction in

the same way as before.

)f4()
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e There are 16 equivalent cases with ({1, ls, l3,14) € {(2,2,3,3),(3,3,2,2)}.
We handle the case with (11,12, 13,14) = (3,3,2,2) and

a1 = o+ 3d,
Q2 = Qp;,

a3 = op+ 2d,
oy, = Oog+ d.

It follows from equation (B) that d = 0 or d* = 1. Also we have
that 8o = 1 — 1. In a similar way as in the above cases we
obtain a composite function f having 4 zeros and poles form-
ing an arithmetic progression, but an additional quartic factor
appears, a contradiction.

e There are 8 equivalent cases with (I, ls,l3,14) = (3,3, 3,3). Here
we consider the case with

air = Qo
Qo = Qg+ 3d,
a3 = Qg+ d,

Qy = a0+2d.

It follows that 3, = 3;—8d°. As in the previous cases g(h(x)) has
4 zeros and poles coming from an arithmetic progression, but
there is an additional quartic factor yielding a contradiction.

If 0 € {l1,ls,15,14}, then we have three possibilities. Either
{li, 5} = {ls,la} = {0,1} or {ls, 1o} = {1}, {ls,la} = {0,2} or
{li,lo} = {0,2},{l3,l4} = {1}. In the first case the degree of
h is 1, a contradiction. The last two cases can be handled in
the same way, therefore we only deal with the case {l;,l} =
{1}, {ls, 1.} = {0,2}. Without loss of generality we may assume
that I3 = 2,1, = 0. It follows that a; = 2a3 — ay and [y =
51 — (Oég — Oé3)2. Thus

h(z) = b1+ (x —2a3+ az)(z — ag),
g(x) = (z—pB)(x — B+ (a2 — a3)?),
flz) = (z—ag)(r —as)*(z — 203 + ay).

We conclude that f(z) has only 3 zeros and poles, a contradic-
tion.
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(I) :t=3,|Ss]| =158] =1,|9,| = 2. Here we may assume
that Sg, = {1}, S5, = {2}, Ss, = {3,4}, that is one has
W) = B+ (z— o),
h(z) = Bo+ (v —a2)”,
h(r) = B3+ (. —a3)®(z — ay)™,

where [1,1ls € {2,3}. Let us consider the case I3 # 0,14y # 0.
Substitute as, ay into the above system of equations to get
Bs = B+ (az—a)",
Bs = Bo+ (a3 —an)?,
By = P+ (as—ay),
By = Pot (ou—an)®
These equations imply that o; = a; for some @ # j, a contra-

diction. Now assume that l; = 0, hence I3 = 2 or 3. We can
reduce the system as follows

(Oél — Oég)l2 + (042 — Oél)ll = O,
(Oél — Oég)lg —+ (Oé3 — Oél)ll = O,
(Oég — Oég)l3 + (Oé3 — 042)12 = O,

where [y, 5,15 € {2,3}. We get a contradiction in all these cases.
(1)1t = 4,85 = {1}, S5, = {2}, 55 = {3}, S, = {4}. We ob-
tain the system of equations

h(x) + (2 — o),
h(z) = Bg + (2 — )",
h(z) = B3+ (z—a3)s,
h(z) = Bs+ (z—oy),

where [; > 2 (since deg h > 2.) Here we prove that this type of
composite rational function cannot exist. One has that for any
different i, j

(a5 = )7 = (~1)!+1,

If I, = l; = 2, then we have a contradiction. Assume that
l; = 2. There exist [; = [, = 3. Hence a; = a; — 1 and «o; =
ar — 1, a contradiction. Let us deal with the case (I3, 12, 13,14) =
(3,3,3,3). Substituting a; + ay into the system of equations
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yields 81 = By + a3 —ai. We also have that 8; = B+ (a1 — ).
By combining these equations we get that

—30&10@(0&1 — Oég) =0.
In a similar way we obtain
—30é30é4(0é3 — Oé4) =0.
It follows that for some different 7, j one has a; = «;, a contra-
diction.
(II):t =2,|S«| = 2,|598| = |98, = 1. We may assume that So, =

{1,2}, 85, = {3}, 53, = {4}. The system of equations in this
case is as follows

. (SL’ — Oé3)13
h(z) - 61 _l_ (QE—O{1>11($—O{2)I2’
T — Oy la
h(af) = ﬁg + ( )

(. —aq)l(z — ag)le

If I3 =14, = 0, then it follows that §; = (35, a contradiction. Let
us deal with the case I3 = 0,1, # 0 (in a similar way one can
handle the case I3 # 0,1, = 0). There are only three systems to
consider. If (I1,ls,13,14) = (0,1,0,1) or (1,0,0,1), then f; —1 =
B2 and the composite function f has only 2 zeros and poles, a
contradiction. If (I1,1s,13,14) = (1,1,0,2), then f; —1 = f5 and
ay = ast1, a1 = apt2. In all these cases we obtain a composite
function f having only 3 zeros and poles, a contradiction. Let
us consider the cases with I3 # 0,14 # 0. There are 18 systems
to deal with. It turns out that d satisfies the equation

(Ty — T3)ls(T5 — )" (T — Tp)"
(Ty — T0) (Ty — To)l2(Ty — Ty)H’

dl4—l3 -

where «; = oo + Tid for some T; € {0,1,2,3}. If (Iy,1s,13,14) =
(1,0,2,2), then

(Ty, T, T3,Ty) € {(1,3,0,2),(1,3,2,0),(2,0,1,3),(2,0,3,1)}.
In all these cases we obtain a composite function f having only

3 zeros and poles, a contradiction. As an example we compute
f when (Tl,TQ,Tg,T4) = (1,3,0,2) We get that 52 = 51 + 4d



14 SZ. TENGELY

and
_ (x — ap)?
h(l’) - 51+(l'—040—d)’
g(@) = (z—Bi)(z — b1 —4d),
(x — ap — 2d)*(z — )
(x — g —d)? .
We exclude the tuple (ly,1ls,13,14) = (0,1,2,2) following the

same lines. If (Iy,l2,13,14) = (1,1,1,2), then we also have that

d = m and d = %, it is easy to check that such
tuple (11,75,T3,T,) does not exist. In a very similar way if

(I1,12,13,14) = (1,1,2,1) we obtain that

B 1 LTy
T+ Ty, 2Ty (Ty — T3)?

d

and such tuple (T3, Ty, T3,T,) does not exist. If (I1,ls,13,14) =
(2,1,2,3), then

(s = To)° _
(Ts -T2 (T3 —T)
(Ty — T5)? 4

(Ty —T)2(Ty —Ty)  27(Ty —Ty)'
There is no solution in 7; € {0,1,2,3},T; # T},i # j. We ob-

tain a very similar system of equations in case of (I1,ls,l3,1;) =
(1,2,3,2),(1,2,2,3), (2,1,3,2). 1 (Iy, I, I5, 1) = (1,1,3,3), then
we get

h+1, = T3+1T;,

(Ty =TTy —Tz) = (T —Th)(Ts — Tr),
27(Ty — T)Y Ty — T1)* = ATy — T3)*(Ty — T)*(Ty — T1) — (Ty — T3)°.

The above system has no solution in (77, Ty, T3, Ty). If (11, 13,13, 14) =
(1,2,3,1), then

Ty — AT + 3T, = O,

2T + 13— 31T, = 0,

(Ty —T3)* = (Ty —T))(Ty — Ty)>.

The system has no solution. The same argument works in case
of (ll, lg, lg, l4) = (1, 2, 1, 3), (2, 1, 1, 3), (2, 1, 3, 1) If (ll, lg, lg, l4) =
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(0,2,2,1), then we have

B 1
Qo = gy + 17
B 1
ag = Oy — 1,
hence
1\2
ha) = i+ B0t

(x— g — )%

gle) = (=P =i —1),

) = (x—oq)(:c—ozf—l— 1)’

(—ai— 1)

That is f has only 3 zeros and poles, a contradiction. We handle
in the same way the tuples (11, l2,l3,14) = (2,0,2,1),(2,0,1,2),(0,2,1,2).
If (Iy,15,13,14) = (0,0,1,1), then deg h(x) = 1, a contradiction.

(I1) :t =3,|Sx| = 58| = |98, = |58,] = 1. We may assume that Sy, =

{1}, S5, = {2}, S5, = {3}, Ss, = {4}. In this case h(z) can be written

as follows

. (SL’ — Oég)lQ
h(x) - 51+ (x_al)lla
N (SL’ — Oé3)13
h(x) - 52+ (:L’—oq)ll’
o (SL’ — Oé4)l4
h(SL’) ﬁg + (SL’ — oq)ll .

The only possible exponent tuple (1, ls,l3,14) is (0,1, 1, 1). Thus deg h(x) =
1, a contradiction.

(I11):t=3,|9,|=2,]9,] = |9s] = 1. We may assume that S =
{1,2}, S5, = {3}, 9p, = {4}. The only exponent tuple for which deg h(x) >
1is given by (Iy,1,13,14) is (1,1,2,2). We obtain the following system

of equations if d # 0 :

(Bs = BTy = T3)* + (Ba — Ba)(Ty —Th)(Ty — Tz) = 0
(B — 52)(T3 Ty)? + ( 53)(T3 — Tl)( T) = 0
(B1 = Bo)(Ty — Tu)* + (B3 — Bu)(Th )2 =0

(B1 — Bo) (T — Ty)? (53—51)(75 Ty)? = 0,

where {11, T3, T3, T,} = {0,1,2,3}. Solving the above system of equa-
tions for all possible tuples (14,75, T5,7,) one gets that 5, = f3; for
some i # j, a contradiction.
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(I11):t=3,|9,| =598, = |98,| = |98,| = 1. We may assume that S, =
{1}, Ss, = {2}, S, = {3}, Sz, = {4}. The only possible exponent tuple

is (I1,12,13,14) = (1,1,1,1). Thus the corresponding h(z) has degree 1,

a contradiction. As an example we consider the case

ap = ap+d,
Qg = o,

oy = Qg+ 3d,
ay = ap+ 2d.

We use equation (B) here with (j1, j2,73) = (1,2,3) and (j1, jo, J3) =
(1,2,4). If d # 0, then we have
B3 = 301 —2ps,
Br = 281 — o
Let kq, ko, k3, k4 € Z such that ki + ko + ks+ ks = 0. Theorem A implies
that
g(x) = (z—B)"(x — B2)(z — 301+ 28:)" (x — 281 + )™,
1
h(z) = 3(51(93 —ap) — Ba(x — ap — d)),
flz) = (z—ag—d)"(x—a)?(x — ag — 3d)*(z — ag — 2d)*.
U

5. CASES WITH n =4

In this section we provide some details of the computation corre-
sponding to cases withn = 4,t € {2,3,4}, ky+ko+.. .+k # 0,5, = 0.
These are the cases which are not mentioned in Section 5 in [12].

The case n = 4,t = 2 and S, = (). There are 134 systems to deal with.
We treat only a few representative examples.

If S, = {1,2},58, = {3,4} and (l1,ls,15,14) = (2,1,2,1), then we

have

ag+1/200 —ag — 1204 =

ag —4/3a3+1/3ay =

Qo0 — 20903004 + o0t — Qi + 20305 — o — 961 + 9B, =
s —4/305 +1/30q =

a3 — 3a3ay + 3azal — aj — 27/4B, +27/4B, =

o o o o o
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The corresponding rational functions are as follows

1 2 4 1
fl) = (x—a)™(z— )" (2 — 31 §a2>2’“2 (@ —ga+ gaz)’”,

4
glx) = (z—=p)" (z—p - 2—7(041 — ap)*)*
h(z) = B+ (z—a1)* (2 — ),
where ky + ko # 0. We note that the zeros and poles of f do not form
an arithmetic progression for all values of the parameters as the choice
a1 = 0, ay = 3 shows.
If Sﬁl = {1,2}, Sﬁz = {3,4} and (ll, lg, lg, l4) = (1, 1,0,2), then we
get the system of equations
a1+ ag — 20&4 =0
(aa—au)* =P+ P = 0.
It yields a decomposable rational function f having only 3 zeros and
poles altogether.
If S, = {1,2}, 58, = {3,4} and (l1,ls,15,14) = (1,1,1,1), then we
obtain
a1+ Qg — Qg — Qg = 0
af — 0y — anay + asay — P+ By = 0.

It yields the following solution

flx) = (z+as—asg—a)" (@ — ay) (x — a3)(x — ay)*,
g(x) = (x— B (z— B+ a2 — avas — azay + azay)®
h(zx) = Bi+(x—as—as+ @)z — ag),
where ky + ko # 0.
If Sﬁl = {1,2, 3}, 552 = {4} and (ll, lg, lg, l4) = (1, 1, 1,3), then we
have
0414—0(24-043—30(4 =0
ag + a3 — 3anay + a§ — 3azay + 30& =0
ag — 3a§a4 + 30@,@?1 — ai — B+ P =
We obtain the following rational functions
flx) = (2 =) (2 — ag)"(z — ag)" (z — ay)™,
(x = B2 — (a3 — cu)*)" (x — Bo)"™
Mr) = fot(z—au)’,

=
5

S~—
I
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where ky 4 ko # 0 and
1 1
a1 = 50&4(-@\/§—|—3) — 50&3(—1\/54- 1)

1 1
Qg = 50&4(1\/§+3)+§Oé3<—l 3—1)
The case n = 4,t = 3 and S, = (). There are 48 systems to handle in
this case. We consider one of these. Let Sz, = {1}, 53, = {2,3}, S5, =
{4} and (L4, 12,13,14) = (1,1,0,1). We obtain the system of equations
ar—ag—Pi+p3 = 0
ay—ayg— P+ p3 = 0.
It follows that h is a linear function, which only provides trivial de-
composition. In the remaining cases we have the same conclusion.
The case n = 4,t = 4 and S, = ). Here we get 24 systems to consider.
In all cases we have that

{9815 980 955 9, = {1}, {2}, {3}, {4}}

and (I1,1ls,13,14) = (1,1,1,1). Therefore h is linear, a contradiction.
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